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Gravitational Microlensing
� n co-planar point-masses (e.g. condensedgalaxies, black holes, etc.) in lens plane ordeector plane.
� Consider a light source in the plane par-allel to the lens plane (source plane) andperpendicular to the line of sight from theobserver.
� Due to deection of light by masses multi-ple images of the source are formed. Thisphenomenon is known as gravitational mi-crolensing.
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Lens Equation for Co-Planar Point Masses
� Light source is located in the position w inthe source plane.
� The lensed image is located at the positionz in the lens plane.
� The masses are located at the positions zjin the lens plane.

w = z � nP
1
�j=(z � zj);

where �j 6= 0 are real constants. Letting r(z) =nP
1
�j=(z � zj) + w, the lens equation becomesz � r(z) = 0; deg r = n:

The number of solutions = the number of\lensed" images.
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History
� First calculations of the deection angle basedon Newton's corpuscular theory of light andthe gravitational law (H. Cavendish and Rev-erend J. Michell circa 1784, P. Laplace - 1796,J. Soldner, 1804 - the �rst published calcula-tion).
� n = 1 (one mass) A. Einstein (circa '33),either two images or the whole circle (\Einsteinring").
� H. Witt ('90) For n > 1 the maximum num-ber of observed images is � n2+1.
� S.H. Rhie ('01) conjectured the upper boundfor the number of lensed images for an n-lensis 5n� 5.
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Solution
� (Mao - Petters - Witt, '97) The maximumis � 3n+1
� n = 2;3 ('97-'03)(Mao, Petters, Witt, Rhie)- the maximum is 5;10 respectively.
� n = 4; is the maximum15or 17?
Theorem 1. (G. Neumann-DK, '06). The num-ber of lensed images by an n-mass lens cannotexceed 5n � 5 and this bound is sharp (Rhie,'03). Moreover, it follows from the proof thatthe number of images is even when n is oddand vice versa.

7



Quadratic vs. Linear Numbers of Images
A model problem: Let p(z) := anzn + ::: +a0; an 6= 0 be a polynomial of degree n > 1.
Question. Estimate ]fz : z � p(z) = 0g, ormore generally,]f(x; y) : A(x; y) + iB(x; y) = 0g;
where A; B are real polynomials of degree � n.
Bezout's theorem implies

]f(x; y) : A = B = 0g � n2.
Conjecture 1. (T. Sheil-Small - A. Wilmshurst,'92)

]fz : p(z)� �z = 0; n > 1g � 3n� 2: 8



Results
� In the 1990s D. Sarason and B. Crofootand, independently, D. Bshouty, A. Lyzzaikand W. Hengartner veri�ed it for n = 2;3.
� In 2001, G. Swiatek and DK proved Con-jecture 1 for all n > 1.
� In 2003-2005 L. Geyer showed that 3n� 2bound is sharp for all n.
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Examples
� One-point mass lens with source at w = 0.

z � cz�a = 0:
Two images for a 6= 0, a circle (\Einsteinring") for a = 0, i.e., when the observer,the lens and the source coalesce.

� One-point lens with the tidal perturbation(a \shear") from a far away galaxy, a Chang-Refsdal lens.
z � cz � z = w:

The equation reduces to a quadratic andBezout's theorem yields a bound of at most4 images. Curves cannot occur!
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Continuous Mass Distribution
For a continuous real-valued mass-distribution� in a region 
 in the plane the lens equationwith shear takes form

z � Z


d�(�)�z � �� � �z = w:

� � = n > 1 non-overlapping radially sym-metric masses. The number of images \out-side" the masses � 5n�5 if  = 0 and � 5nif  6= 0 (DK-G. Neumann '06, re�nementsby J. H. An and N. W. Evans, '06).
� � = uniform-mass distribution inside a quadra-ture domain 
 of order n, i.e. 
 = �(D); �is a rational function with n poles univalentin D := fjzj < 1g. The number of imagesoutside 
 is � 5n� 5 (DK-GN, '06).
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Smooth Mass Distributions
(W. L. Burke's Theorem, '81). The num-ber of images is always odd. ( = 0).
Take w = 0. Let n+ be the number of sensepreserving images and n� - the number of sensereversing images. Argument principle yields
1 = n+ � n�; so the total number of images

N = n++ n� = 2n�+1:
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Einstein Rings are EllipsesTheorem 2. (CF-CK-DK,'07) For any lens �,if the lensing produces an image \curve" sur-rounding the lens, it is either a circle when theshear  = 0, or an ellipse.
For an illustration assume the shear = 0. Ifthe lens produces an image which is a curve �,then

�z = Z


d�(�)z � � on �.

The integral is an analytic function in C n 
vanishing at 1. Hence jzj2 matches on � abounded analytic function in C n 
 and mustbe a constant.
Remark 1. Using P. Div�e's converse to theNewton's \no gravity in the ellipsoidal cavity"theorem, we can extend the above result tohigher dimensions. 13
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Ellipsoidal Lens
Lens 
 = fx2=a2+ y2=b2 � 1; a > b > 0g; withconstant density. c2 = a2 � b2.

