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Preface

These notes represent a series of lectures I have given at the Universidad
de La Laguna in the Spring semester of 1995. They are directed mainly
at the graduate students and a wide audience of analysts that are not
assumed to be experts in the theory of holomorphic partial differential
equations. The major purpose of such a course was simply to give the
audience a good first taste of a subject which is already sufficiently rich
with deep results and also provides exciting grounds for a nice inter-
play between some parts of modern analysis and a number of attractive
themes in classical "physical” mathematics of the last century rather
than trying to produce a some sort of encyclopedic treatise. Thus, let
me stress again, the reader I had in mind was most certainly not a
working expert in the field but a curious analyst, or a graduate student.
Accordingly, whenever a choice between clarity and simplicity vs. gen-
erality appeared I have chosen the first while trying to supply enough
references to special literature to satisfy a more requiring reader. Also,
wherever possible I tried to preserve an informal way of communicating
the material characteristic for the lecture hall rather than resorting to a
more formal style of an ”academic” textbook.

My understanding of topics covered in the lectures has developed
during a close, decade long collaboration with Professor Harold S. Shapiro
from the Royal Institute of Technology in Stockholm. Thus, his influence
on these notes goes far beyond what one may see from the references
to his and our joint works. (Needless to say though that he bears no
responsibility whatsoever for any possible errors).

I have also benefited greatly from numerous stimulating discussions
I have had over the years on a number of related topics with Professors
B. Gustafsson, G. Johnsson, L. Karp and H. Shahgholian of the Royal
Institute and with Professor P. Ebenfelt of the University of California
at La Jolla.

It is my pleasure to thank Professor Fernando Pérez-Gonzalez of the
Univesidad de La Laguna who conceived the idea of such a course and
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initiated my invitation to La Laguna. Professors A. Bonilla, D. I. Cruz
Baez, U. Fraga, J. Garcia Melidn, F. Pérez-Gonzélez, J. Sabina and R.
Trujillo-Gonzélez all attended the lectures and contributed a great many
suggestions and improvements into the text of these Notes. Also I want
to thank them all for their selfess efforts and the time they put into
typesetting the manuscript.

I am grateful to the Universidad de La Laguna for supporting my
visit and its a pleasure to thank all members of the Departamento de

Analisis Matemético for providing a warm and congenial atmosphere.
La Taguna, June 1995,

Chapter 1

Introduction

A general unifying theme of these lectures is inspired by a number
of simple questions in Classical Potential Theory. So, let us start with
discussing some of those problems.

A)In 1914 G. Herglotz ([Her]) studied the continuation of potentials
inside the region occupied by masses. More precisely, suppose we are
in R3 and consider a bounded domain Q whose boundary is real ana-
lytic. Let p(z) be a polynomial in (21, 2z, z3) which is the density of the
potential

1 [ _p(y)
Ugp(z) = gy A md?
Of course, Unp(z) is well defined and harmonic for z ¢ Q, and the
question is - keeping in mind that p(y) and 90 are extremely smooth
- how far Upp(z) can be continued across Q0 as a harmonic function
inside 2. In particular, if @ = {& € R® : |2| < 1} and p = 1, then
according to the mean value property

1 .1 C
- —— ey = ™,
Uoole) =~ | i = 1o

C being a constant, so Ug, extends into 2\ {0}. The following examples
are even more intrigaing (¢f. [Jo], [KS1]).
Example 1.1 Let Q be the ellipsoid

2

2 2
s R B
Q:{x'a2+a2+bz gl,a.>b}

1
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and suppose also that p = 1. Then Un,p extends to 0 \ {(zq,z 0) :
$2+$2<62m52}1ft0 ) 1582, .

1 2= @ e dact, Uy, extends as a multi-valued function
across all points inside the circle 23 +22 = a? - b? in the plane {z3 = 0}
and has a singularity of a Square root type on that circle.

_ . $2 -’1’32 2
Example 1.2 Let .ﬂ ={e: 3+B+H <1,a>b). Then Uq,p extends
as an analytic multi-valued function to 0 \{{z1,0,0) : lz1] < Va? 52
However the singularities are in this cage of a logarithmic 1lgfpe. .

B) The following rather simple question posed by N. Nadirashvili
and commuricated fo us by H. §. Shapiro is the following. Consider
the spherical shell @ = {z : 1 < lz] < 2} C R, and let y be a har-
monic function in . Suppose we know that u(21,0,0) 200,001 = 0.

Does u(z1,0,0}1<z<2 = 07. The two-dimensional case is easy and is
recommended as an exercise.

¥

C) SCI?[WARZ’ REFLECTION PRINCIPLE. Recall that if v is a
rea] analytic curve in the complex plane then for any point A sufficiently
close to 7 there exists another point B on the other side of 4 such that

H(A)+u(,8)m0 (1‘1)

for all functions u harmonic near 7 and vanishing on v (cf. [Shl]). The
simplest cases are when v = R, and when Y = umnit circle. Now, what
happens in higher dimensions? If 7 is the hyperplane Y=A{z:z ’ =0}
the reflection priaciple (1.1) holds with 4 = (23, s Bm1y By a,rzz B =
(Z1,3Zn1,~2,). When v = {2 1 |z] = 1}, the unit sphere, (1.1) still
holds although in a more complicated form

u(z) + fﬂ?iz““ﬂ(ﬁ%) =0 (1.2)

for all v harmonie near the sphere 7 and vanishing on it, This‘is due
to Kelvin (cf. [Ke], [Sh1]). However an answer to the question whether
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an analogue of (1.1} or (1.2) perhaps with a different constant holds for
analytic hypersurfaces in R", other than planes or spheres, has remained
unknown until very recently (cf. the discussion in [Sh1] and the most
recent paper [EK]).

