multiply connected domains. Clearly, the constant depends on the geometry of a domain since for \(\{0 < |z| < 1\} \) and \(f(z) = \frac{1}{z} \) with \(p \perp 0 \), the RHS in (2) is while the RHS remain bounded. (What happens if we replace \(H^1 \)-norm by \(H^2 \)-norm in the RHS?)

II. The isoperimetric sandwiches

1. Approximation by rational functions.

Let \(K \) be a compact set in \(\mathbb{C} \).

Def. The analytic content \(\lambda(K) \) is defined as

\[
\lambda(K) := \text{dist}(z, R(K)) = \inf \| z - g \|_{C(K)}^2
\]

where \(R(K) \) consists of all rational functions with poles outside \(K \) and their uniform limits on \(K \).

The Stone-Weierstrass theorem \(\Rightarrow \lambda(K) = 0 \iff R(K) = C(K) \)

\[
\| f \|_{C(K)} = \max_{z \in K} | f(z) |
\]

By the Cauchy–integral formula, all functions in \(R(K) \) are analytic in \(\text{int} K \).
However, not all continuous on K, analytic on K functions belong to $R(K)$. If $\text{co} K = \varnothing$, i.e., K is nowhere dense, the analyticity requirement is void, and the question is when $R(K) = C(K)$?

(i) If $C \setminus K$ is connected, e.g., K is a Jordan arc, the celebrated theorem (1934) of Laurentjev states that

$$R(K) = P(K) = C(K)$$

in that case. $P(K)$ is the uniform closure of analytic polynomials on K.

(ii) In 1951 S. Merzlyan proved that for all $K: C \setminus K$ is connected, all functions analytic in K and continuous on K are uniformly approximable by polynomials.

(iii) However, for $R(K)$ the situation is much more complicated. The celebrated example of Swiss cheese set obtained from the unit disk by removing a sequence of nonoverlapping disks $\{D_i\}$
where radii \(r_j \) satisfy \(\sum r_j < \infty \)
and \(\text{D} \bigcup \{ A_j \} = K \) is nowhere dense,

\[\begin{array}{c}
\text{Exercise} \\
\text{The measure } \mu = \frac{d\zeta}{2\pi i} \left[-\sum \frac{d\zeta}{2\pi i} \right] \\
anihilates all \(R(K) \) functions. Hence, \\
\text{by Hahn–Banach theorem, } R(K) \subseteq C(K)
\end{array} \]

One of the first results in studying analytic approximation was the classical
C. Runge’s theorem (1885)

Theorem. If \(f \) extends to be analytic
in an open neighborhood of \(K \), then
\(f \in R(K) \).

The idea for the proof is simple.

\(f(\zeta) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z) \, dz}{z - \zeta}, \quad \zeta \in K \)

where \(\Gamma \) is a nice contour

surrounding \(K \) close enough to \(\text{inside} \)
\(\Gamma \) \(f \) is analytic.
For each \(z \) fixed, \(f(z) \) is a rational function of \(z \) on \(K \),

Riesz's Theorem follows from approximating the integral in (6) by Riemann sums.

Note: If \(K \) has a connected complement then each rational function \(g(z) = \frac{1}{z - z_0} \) \(z \neq K \) can be approximated uniformly on \(K \) by polynomials in \(z \). This is seen by moving the pole \(z \) to \(\infty \).

As we noted before \(\lambda(K) = 0 \Leftrightarrow z \in \mathbb{R}(K) \) and hence, by the Stone-Weierstrass Theorem, \(\mathbb{R}(K) = C(K) \).

The "sandwich"

\[
\frac{\text{Area}(K)}{\text{Perimeter}(K)} \leq \lambda(K) \leq \sqrt{\frac{\text{Area}(K)}{4}},
\]

\[
\frac{2A}{\pi} \leq \lambda(K) \leq \sqrt{\frac{A}{\pi}}
\]

Khavinson

'82

H. Alexander '73

Gamelin-Khavinson '86

Moreover, in the RHS equality occurs if \(K \) is a disk union with a set of area zero.
\textbf{Cor 1.} (F. Hartogs - A. Rosenthal)

If \(A(k) = 0 \Rightarrow x = 0 \Rightarrow R(k) = C(k) \)

\textbf{Cor 2.}

\[
\frac{2A}{\pi} \leq \sqrt{\frac{A}{\pi}} \iff 4\pi A \leq 1 \text{ for smooth domains and equality occurs iff } K \text{ is a disk.}
\]

Remark. The RHS \(\sqrt{\frac{A}{\pi}} \) is simply the radius of the disk with the same area as \(K \), so-called the volume radius.

\[2. \quad \text{Proof of Thm 2.1}
\]

\[\text{(a) Cauchy-Green-Koppelman formula.}
\]

Recall \(\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \).

