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On a uniqueness property of harmonic functions

Dmitry Khavinson and Harold S. Shapiro

To Walter Hayman with admiration on the occasion of his 80th birthday.

Abstract. We investigate the problem of uniqueness for functions u harmonic
in a domain Ω and vanishing on some parts of the intersection (not necessarily
connected) of Ω with a line m. It turns out that for some configurations u
must vanish on the whole intersection of m and Ω, but this is not always the
case. Generalizations to solutions of more general analytic elliptic equations
are discussed as well.
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1. Introductory Remarks

The following simple question was posed to the second author by N. Nadirashvili
more than a decade ago — cf. [6, p. 2]. Consider the spherical shell Ω :=
{x ∈ R3 : r < |x| < R} and let u be a harmonic function in Ω that vanishes on
the segment (−R,−r) of, say, the x1-axis. Does u also vanish on the segment
(r, R), the remaining part of the intersection of the x1-axis with Ω?

It is instructive to keep in mind the following simple example of a situation where
a similar question has a negative answer.

Example 1. Let Ω =
{
z : r < |z| < R,−π

4
< arg z < 5π

4

}
. The function u (z) =

arg z is harmonic in Ω, vanishes on the interval of the real axis (r, R) but is equal
to π on (−R,−r).
To fix the ideas for further discussion, let us consider the same question in the
annulus Ω : {z = x + iy : r < |z| < R} in the plane. Define the (harmonic)
function v (z) by

(1.1) v (z) := u (z) + u (z̄) .
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Since Ω is symmetric about the x-axis, (1.1) is well-defined. Moreover, in view
of the Schwarz Reflection Principle (cf. [3, 6, 8]) and the hypothesis, v vanishes
identically on a small disk centered somewhere on the segment (−R,−r). But v
is harmonic and hence real-analytic throughout Ω, so it must vanish identically
in Ω. In particular, we have v (x) = 2u (x) = 0 on (r, R), so u |(r,R) = 0 as well.

In the following section, we expand on this idea to answer the original question
in the affirmative in Rn for all n ≥ 2 and for slightly more general domains.

In Section 3 we gain what is hopefully the “higher ground” for the question at
hand. Namely, we consider analytic continuation of the function u throughout the
larger complex space Cn, with Rn ⊂ Cn, Rn = {z ∈ Cn, z = (z1, . . . , zn) , zj ∈ R}.
This idea rests on the notion of a cell of harmonicity (cf. [1, 2, 6, 7]), also known
as Vekua hulls for n = 2. This allows us to extend our results to domains that
are not extensively symmetric, e.g., certain shells between two heterogeneous
ellipsoids. Moreover, this approach automatically yields the same results for
solutions u of rather general analytic elliptic equations

(1.2) Lu = f, L = ∆m +
∑

|α|≤2m−1

aα (x) ∂α,

where aα (x), f are, say, entire real-analytic functions (e.g., polynomials), ∆ =
n∑
1

∂2/∂x2
j . We use the standard multi-index notation α = (α1, . . . , αn), αj ∈

N
⋃{0} and

∂α =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

(cf., e.g., [4, 5] or [6]).

We conclude with some remarks, examples and possible questions for further
study.

Acknowledgement. The authors are indebted to Professor Thomas Ransford
for pointing out the crucial Example 7 to us, and, also, for suggesting a number
of improvements in the exposition.

2. Exploiting Symmetry

The argument in Section 1 extends word-for-word to Ω ⊂ Rn, n ≥ 2, if the
line y = 0 in R2 is replaced by a hyperplane H ⊂ Rn and Ω is assumed to be
symmetric about H.

Nadirashvili’s question is more delicate, since we replace H by a much thinner set,
a line, which prevents us from applying the reflection principle in all dimensions
≥ 3.

The following theorem addresses Nadirashvili’s question in a slightly more general
form.
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Theorem 2. Let Ω be a domain in Rn symmetric about the x1-axis, i.e., Ω is
symmetric about the x1-axis when n = 2 and axially symmetric about the x1 axis
for n ≥ 3. Then, if a function u, harmonic in Ω, vanishes on some interval I of
the x1-axis in Ω, it must vanish at all points of the x1-axis which lie in Ω.