As it turns out, all these questions have a common denominator:
the Cauchy problem for the Laplace operator, and more generally, the
Cauchy problem for linear PDE (partial differential equations) with holo-
morphic coefficients.

Recall that if we consider a linear ODE (ordinary differential equa-

tion)
w(”){z)+an_1(z)'w{”'1}(z)+...+a1(z)w’(z) + ap{2)w(z) = f(z), (1.3)

where the coefficients a;’s and f are holomorphic in some domain £,
and pose the Cauchy problem looking for solutions of {1.3) such that

w(0) = wo, w'(0) = w1, ey WN(0) = wy_y (1.4)

(we tacitly assume here, of course, that 0 € ), then, as is well-known
(cf. [I]), there exists a unique solution w of the Cauchy problem (1.3),
(1.4) that extends as an analytic function to the whole domain Q. Un-
fortunately the situation with PDE’s is much more complicated. The
following simple example is a good illustration of how things can go
wrong in the multi-variate case.

Example 1.8 Consider in C* the function

w{zy,zy) = g
Then,
ow ___ A
Oza B (1 - 2122)2
and

Gw _ L
5'z1 N (1 - 2122)2
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so w is the (unique) solution of the Cauchy problem

Ow 40w
8_2-2-——.215;;:0, ’UJ(Zl,O)le. (15)

We have a good equation, a good initial surface (a hyperplane), ex-
cellent data, but nevertheless the solution blows up arbitrazily close to
the initial surface. ‘

With those remarks we close this introductory section and proceed
with the study of the holomorphic Cauchy problem for pde’s. Let us say

a few words concerning the rather standard multi-variate notation (cf.
[Hérl, Ho12}) that we use.

Notations. Let z ¢ T, 2z = (21,22, y2,) = & + iy where z,y € B®,
Then, )

n
<z8 > = sz§j>
1

Z-g = szfja
1
Il = <z,2>

EX
2

.A multi-index « is a vector (g, 09, v O}y € Zoy, and we set

o] = a1+ ap by
al = ol gyl
2% = AMagR . 0y

d
% = 3

2

o d a 3
8 = (L % v 0 4,
(321) (323) (azn) )

Introduction 5

f(#) being holomorphic near 2° means f{z) = Eggizo‘@i{:&fﬁ(z e Z0)
and the series converges absolutely and uniformly in some neighborhood
of 20.

A useful abbreviation is the following: 2’ = (2, ..., 2,—1) denotes the
projection of z = (21,23,...,2,) onto the plane z, = 0. The polydisk
D(2°, R) centered at z° of radius R > 0 is, as usual, the set

D(z°,R) = {z |2 — z?] < RK,j=1,2,...,n}.
Finally, it is sometimes convenient in C* to use "the polydisk norm”

[zl = max{|zi], |z, ..., | 24| }.

Notes

A problem discussed in A) is stated in the Herglotz memoir [Her],
although there are earlier works of C. Neumann, E. Schmidt and others.
A fairly detailed survey of the literature can be found in [KS1] and even
more so in [Shl]. Herglotz has completely solved problem A) in two
dimensions; in higher dimensions it remains unsolved even today (cf.
[KS1), {Sh1]). Examples (1.1) and (1.2) are studied in great detail in
G. Johnsson’s thesis [Jo]. The question B) was posed and answered in
the affirmative by N. Nadirashvili [N] by making use of symmetrization
techniques. At the end of Chapter 8 we shall outline a different approach
to it. [Shl] contains a detailed discussion of various topics associated
with the Schwarz Reflection Principle and gives detailed references. A
complete solution of the problem posed in C) has been obtained only
recently in [EK].



Chapter 2

The Cauchy—Kovalevskaya Theorem with
Estimates

Theorem 2.1 Let g = (0,...,m) and suppose that for each o € Zy,
le] < m, « # 8 the functions aolz} and f(z) are holomorphic n
D0, R). Then, given t < 1, there ewists a unique holomorphic solu-
tion w = w(z) to the problem

My = Z ao(2)0%w + flz)

fal<m, ot g ‘
E?‘)@'”0 0<i<m~—1 21
32:;7; ’ == ’

defined in the polydisk { : |2’} < ¢R ln| < 6tR}. Most importantly, the

quantity § > 0 only depends on t and the coefficients a,(2) but does not
depend on f(z).