For any \(g \), say, in \(C^4(G) \), \(G \) is a smoothly bounded domain, we have

\[
g(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{g(z)}{z-w} \, dw - \frac{1}{\pi} \int_{\partial D} \frac{\partial g}{\partial z} \frac{1}{z-w} \, dw.
\]

If \(g \) is analytic in \(G, \frac{\partial g}{\partial z} = 0 \) and (7)
reduces to the Cauchy formula.

To prove (7) exercise from G a disk D and

centred at z, and apply Green's formula to

$$\frac{g(z)}{z - \xi} \text{ in } G_\varepsilon = G \setminus D_\varepsilon.$$ Then let $\varepsilon \to 0$.

If we replace g, by

$$\left(z - \xi \right) g(z),$$

and (7) becomes

$$0 = -\frac{1}{2\pi i} \int g(z) \, dz - \frac{1}{\pi} \iint \frac{\partial g}{\partial z} \, dx \, dy$$

$$G$$

$n, \quad z = x + iy,$

$$\int g(z) \, dz = 2i \int \frac{\partial g}{\partial z} \, dx \, dy.$$

This is the complex form of Stokes' formula.

Note that the second statement in (7) follows from (8) by replacing g with

$$\frac{g(z)}{z - \xi} \quad \text{since} \quad \frac{1}{z - \xi} \quad \text{is analytic in } G \setminus \overline{D_\varepsilon}$$

for $z \in G$.

(ii) \[P \] of lower bound \[\text{wlog} \] \[K = G U R \]

Fix \(h \in R(K) \), analytic in a neighborhood of \(K \). Let \(ds = |dz| \) be the arclength measure on \(\Gamma = \partial K \). \(P = \int ds \). Apply (8) to \(g(z) = \overline{z} - h(z) \), we obtain:

\[\int \overline{z} - h(z) \, dz = 2i \int 1 \, dx \, dy = 2i A \]

\[A = \text{Area}(K) \] \[\text{Eq. (9)} \]

Yet \[\int \overline{z} - h(z) \, dz \leq \int |\overline{z} - h(z)| \, ds \]

\[\text{Eq. (10)} \]

Taking the minimum over such \(h \) and using (9) we obtain

\[2A \leq \chi(K) P \] \[\text{Eq. (11)} \]

If \(K \) is not smoothly bounded, (11) still holds as soon as one make sense of the perimeter of \(K \), finite or infinite.

If \(P(K) = \infty \), (11) is trivial. The theory of sets with finite perimeter has been developed in the 50-70s in Geometric
(iii) Upper bound (Alexander's spectral area estimate)

Let G be a smoothly bounded domain containing K.

Apply (7) to $g = \overline{z}$:

$$\overline{z} = \frac{1}{2\pi i} \int_{\Gamma \cap G} \frac{\overline{z}}{z-s} \, ds - \frac{1}{\pi} \iint_{G \setminus K} \frac{1}{z-s} \, dxdy$$

(11) \hspace{1cm} s \in K.

Now, let $\phi(s) = \frac{1}{\pi} \iint_{K} \frac{1}{z-s} \, dxdy$.

(11) \Rightarrow

$$\overline{z} + \phi(s) = \frac{1}{2\pi i} \int_{\Gamma \cap G} \frac{z}{z-s} \, ds - \frac{1}{\pi} \iint_{G \setminus K} \frac{1}{z-s} \, dxdy$$

(12) \hspace{1cm} G \setminus K

The integral around Γ depends analytically on s for $s \in G$, hence, by Runge's theorem, it belongs to $R(K)$.

Claim 4 (Mergelyan's estimate)

$$\frac{1}{\pi} \iint_{G \setminus K} \frac{dxdy}{z-s} \leq \frac{2}{\pi} \left[\frac{\text{Area } (G \setminus K)}{\pi} \right]^{1/2}$$

when $G \setminus K$.
Assuming Claim 1, we conclude that
\[3 + f(3) \in R(K). \]

Hence, \[\lambda(K) \leq \| \frac{3 + f(3)}{\sqrt{2}} \|_K. \]

(13)
\[= \| \frac{f}{\sqrt{K}} \|_K. \]

IV. Ahlfors - Beurling Estimate

Claim 2 (⇒ Claim 1) For any \(K \subseteq \mathbb{C} \)

(14) \[\max_{\xi \in \mathbb{C}} \left| \frac{1}{\pi} \iint_{K} \frac{dx \, dy}{z - \xi} \right| = \| f^*(K) \|_K \leq \sqrt{\frac{\text{Area}(K)}{\pi}} \]

(claim 2 ⇒ claim 1 since we dropped the factor 2 in the RHS)

Moreover, the equality in (13) occurs iff

the union of

\(K \) is a disk of radius \(\sqrt{\frac{\text{Area}(K)}{\pi}} \) and a closed set of zero area

Note that (13), (14) ⇒ \[\lambda(K) \leq \sqrt{\frac{\text{Area}(K)}{\pi}}, \]

and the equality occurs iff \(K \) is a disk modulo, perhaps, a set of area zero.