Proof. The proof is based on some well known facts from the theory of axially
symmetric potentials — cf., e.g., [9]. For the convenience of the reader we have

incorporated most of them into our reasoning. Let ρ = (x2
2 + · · ·+ x2

n)
1/2

be the
distance to the x1-axis. Let x = (x1, . . . , xn) be a point in Ω and define v (x)
to be the mean value of u over the (n− 2)-dimensional sphere Sn−2

ρ centered at

(x1, 0, . . . , 0) of radius ρ : ρ2 = x2
2 + · · ·+ x2

n. Then, v is still harmonic in Ω and
is invariant with respect to all rotations of Rn about the x1-axis. Indeed, let G
be the subgroup of the orthogonal group in Rn that leaves points on the x1-axis
fixed, i.e., G is the group of rotations around the x1-axis. Let m (g) be the Haar
measure on G normalized so that m(G) = 1. Then,

v (x) =

∫

G

u (gx) dm (g) .

In view of Weyl’s lemma, to check the harmonicity of v it suffices to show that∫

Ω

v (x) ∆f (x) dx = 0

for every C∞-function f in Ω with a compact support in Ω. The latter integral
can be written as follows:∫

Ω

{∫

G

u (gx) dm (g)

}
∆xf (x) dx =

∫

G

{∫

Ω

u (gx) ∆xf (x) dx

}
dm (g)

=

∫

G

{∫

Ω

u (y) ∆yf
(
g−1y

)
dy

}
dm (g) .

(We used the change of variables gx = y and the fact that the Laplacian com-
mutes with all orthogonal transformations.) Since f (g−1y) ∈ C∞0 (Ω); the inner
integral vanishes in view of the harmonicity of u and the harmonicity of v follows.

So, v is harmonic in Ω and is invariant with respect to all rotations of Rn about
the x1-axis. Thus, v = V (x1, ρ). Clearly, although V is initially defined on a one
sided neighborhood of I, it extends to a full neighborhood of I in R2 by setting
V (x1,−ρ) = V (x1, ρ) and is real analytic there (cf. [9]). It is well known (cf.,
e.g., [9]), in view of the harmonicity of v, that, in the meridian (x1, ρ)-plane, V
satisfies the equation of axially symmetric potentials

(2.1)
∂2V

∂x2
1

+
∂2V

∂ρ2
+
n− 2

ρ

dV

dρ
= 0.

Since V (x1, 0) = u (x1, 0, . . . , 0) it follows from our hypothesis that V vanishes
on the interval I of the x1-axis and then, equation (2.1) yields that dV

dρ
vanishes

everywhere on I as well. Since V (x1, p) is real analytic and vanishes on I there
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is, unless V vanishes on a neighborhood of I in R2, a greatest positive integer k
such that V (x1, ρ) = ρkW (x1, ρ) with W real analytic and non-vanishing on I.
But, substituting this into (2.1) and simplifying shows at once that W vanishes
on I as well, which contradicts the maximality of k. This contradiction shows
that V vanishes on a neighborhood of I. Since V is real analytic in Ω, V ≡ 0.
But u = V at all points on the x1-axis inside Ω and the proof is now complete.

Remark 1.

(1) Instead of using (2.1) to see that V vanishes identically near I, one could
alternatively expand v (x1, ρ) in some ball centered at a point of the x1 axis
in the series of zonal harmonics with the coefficients (Gegenbauer coeffi-
cients) that are expressible as integrals over the interval I on the x1-axis,
which all vanish since v|I = 0 (cf. [9] for details).

(2) Of course, Theorem 2 remains true if we merely assume that Ω contains a
domain Ω1 that is axially symmetric about the x1-axis and such that every
interval of x1-axis inside Ω intersects Ω1 as well.

Returning to the two-dimensional situation we can generalize the above theorem
slightly.

We say (cf. [7]) that a domain Ω ⊂ R2 is symmetric with respect to a real-
analytic curve γ given by z̄ = S (z), where S (z) is the Schwarz function of γ
(see [3,8]) analytic near γ, if S is analytic and single-valued in Ω and the mapping

R (z) := S (z), R |γ = id, is a bijection of Ω onto itself.