PrOOF: Unigueness. If wi{z), wy(z) were two solutions then w = W1y
would satisfy ‘

Py = Z e {2)0%w

lel<m,agp
J
?—Eﬁxﬂ, 0<i<m~1.
0z

The initial conditions give *w(2,0) = 0 for |o| < m — 1 while

Opw(z,0y=- " aa0%w(z',0) =0, |d}j< R, (2.2)
fo:[S'm,a;&ﬁ

Thus 9,07 w(2",0) = 0 for any multi-index 7. In particular, 8*w(0,0) =
0 for each q, lo] < m. Differentiating (2.2) with respect to z, we
obtain 872 w(2’,0) = 0, and so 8007 w(#,0) = 0 for every v. Hence

6
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9%w(Z',0) = 0 for all |a] < m + 1. Proceeding in the saTne way l(fa,ds
10 a‘xw’(0,0) = 0 for all @. Since w(z)} is holomorphic in {z : |2| <
tR, 1z} < §tR}, w(z) = 0. Thus wi(2) = wa(z).

Exzistence. The proof of existence shall rely upon the following proposi-
tion.

Proposition 2.1 Let Ay(2), F(z) be holomorphic in the polyd?sk D(O., 1).
Then, givent : 0 < t < 1 there exisls a unigue holomorphic solution
w(z) in D(0,1) = {z : |||2]|]] < t} to the problem

My = Z Aa(z)a"'w + F(Z), g = (07' . :m) (2 3)
for <mot G ’
3%w(2',0) =0, |a|<m-1,

provided that

sup > lAx)lgC,
z€3{0,1) e <ot B

where C' = C(t) is a sufficiently small constant that depends only on {.

Let us continue now with the proof of the C-K theorem. So, let
0 <t < 1andé > 0 such that {{2/| < B,|z,]| < 5.&:\3} (; D(O,R?%;k By
changing the variables z = (#/,2,) = € = (§,8.), &' = 5, & = 5 we
arrive at the equation:
Fw= 3 &R Rla,0gw(2(6) + (6R)™ £(2(£))
e} <m0t 8
- EDY | Aol§)0w + F(&), €€ D(0,1).
[o|<m o '

Since An(£) = Mo Rm-lely (2(€)), o # B, we have

sup Z |4a| = O(6).

(0,1} lo| <m0
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Therefore, for a fixed t: 0 < ¢ < 1, this supremum can be made

g _

P wpys = Z Axl2)0%wg + F(2);

o Jod<m, kg

07wy : (2.4)

;ngd Sl\?t wel z) = 0. Existence of solutions wy is proven below ir Lemma
3. Now, set vy = wp — Wwy.-1, & > L. Then, for each k& we have

Fvigr= 3 Aal2)8u
_ la|<m,ep
Vg1

a7 =0, 0<j7<m~1

‘Our 1mmed1'a,te objective is to show convergence of the telescopic
series > vx. This requires the following lemmas ’

Lemma 2.1 If f(2) is analyticin D= {z :|z] < 1} C C, f(0) = 0 and

(f(2)] < HW;W for some p > 0,

then

1
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Lemma 2.2 If f(2) is analytic inD and
1
(2 < m ;

then (p+1)
' p €
|F'(z)l < a1

As a consequence of Lemmas 9.1 and 2.2 we claim that the folidwing
estimate holds for vgr1(2)

oean (2 N(Ce™)r
s (2] < EPGE T (2.5)

where N = N(F) is a constant that only depends on F' and

C= sp », A2

ZED(UJ.) !aiﬁm,a’#ﬁ
Assuming the claim, we have for each z € D(0,7)
Ce™ < Ce™
(- fml). (L= D)™ (0

and provided that
(1—t)"™
¢ < Ct) = pr
the series 3" |v(?)] is majorized by a geometric series. Hence, the series
S v cOnverges aniformly inside D(0,7) to 2 holomorphic function w(z).
So, its partial sums wy CONVErge to w and, in view of (2.4), wisa solution

Let us now prove the estimate {(2.5). We proceed by induction. Since
w, = 0 we have vy = Wi, and the estimate of |w;] by a constant N =
N{F}, i.e., the validity of (2.5) for k& = 0, follows from the following

lemma.
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Lemma 2.3 Suppose that F = F(z) is holomorphic in the polydisk
D(0,1). Then, the problem,

&w(2,0)=0, 0<j<m—1, (26)

{ Fw=F, g=(0,..,m)
admiis a unique holomorphic solution w = w(z) defined in D(0,1) and

satisfying |w(z)] < N on D(0,1) for a positive constant N that only
depends on F.

PROOF OF LEMMA 2.3: Set

w(z,’zn):]:n %F(ZI’)\) 4\

A routine check shows that w is a solution of (2.6) and the lemma, follows.
Assume now that (2.5) holds for & -+ 1,ie.

I\i’(C‘e""‘)’C
(L= 1]al).. (1~ D)™

(Ve (2} <

For z € D(0,1) we have

P0e42() < C sup  [0%ugpa(2)]
Ialsm'o‘%ﬁ

A repeated application of Lemma 2.9 and the inductive hypothesis then
yield '
() N C em(Cem)*

J%v 1{2)] <
0% Vg1 (2)] [(1~_[;;1!)...(1*|Zn|)]mk(l"“,21[)al"'(1—izﬂ’)a“ )

where

Ya) = ((mk+a1}...(mk+1))...((mk+an).‘.(mk-§— 1)).