�z � 1� Z
 dA(�)z � � � z = �w;
or, using complex Green's formula,

�z � 12�i Z@
 ��d�z � � � z = �w:
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The Schwarz Function of the Ellipse
The Schwarz function S(�) = �� of @
:

S(�) = a2+ b2c2 � � 2abc2 (� �q�2 � c2)
= a2+ b2 � 2abc2 � + 2abc2 (� �q�2 � c2)
= S1(�) + S2(�);

where S1 analytic inside 
, S2 - outside 
,S2(1) = 0. This is the Plemelj-Sokhotsky de-composition of the Schwarz function of @
.
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� For z outside 
 the lens equation then re-duces to
�z+ 2abc2 (z �qz2 � c2)� z = �w;
that may have at most 4 solutions by Be-zout's theorem.

� For z inside 
 the lens equation reduces toa linear equation giving at most one solu-tion.
Theorem 3. (CF-CK-DK) An elliptic galaxy
 with a uniform mass density may pro-duce at most 4 \bright" lensing images ofa point light source outside 
, and at mostone \dim" image inside 
, i.e., at most 5lensing images altogether.
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Confocal Ellipses
MacLaurin's mean value theorem concerningpotentials of confocal ellipsoids readily yields
Corollary 1. An elliptic galaxy 
 with massdensity that is constant on ellipses confocalwith 
, may produce at most 4 \bright" lens-ing images of a point light source outside 
,and at most one \dim" image inside 
, i.e., atmost 5 lensing images altogether.
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\Isothermal" Elliptical Lenses
� Density, inversely proportional to the dis-tance from the origin, is constant on el-lipses �t := fx2=a2+y2=b2 = tg homotheticwith @
.
� Lens equation becomes transcendental:

z � const Z 10 dtq�z2 � c2t2 � �z = w:
� There are no more than 5 images ( 4+1)observed as of today.
� In 2000 Ch. Keeton, S. Mao and H. J. Wittconstructed models with a strong tidal per-turbation (shear) having 9; (8 bright+1 dim),images.
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Remarks
� An isothermal sphere with a shear is cov-ered by '06 K-N theorem (cf. also '06 pa-per by An - Evans on Chang-Refsdal lens)andmay produce at most 4 images (observed).
� A rigorous proof that an isothermal ellip-tical lens may only produce �nitely manyimages is still missing.
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Critical Curves and Caustics
� Jacobian of the lens map L(z) = z�p(z) =w with potential p(z)
J(z) = 1� jp0(z)j2:

� Critical Curve C := fz : J = 0g.
� Caustic C0 = L(C).
� J(z) is the area distortion factor. Its recip-rocal expresses the ratio of the apparentsolid angle covering the lensed images z tothat of the original source w, called mag-ni�cation.
� Caustics indicate positions for the sourcewhere magni�cation tends to in�nity.
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Remarks
� Critical curves are lemniscates, caustics andtheir pre-images,\pre-caustics", L�1(C0) aremuch more complicated.
� Geometry of critical curves and causticsespecially for 2;3 and 4 point lenses wasmodeled and studied by astrophysicists An,Evans, Keeton, Mao, Petters, Rhie, Wittto name just a few and, independently, byBshouty, Hengartner, Lyzzaik, Neumann,Ortel, Suez, Su�ridge, Wilmshurst. G. Neu-mann's thesis '03 has a variety of deep,novel geometric results.
� (K-N '06, conjectured by Rhie '01). Thetotal number of \positive" (J � 0) imagesproduced by an n > 1-point mass lens inabsence of a tidal perturbation is � 2n�2.Further re�nements can be found in '06work of An and Evans. 23
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QUESTIONS
Lensing by a uniform mass in a Q. D..
� Geometric interplay between critical curve(s)vs. the boundary of the q.d.
� Estimate the number of \dim" images in-side the q.d. = in-depth study of the alge-braic part of the Schwarz function.
� Valence of algebraic vs.transcendental har-monic mappings (cf. G. Neumann's papers'05, '07).Model Problem: Sharp estimate for ]fz :�zm�p(z) = 0g; n := deg p >> m. Wilmshurst('94) conjectured the upper boundm(m� 1) + 3n� 2.
� Estimate the number of bright images fora polynomial mass density.
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Elliptic Lenses
� Maximal number of images for the isother-mal elliptical lens.
� Elliptical lens with a polynomial (rational)mass density(i) Maximal number of images(ii) Critical curves and pre-caustics(iii)Anomalies related to arbitrary continu-ous mass-densities
� Lensing by several elliptical masses (ob-served so far 2 galaxies lens giving 5 imagesand 3 galaxies lens with 6).
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Three-Dimensional Lensing
The 3-dimensional lens equation with mass-distribution dm(y) with source at ~w becomes

~x�rx Z dm(y)jx� yj
! = ~w:

� dm = Pn1 cj�yj. There are rough estimatesfor the maximal number of images (Pet-ters, '90s) based on Morse theory.
� A di�cult Maxwell's problem concerns anumber of stationary points of the Newto-nian potential of n point-masses (conjec-tured � (n � 1)2). Most recent progressdue to Eremenko, Gabrielov, D. Novikov,B. Shapiro. 27



� Ellipsoidal mass densities.
� Critical surfaces, caustics and pre-causticsof the lens map.
(CF-CK-DK, '07: \Einstein" surfaces canonly be either spherical in absence of ashear, or ellipsoidal.)

� Other mass-densities???
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THANK YOU!

28