Proposition 3. Let Ω be symmetric with respect to γ. If u is harmonic in Ω
and vanishes on some portion of γ, it vanishes at all points of the curve γ that
lie in Ω.

Proof. Following (1.1), define

(2.2) v (z) := u (z) + u (R (z)) .

Following the argument in Section 1 word-for-word and appealing to the Schwarz
Reflection Principle for arbitrary analytic curves (cf. [3, 6, 8]), we conclude that
v ≡ 0 in Ω. Hence u |ΩT γ = v = 0.

Remark 2. In fact, it suffices in the above proposition to assume that the open
set Ω ∩R (Ω) is merely connected in Ω, not necessarily coinciding with Ω.

3. A View from Cn

Recall the notion of the harmonicity hull of a domain Ω ⊂ Rn (the Vekua hull,
for n = 2).

Let z0 ∈ Cn, Γz0 :=

{
z ∈ Cn :

n∑
1

(zj − z0
i )

2
= 0

}
be the isotropic cone with the

vertex at z0.
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The harmonicity hull Ω̂ of a domain Ω ⊂ Rn is defined as

(3.1) Cn r
⋃

x∈RnrΩ

Γx.

For examples, basic properties and extensive accounts of this concept, we refer
the reader to [1] and [2], and also to [6, 7]. Note that in two dimensions, where

Γz0 =
{
z ∈ C2 : z1 + iz2 = z0

1 + iz0
2

}

∪{z ∈ C2 : z1 − iz2 = z0
1 − iz0

2

}

is simply the union of two complex lines, the notion of harmonicity (Vekua) hull
is especially geometrically transparent:

Ω̂ =
{
z ∈ C2 : z1 + iz2 ∈ Ω, z̄1 − iz̄2 ∈ Ω

}
.

Now if u satisfies the differential equation Lu = f in Ω, with the differential
operator L given by (1.2):

(3.2) L := ∆m +
∑

|α|≤2m−1

aα (x) ∂α

with the coefficients aα, f holomorphic in (a larger) domain Ω̂ ⊂ Cn, then u

admits analytic continuation into Ω̂ (cf. [1,2,6,7]). If Ω̂ is simply connected (as,
for example, for convex Ω), u extends as a single-valued holomorphic function,

otherwise it may have a nontrivial monodromy in Ω̂.

A proof of this result for polyharmonic functions can be seen more or less at
once if one notices that these functions can be represented by integrals over ∂Ω
with analytic kernels whose only singularities are restricted to isotropic cones Γx,
x ∈ ∂Ω (cf. [1, 2]).

It is worth noticing that this approach extends mutatis mutandis to all Riesz
potentials u in Ω:

(3.3) u (x) =

∫

RnrΩ̄

dµ (y)

|x− y|α , α ∈ R

where dµ is a compactly supported measure in RnrΩ̄, and |x−y| is the Euclidean
distance. For solutions u of Lu = f , the strategy of proving analytic extendibility
is roughly as follows. Fill up Ω as a union of convex domains, say balls B, and
using the Bony-Schapira theorem (cf. [4, 6]), extend u to each B̂. Then their

union fills up Ω̂.

The following observation is now obvious.

Theorem 4. Let Ω ⊂ Rn be a domain and let Ω̂ ⊂ Cn be its harmonicity hull
(so Ω ⊂ Ω̂ ⊂ Cn). Let L be as in (3.2) with all the coefficients holomorphic in

Ω̂. Assume that the intersection of the complex z1-line {z2 = · · · = zn = 0} with

Ω̂ is path-connected. Then any solution u of Lu = f in Ω that vanishes on some
portion I of the x1-axis in Ω, vanishes at all points of the x1-axis that lie in Ω.
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Proof. Indeed, by the above remarks u extends as a multi-valued function to Ω̂.
This extension has a single-valued branch in Ω that we still denote by u. Hence,
this single-valued branch u is analytically continuable in the one-dimensional
complex domain D := Ω̂ ∩ {z2 = · · · = zn = 0}. Since it vanishes on an open
segment of a real line in D, u must vanish identically in D, and the statement
follows since D is assumed to be connected.