The Cauchy-Kovalevskaya Theorem with Estimates 11

Thus, taking into account that for each z € D{0,1},and a € Z}, |a| < m
(1 1)) (1= Jaal)™ > (1= [at])™ o (1= fzal)™

and applying repeatedly Lemma 2.1 we obtain

| 1(e) N(Gem)
NS Gl D7 [0 ) (1 b

and (2.5) follows for obviously

¥{ o)
ks D =

Finally, let us supply the proofs of Lemmas 2.1 and 2.2.

Proor or LEMMA 2.1: For each z € I we have

s = [ 1 ae

Thus,
di 1

|=]
(=) < o (1—1) = p(1— 2’

for p: 0 < p < 1. H p> 1 we must check that
1 1

' ((1 ~ |2])*F - 1) < BRI

or, setting ¢ = 1 — |2,

-t oscst
But the maximum value of the expression in the left hand side is attained
at (, = p"?’"l:f, that value being p"z?i_l.(&;;i). That number is obviously

less than E?— provided p > 1.
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PROOF OF LEMMA 2.2: Take z € . For any s: 0 < 5 < 1 the circle

7= {€ |6 — 2] = (1~ |2])} is contained in D. Using Cauchy’s formula
we obtain

, 1 27 .
PN < 5o UL 1+ s~ a6 an}.

Since
(L €)P 2 (1 = 2)P(1L - )7
for each £ € v,
1
|2l)Ptts(1 — s)p

For ¢(s) = s(1 - s)? the maximum value for s: 0 < s < 1 is O =

1 L3P . .
ol G m) . To get the desired estimate it suffices to show that

1F(2)l < -

A
p+1 p+1/ Te(p+1) (2.7)

for each p > 0. If we put { = p—i}:, then (2.7) is equivalent to showing

that Iog (1~ {) + 1—_% >0 for 0 < ¢ < 1. The latter follows, e. g., from
the identity ,

1og(1-g)+—m§_m§j”;14ﬂ, 0<¢<t.

1-¢ n>32
Therefore,
' (p + 1)e
76 < e
as desired.
Notes

Almost every textbook on PDE’s contains a statement and a proof
of the C-K theorem, the only truly general theorem in the theory of

The Cauchy-Kovalevskaya Theorem with Estimates 13

PDE, although usually coached in a slightly different language of real-
analytic functions {cf. e.g. [G3], [J2], [Ha]). The statement presented
here, and especifically the proof based on Picard’s method of iterations,
often used in ODF’s, are from Hormander’s book [Hérl]. The main
feature of Hormander’s version that makes it so crucial for applications
is a rather precise estimate on the size of a domain of existence for the
solution to Cauchy’s problem that is independent of how large the data
is, or as presented in this section how large the non-homogeneous term
is, provided that they are holomorphic in a sufficiently large domain.
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Remarks on the Cauchy-Kovalevskaya
Theorem

E.i. One f)aI'l replace the zero data in the C-K theorem by any data
foliorruz)rphzc in D(0', R), i.e., in (2.1) we can ask for a solution w satis-
ying |

|

w;{zn:{}} — go(z"),
91(2’)7

8nw|{2n-=0}

ar—iwl{mmo} = gm-1(2),
where go, ..., gm—1 are arbitrary functions of {n—1) vari
‘ 1 Hm - i) bl hol i
Ny | {n—1) variables holomorphic
Indeed, id = Yy 4 22 2
e kconm er G(z) = go(#') + Bau(2) + -+ + (—fnnli')”fgm—l("")-
1, (6,)°(G - W)|(z,=0y = 0 for all &k < m - 1.
Thus, we have
Opw = (8.)"(w-G)
= i; aa ()0 (w - GY+ F+ ) aa(2)8°C.
a#(0,..m) k(O im)
Since G is holomorphic in D(0', R) x C,
fos= o)+ D) 6l2)8°G
je]gm

a#(0,..,m)

is holomeorphic in D(0, R).

3.2 The‘ multi-index @ in the C-X theorem need not be of the form
(0,..,m), it can be an arbitrary multi-index 8 = (4, oy Bn) with |3| = m.

14
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However, in that case, the data must be given in the form

W0y = 0 = O =gy = O

Wigmoy = o = 0Tl = O

This type of problem is known as Goursat Problem. The statement
(and the proof) of the C-K theorem for that situation remain essentially
the same. The obvious changes needed in Lemma 2.3 are left as an

exercise (cf. [Horl, §9./1/]).

3.3. An important example of the Goursat problem used in the sequel
is the following.

Let a{z,w), b(z,w), ¢(z,w) be holomorphic in a neighborhood of a
point {£,1) € C? and seek a solution R of the Cauchy problem

82R _ B(aR) a(bR) .
Al = S5 b L o

Ri{z::&} - emp([]w a(f,'r) dT);

Ri{yent = emp(]: b(r,m)dr).

The (unique) holomorphic solution R := R(z,w;&,n) whose exis-
tence follows from the general C-K theorem is called the Riemann func-
tion for the operator £ := 5% —t—aa%- -i—b;;% +¢ at {£,n) and is the key to
the Riemann method of integration of the hyperbolic equations in two

variables.