Proof of (14). First, note that if \(K = \phi \)
the closed disk centered at the origin of radius $p > r$, then

$$f_p(\zeta) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{1}{re^{i\theta} - \zeta} \, d\theta \oint_{\gamma} \frac{1}{z - \zeta} \, \frac{dz}{z - r}$$

$$= \frac{1}{i5} \left[\frac{1}{2 - \frac{1}{5}} - \frac{1}{2} \right] d\zeta = \begin{cases} 0, & 151 < r \\ \frac{2i}{5}, & 151 = p \\ 121 = p \\ -\frac{2i}{5}, & 151 > r \end{cases}$$

by the residue calculus.

(The residues at 0 and ζ cancel if $151 < r$,
while only the residue at $\zeta = 0$ enters if $151 > r$.) Thus

$$f_p(\zeta) = -\frac{2}{5} \int_{0}^{\min(p,151)} r \, dr \oint_{\gamma} \frac{dz}{z - \zeta} = \begin{cases} -\frac{2i}{5}, & 151 < p \\ \frac{2i}{5}, & 151 = p \\ -\frac{2i}{5}, & 151 > p \end{cases}$$

So, $\left| f_p(\zeta) \right| \leq p = \left[\frac{\text{Area}(A_p)}{12} \right]^{-1/2}, \zeta \in \mathbb{C}$.

Note that $f(\zeta)$ is analytic off K, hence attains its maximum on K.

Moreover, (exercise) $f(\zeta)$ is continuous in \mathbb{C} for any K as a convolution of a locally integrable function $\frac{1}{\zeta}$ and a bounded
function \(f_k(z) = \begin{cases} 1, & z \in K \\ 0, & z \notin K \end{cases} \)

Thus, \(f_k(z) \) attains its maximum somewhere on \(K \). Performing a translation we can assume that \(f_k(z) \) attains its maximum at the origin. Furthermore, performing a rotation we can assume that \(f_k(0) > 0 \). Thus

\[
\| f_k \|_{K} = f_k(0) = \frac{1}{\pi \alpha} \int_{K} \text{Re} \left(\frac{1}{z} \right) \, dx \, dy.
\]

Exercise: For any \(c > 0 \), the set \(\{ \text{Re} \left(\frac{1}{z} \right) \geq c \} \) is a disk \(D_c \) centered at \((\frac{1}{2c}, 0) \) with radius \(\frac{1}{2c} \).

\[
\max_{K \cap D_c} \text{Re} \left(\frac{1}{z} \right) \leq c \leq \min_{K \cap D_c} \text{Re} \left(\frac{1}{z} \right).
\]

Also, choosing \(c \): \(\text{Area}(K) = \text{Area}(D_c) \), we have

\[
\text{Area}(K \cap D_c) = \text{Area}(D_c \cap K),
\]

and hence from (17), (18) it follows that (16) is maximized when \(K \), up to a set of area zero coincides with the disk.
\(-10-\)

\[\Delta_c \text{ for an appropriate } C, \text{ so that } A_c(k) = \text{Area}(\Delta_c). \] But we have calculated that for the disk \(\Delta_c \)

\[\frac{\sqrt{A(K)}}{\pi} \]

Since

\[\frac{\sqrt{A(K)}}{\pi} \leq \frac{\sqrt{\Delta_c}}{\Delta_c} \]

Claim 2 (the Allfors–Bénilian estimate) follows

Remark: The Allfors–Bénilian estimate (14) can be rephrased that among all uniformly charged \(\mathbb{R}^n \) with uniform mass density, the disk produces maximal electrostatic force.

Indeed, the potential of a planar electric field is given by

\[\Phi(z) = \frac{1}{2\pi} \iint \log \frac{1}{|z-x|} \, dx \, dy \]

and the force (electric field) is given by

\[\nabla \Phi(z) = \frac{\partial \Phi}{\partial x} \] is

\[= -\frac{1}{2\pi} \iint \frac{x \times d\gamma}{|z-x|^3} = -\frac{1}{2\pi} f(s). \]

It turns out that this is no longer true in \(\mathbb{R}^n \), \(n \geq 3 \) where \(\log \frac{1}{|x-\gamma|} \) is replaced by \(|x-\gamma|^{n-2} \) (Newtonian potential), B. Gustafsson, 1991.