Corollary 5. Let Ω := {x ∈ Rn : r < |x| < R} be a spherical shell. L, f are as
before. If a solution u of Lu = f vanishes on some portion of the x1-axis in Ω,
it vanishes at all points of the x1-axis that lie in Ω.

Proof. For the proof we only need to show that the intersection of the complex
line M := {z2 = · · · = zn = 0} with Ω̂ is path connected. Take any c : r < c < R.
Let γ be the circle centered at 0 with radius c in M . Take any x ∈ RnrΩ and con-

sider the isotropic cone Γ with the vertex x, Γx =

{
z ∈ Cn :

n∑
1

(zi − xi)2 = 0

}
.

We only have to show that no point {(ceit, 0, . . . , 0) , t ∈ R} on γ belongs to Γx.
Indeed, if this were the case, we would have

(
ceit − x1

)2
= −ρ2, ρ2 = x2

2 + · · ·+ x2
n,

or
ceit = x1 ± iρ,

i.e., |c|2 = x2
1 +ρ2 = |x|2. But this is impossible since r < c < R while x ∈ RnrΩ

and hence |x| is either ≥ R, or ≤ r.

Remark 3. The above corollary, of course, extends word-for-word if u is a Riesz
potential (3.3).

Corollary 6. The above corollary extends to shells Ω := Ω2 r Ω1, where Ωj,
j = 1, 2, are arbitrary solids homeomorphic to a ball, Ω1 3 {0}, provided that
r := max {|x| : x ∈ ∂Ω1} < min {|x| : x ∈ ∂Ω2} =: R.

For the proof one needs only to notice that the shell Ω contains a spherical shell
Ω′ : {x : r+ ε < |x| < R− ε} for sufficiently small ε > 0 (cf. Remark (2) following
the proof of Theorem 2).

4. Final Remarks

In view of Corollary 6, Corollary 5 extends to spherical shells Ω with the x1-
axis replaced by a parallel line sufficiently close to the center, i.e., by the line

m := (x1, t2, . . . , tn), where the tj are fixed and

(
n∑
2

t2j

)1/2

= ρ < R−r
2

, R, r are

as in Section 3. In the two-dimensional case, this can also be proved directly
using the Schwarz reflection argument mentioned in the Introduction. The key
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point is that we need Ω
⋂

Ω∗ to be connected, where Ω∗ denotes the reflection
of Ω in the line in question, and this only holds for lines sufficiently close to the
x1-axis.

Obviously, if ρ > r, the intersection of m and Ω is connected, and Corollary 5
holds then as well.

For “thick shells”, i.e., where R/r > 3, it is already true that R−r
2

> r, hence
unique continuation property holds for ALL lines. Yet, observe that when
R/r < 3 and r > ρ > R−r

2
, the intersection of the harmonicity shell Ω̂ with

the complexification M of the line m becomes disconnected, indicating that the
unique continuation property may fail, and there are say harmonic functions u
in Ω vanishing on parts of m in Ω but not on the whole intersection of Ω and m.
We have not been able to furnish an example of such u ourselves. The following
simple and elegant example is due to Professor Th. Ransford.

Example 7. Let Ω be an annulus in C \ {0, i,−i} which separates {0, i} from

{−i}. Define u(z) = Re
√
z(z − i)(z + i). Note that u is well-defined and har-

monic in Ω (it does not matter which branch is chosen). A quick calculation

shows that u(x) = 0 if x < 0 and u(x) =
√
x(x2 + 1) 6= 0 if x > 0. It remains

now to translate the whole picture, so that Ω is centered at the origin. Note that
the above annulus is “thin”, i.e., the ratio of the radii R/r < 3 and can be easily
made arbitrary close to 3.

It is tempting to try and extend Proposition 3 to higher dimensions when a
domain in Rn is intersected by, say, an algebraic variety of high-codimension,
e.g., a curve, or a hypersurface. At this point we do not even have a reasonable
conjecture to present here (Example 1 still remains somewhat of a mystery), yet
we think that it is a worthy topic for future investigations.
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