3.4 In case when the order of derivatives in the right hand side in the
Cauchy problem is larger than m the theorem may fail altogether.
The following example which is due to Kovalevskaya herseif [Ko}
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illustrates the above comment rather well. Consider the "heat equation”

Bz Bz}
w(z1,0) = f(21)

with data f being a holomorphic function near the origin.
Suppose w(2y, ;) is a solution holomorphic in a bi-disk centered at
the origin. Then we can write

o0
wizy, 20} = Z an{z1 )2y,
]

where ag(21) = f(2;) and all a,,’s are holomorphic in & disk {]iz1]] < R}.
Applying the equation we find

o0
Znan(zl)z Zan (2

nexl nw=1

Hence na,(21) = al_, for all n > 1. Since ag(2z1) = f(z) we obtain
that an(z1) = [20)

n!
In particular, w(0, z) = 77, f—l@ 2. So,if wetake, e.g., f(z) :=
3 27, we have f?")(0) = (2n)! and that gives us the expansion w(0, z3) =
0 %?-"”,»ng that converges nowhere!
Moreover, one can even show that a necessary conrdition for existence
of a holomorphic solution of this problem is for f{z1) to be an entire

function of order at most 2, i.e., | f(z1)] € const-exp(C|2{?) (cf. [KS5]).

3.5. Suppose I' is & non-singular analytic hypersurface in a neighbor-
hood U of 2° € T, i.e.,

I'={zeC" : ¢(z) =0, is holomorphic in U,
Vi = (81997 “}37190) ?é (O!JO) in U}

Remarks on the Cauchy-Kovalevskaya Theorem 17

We want to solve the following Cauchy problem
Llalgm Gl 2)0%w = f(z);
w—-¢g)=0on TN, || <m -1,
where o, f and g are, say, holomorphic in a slightly larger neighborhood
U of 2¢
Wlthout loss of generality we can assume 2° = { and £% # 0in
perhaps slightly smaller neighborhood V' C U. Then, the change of
variables 2 = (2, 2,) — € = T(z}) = (¢,&,) given by ¢ = 2 and
&n = (z) is bi-holomorphic near 2°. Changing the coordinates to £ by

setting au(z) = aa(T7(£)) =t Aa(8), f(2) = F(&), 9(2) = G(£) and
w(z) = W() = W(2',¢(2)) and performing straightforward but tedious
calculations, we find that our differential equation is transformed into

()2

WY BLOFW = ),
joe|<m

a#(0,..,m)

o

where the coeflicients B,(£) are composed from Al s and the derivatives
of ¢, while the coefficient C(£) is calculated by

C&) = C(T(2)) =1 e2) = ), aa(2)(Vap)™
‘ |ar|=m

Thus, in order to be able to write down our Cauchy problem in £
variables in a canonical form (cf. Chapter 2)

aém W E a|<m Da(é—)aaw "I" Fl(g);
9 (W — G’)]{gnﬂ)} =0, foralle: |a]<m-1

with coefficients D, Fy holomorphic near the origin, it is necessary and
sufficient that ¢(2) s 0 near 2°, or, by continuity, that

Z aa(2)(V2p)*ze # 0.

lof=m

Thus we have the following extension of the C-K theorem.
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Theorem 3.1 The holomorphic solution w of the Cauchy problem

{ Ziaigm a’ﬂ’(z)aaw = f(z)
0w —gy=0onTNU, foralla:|al<m~1

extsts and is unique in a neighborhood V of 2°, whose size depends only

on aq, I', and f but not on g, provided that ¢(2°) = 31, =m Ca(2)(V)% |20 #

0.

c¢{z) is called a characteristic form of the differential operator

L= 2 ae(2)0%.

x| Sm

If e(2°) # 0, 2° € T, T is called non-characteristic (w.r.t. the operator
L) at 2°.

If T' is characteristic at z°, i.e., ¢(2°) = 0, both unigueness and
existence in the C-K theorem may fail. |

Indeed, recall the Cauchy problem for the heat equation

Pu_du
82’% 322

'W(Zl,O) - f(zi)

= {);

where a;s we saw a solution neéd not exist. Since in this case I' =
{zeC : (p(z) =z = 0}, ¢(2) = (-g;‘%)z = 0, i.e., I' is everywhere
characteristic for the heat operator.

To ;gee the failure of uniqueness consider the Laplace operator N =

T

ijla_%’? and T' = {# : 377 0;2 = 0} with % ;0% = 0. Then
I' is everywhere characteristic w.r.t. A. On the other hand, for any
p 2 2, the function w(z} = (3_7.; a;2;) is harmeonic in C* and satisfles
w=,w=0on .
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Notes

In presenting the C-K theorem in the most general form (Theorem
3.1) we still follow Hérmander’s book {Hor1]. The notion of a character-
istic point together with the relevant examples associated with the heat
equation appear in S. Kovalevskaya’s paper [Ko]. (See [KS5} for some
related historical background). B. Riemann introduced the Riemann
function in order to calculate explicitly solutions of Cauchy problems
for hyperbolic equations in two variables. More on properties of the
Riemann function together with other proofs of its existence and unique-
ness can be found e.g. in [G3], (32], {Ha], [Hen], [V] and references cited
therein.



Chapter 4

Holmgren’s Uniqueness Theorem

Let us start out by recalling a simple uniqueness theorem for har-
monic functions.

Theorem 4.1 Let Q be a C*-bounded domain in R*, and T be a C'-
hypersurface inside  that divides it into two parts: QY and Q™. Let
u € CHATUQT)NCHQ). Suppose Au =0 in Q¥ UQ™ = Q\T. Then
u extends as a harmonic function to all of Q.

Corollary 4.1 If u is harmonic in QF, u € C1(Q+) and u|pr = Vulr =
0, then uw=10.

Proor oF THE COROLLARY: Set u|g- = 0. By Theorem 4.1, u is

harmonic in £ and thus w = 0.

Remark 4.1 This is an analogue for harmonic functions of a well-
known result on removable singularities of analytic functions based on
Mozera’s theorem: let €, T' ¢ R? be as in Theorem 4.1 and let f be
analytic in Qt U™ and continuous in Q. Then f extends as an analytic
fanction to all of Q.

Proor or TeEs THEOREM 4.1: For the sake of simplicity take n = 3.
Fix z € OF, we have

1 . ou 1
Uo) = = [ 05t = o™ = e =M, (@)
where n is the outer normal and dS, is Lebesgue measure on 02+,

20
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Also, {by Green’s formula)

Owéf{mbMMwH%—ﬂwwﬂWy

Hence, in (4.1} the part of integral over I' can be replaced by that
over 900~ \ I'. Substituting this into (4.1} gives the extension of » into
all of 2.

Holmgren’s unigueness theorem is a far reaching extension of Corol-
lary 4.1 to solutions of arbitrary equations with real-analytic coefficients.
Here, for the sake of simplicity, we shall present it in a slightly reduced
form.

Theorem 4.2 Let  be a domain in B® with C! boundary, Q C {2, >
0}, and {«': ||2'|| < R} C 89N {z,, = 0}. Let w € C™(Q)N C™"H(Q)

be a solulion of

Orw = Z oo (2)0%w
jol<m
a#(0,--,0;m}
in @ and wligo=p) = -+ = O W|gpumoy = 0. Then , if all an’s are

real-analytic in ), there ezists § > 0 such that w = 0 in {z - |lz{| < §}nQ.

The idea of proof comes from the ODE’s .

Indeed, let us discuss the following example. Consider a solution u of
the o.d.e. v’ 4 pu’ + gu = 0 on [0,1], with the coefficients p,q € C*[0,1]
satisfying 4(0) = w(0) = 0. Then , v = 0 on [0,1].

Take 0 < a < 1. We want to show u|jg,q; = 0. Take any v € 01{0 al
such that v(a) = v/(a) = 0 Integration by parts yields:

(¢} a2 &
] uwvdz = u'v|} —/ uw'v'dz = / uv”dz;
o 0 Jo
(3 a
/ pu'vds = w/ u{pv)'dz.
0 0
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2

So denoting by L the ordinary differential operator L : )

tpo— g

dz

we have

/ (Lujvdr =0 = / (v’ — (pv) + ¢)dz = /a ullydz
0 0 0

d* d
where L = 3 TP + {g — p"} denotes the adjoint operator.

By the Main IExistence Theorem for ODE’s we can solve the initial

value problem
{ Liy = f;
v(a) = v'{a) = 0

on {0,1] for any reasonable function f, say a polynomial.
Therefore, / wfde = 0 for all polynomials f and hence u = 0.
[

Proor or THE THEOREM: For the sake of szmphmty, we take up the
case m = n = 2. We have

P dw Ow
ay CL( ay)a 7 ay)a By (m’y)_é_m_ ~—d(m,y)5;-—e(m,y)w,

where o, b, ¢, d, e are analytic in .
Consider C¢ == {(z,y) : y + 2% = ¢} and let Q. C O be a domain
bounded by C. and {y = 0}. Take v € C%(Q,)NCY{Q,) such that v, Vv

vanish on C..

Claim.

/ /Q (Lu)vdedy = f /ﬂ w(I)dedy = 0,

where

o2 52 8? a8 8
=35 + a(w,y)g; + b(w,y)amay + C(s«',yf)-é,—sc + d(w,y)a—y +e(z,y)

Holmgren’s Uniqueness Theorem 23

and L® is the adjoint operator

Lh — & w -+ P (aw)  9*(bw) _ Iew) 8(dw)
oy? Oz Oxdy dx Ay

PROOF OF THE CLalM: Note that all the products wv, uyv, --uyv,
vanish on 841,.

The proof of the claim is obtained by a straightforward computation

involving integration by parts. For the reader’s convenience we shall
perform it for two of the terms involved.

Integrating ‘z)y parts twice, we obtain

[ fmsaggtess = [T A [ i o
= -/j;{f:”mg Qé%—)l—g% y}dm
[ sl a
- [ {/ii_i o }dy
_ / / Bz(lw)
Similarly,

du € =Y fu
//Ds cvé—m—dmdy = fo{./__ cvé—gd:c}dy

ey

& &
- - {/" y-mm}dy
8] —JE—y 8"1’,'

i
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- O{ev) The discussion of a rather special case presented here follows Petro-
T / / Yo a2y vsky [P]. Theorem 4.1 is from Kellogg’s classic [Ke]. He attributes the

Provided that C. is not characteristic with respect to L1 for small £, result to Kovalevekaya.

we can solve the Cauchy problem
{ Lho = p(z,y)
v=Vv=0onC,

with p(z,y) being an arbitrary polynomial.

By the C-K theorem (cf. Chapter 3), the solution v exists in a
domain D of size consty/¢ which therefore covers the origin. Now the
claim implies that for all sufficiently smali g, f fo, up(z,yidedy = 0 for
any polynomial p and therefore v = 0 in Q,.

To check that C. is non-characteristic for I! we note that C; is given
by the equation C; : ¢(2,y) = 22+ y — ¢ = 0 and the characteristic
(with respect to L*) form for the function @ can be written as
O
'éz_v' .

Char(L*,Cy) = 1 + (terms containing

o _
fr

Since 0 at (0,0), C is non-characteristic for small &.

The following exercise (for an ambitious reader) establishes Holm-
gren’s theorem in full generality.

Exercise 4.1 Extend Holmgren’s theorem to general operators
L = 3 aa(z)d* with holomorphic coefficients and the "data” surface
{zn = 0} replaced by an arbitrary C'-surface I' that is non-characteristic
with respect to L.

Notes

The Holmgren uniqueness theorem (Theorem 4.2) was proved by
Holmgren [Hol] in a special case and by John [J1] in full generality
(Exercise 4.1). Also, see [Horl], [J2].




Chapter 5
The Continuity Method of F. John

Sometimes one can extend Holmgren’s uniqueness theorem, which
is local in nature, globally. The following example serves as a good
itlustration of the methods one may use.

Theorem 5.1 Let a C?-smooth function u satisfy the followmg equation
in Rn+1

n
Z 2-}-2&3 +a”+1?5‘ + apu

in the double cone C’ = {{( :L,t) iz || + ]t ]< R} and have zero Cauchy
data on {(z,0) :|| z ||< R} (the base of the cone). Then uw= 0 provided
that all the coefficients are real analytic in a neighbourhood of C.

For the sake of simplicity, we shall prove the theorem assuming in
addition that » = 1 and R = 1. The following lemma is elementary and
its proof is left as an exercise.

Lemma 5.1 Fiz a point (zo,t0) in C with to > 0. There exists a func-
tion f on [~1,1] satisfying the following properties:

(i) f(-1) = f(1} = 0;

(i) f € CH-1,1};

(11%) f(:i:g) > 1

(v} | fi(z) <1 on[-1,1].

PROOF OF THE THEOREM 5.1: For s € [0,1] define

Dy ={(x,t) : t — sf(z) < 0}

where f is as in Lemma 5.1. Clearly (zo,to) € Ds.
Let B = {s € [0,1] : w = 0in D,}. We shall show that £ = [0,1].
Indeed,

26

*
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(i) F is nonempty in view of Holmgren’s theorem;
(ii) E is obviously closed. For if s, — 8o, {5,}3%; C E then
1: : Dy CUpey Ds,
and so u = 0 in Dy, implying that 5o € E.

(iii) F is open. It is again a direct consequence of Holmgren’s unique-
ress theorem provided that we check that the part of the boundary
of D, given by the curve t = sf(z) is non-characteristic. But this
is obvious since setting w(z,t) := t — sf(z) we have

(50 -

, because of property (iv) in Lemma 5.1 satisfied by the function f.

(%) =1 r@ 11 <0

So we have E = [0,1] and u = 0 in the upper-half of the double cone.
The argument for the lower half of C is the same.

Notes

The method of proof of Theorem 5.1 is due to F. John {J2], also
ef. [Horl]. In the following sections we shall see how similar ideas can

be applied to expand the domain of existence of solutions of analytic
PDE’s.



Chapter 6

Zerner’s Theorem

Consider differential operator with holomorphic coefficients in C*
L= Z Qo (2)0%
lejgm
and a real hyperplane H in C"® given by
H = {z : Zaj:cj + bjyj = t},
Fa=1
where z; = Re z;, y; = I'm z; and a;,b;,t are real numbers. Writing

zj = fl%“—zz, y; = Z52, we can express this as

2 a; —1b; a; -+ by
H: Za.‘j?z]zj_*_ .72 '?Z'th
j=l

or, setting A; = 2(a; — ib;), we obtain

H: Re(i)\jzj) =1
Gl

Note that H contains a unique complex hyperplane

n / .-fim a “‘}3
I ZAijﬂt;, G’Zﬁ - t ) }j
jm=l

Definition 6.1 A real hyperplane H passing through a point zo € C" is
called Zerner characteristic with respect to the operator L at zg if I is
churacteristic with respect to L af zg, i.e.

D7 aalz)A .. A = 0.

Jorf=m

28

2

o

o3

|
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Definition 6.2 A C*-real hypersurface I' given by {z 1 ¢(2) = 0}, where
¢ s a C* real-valued function, Vi # 0 near a point z5 € T', is called
Zerner characteristic with respect to the operator L at zy if the real
hyperplane H tangent to T at 2o is Zerner characteristic with respect to
L oat zp.

Because H is the tangent plane to " at Zp, we can write its equation

in the form 5
=~ Jp i
H _— x4 = ; =,
j%; Ozjlz™ dy; 0
or,
_' “1,8p By o
. Re;Q(axj w—zb?j) zon = 1,

But then IT (the complex hyperplane tangent to I' at z;) is given by

o

I
Oz;

, 2z =1
f=1 °

where as usual
7 1 ( 8 .8 )
il B R Py
Oz; © 2\Bz; By
and so I is Zerner characteristic with respect to L at zp if and only if

2 aal20)(Vap)™

o

= Q.

20

Now we can state Zerner’s theorem,.

Theorem 6.1 Let u be a holomorphic solution of the equation Lu = f
in a domain @ C C* with C* boundary, and assume that the coefficients
o, | @ [< m and f are holomorphic in Q. Let Zp € Q. If 9Q is non-
characteristic ot zo with respect to £ then u extends holomorphically into
a neighbourhood of z.



30 D.Khavinson

Example 6.1 Let @ = By(0) =: {ze C: |}z ||< 1} and £ = 1%, g-—
In this case, & is a domain of holomorphy, i.e. there exist functions
which are holomorphic in £ and do not extend to a larger set. Let us
find Zerner characteristic points with respect to £ in 3. The equation
of 5N can be written in the form

izﬁ}' -1=0,
J=1

and so z € P is characteristic if and only if
12
Z 25,2 = 0,
=1
Thus, except for the points that lie on the cone {2 : ?:1 zjz = 0}, called
an isotropic cone, any solution of Lu = 0 can be continued holomorphi-
cally across all other points on the unit sphere.

PROOF OF THE THEOREM 6.1: Without loss of generality we may as-
sume zg = 0, and that the normal vector (0,0,...,1) is pointing inside
2. Thus the real hyperplane H tangent to 0 at 2q is { Re z, = 0}. For
g > 0 consider the hyperplanes

H,: Rez, = ¢.

.By continuity, H. is still non-characteristic with respect to £ if ¢ is
sufficiently small. Let II. be the unique compiex hyperplane inside H..

Claim. I, 0 Q contains an (n — 1)- dimensional polydisk centered at
the point (0,...,0,¢) of radius B{e) such that

R

e N
Assuming the claim, we have u holomorphic in the polydisk of radius
R(e) inside I1,. Also II, is non-characteristic with respect to L. So, we
can solve the Cauchy problem

Zerner’s Theorem 31
: Lv=Ff near I, NN
%v—u)=0,lal<m-1 on 1I..

By the uniqueness for solutions of Cauchy problems, v = u, and
hence applying the Cauchy-Kovalevskaya theorem we conclude that u
is holomorphic in a polydisk centered at {0,...,0,¢) of radius C - R(¢),
where (' is a constant depending on the coefficients of L but not on u.

In view of the claim, this polydisk covers the origin for small € and
so the conclusion of the theorem follows.

PROOF OF THE CLAIM. According o our normalization, the boundary
of {2 near the origin is given by

Re 2y, = (&', I'm 2}

where 1 € C?, ¥(0) = 0 and dv(0) = 0. Thus, the claim simply states
that ¥(z',Im z,) = of| z |) near the origin.

Remark. Zerner’s theorem is a C"-theorem only. One can easily find
a function harmonic inside the unit disk in C that does not extend
across any point on the unit circle, although the surface ¢{z,y) :=
Re (z? + y* — 1) = 0 in C? does not have any characteristic points
with respect to the Laplacian. Indeed,

dp\2 | (Opy? 20 .2
Re{(gf) +(8_(§) }zRe(él(x -I-y))::zi.

Corollary 6.1 [Delassus-Le Rouz). If u is holomorphic in a domain §
in C* ezcept for points on a holomorphic hypersurface T' = {2 : ¢(z) =
0}, and satisfies a PDE Lu = f in Q\T with holemorphic coefficients in
Q then u extends holomorphically to § provided U is non-characteristic
with respect to L. Thus, I' can only be a non-removable singularity set
for w if I' is characteristic with respect to L.

1]
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Proor: Imbed I' into a real hypersurface § given by the equation
Re ¢(z) = 0. Near I' § is nowhere Zerner characteristic with respect to
L. Indeed, the characteristicity condition is in this case

3 (V)| =0

|ee}zzm

because @,% = 0. So all points on T' C § satisfy the hypothesis of
Zerner’s theorem and the corollary follows.

Example 6.2. If the rational function f/g satisfies the Laplace equa-
tion, with f and g relatively prime polynomials, then

on the variety {g = 0}.

Method of globalizing families

Suppose that we want to continue a solution u of the equation Lu = f
holomorphic in a domain  C C" to a larger domain containing 2. Of
course, we shall always assume that all the coefficients are holomorphic
in 0.

A simple idea is then to construct a family of bounded domains
Q, t € [0,1] (we shall call it a globalizing family-GF) satistying the
following properties '

(Y CcQift < s
(i) 01 = &
(i) ; C Q for ¢ sufficiently small;

{iv) All points on the boundaries of all 8Q; \ Q satisfy the

hypothesis of Zerner’s theorem (with respect to the operator
L;

Zerner’s Theorem 33

(v) (Continutty property) U O =, ﬂ Q, = Q.
. 5<t s>t
Globalizing Principle. If for given L£,9,8 we can find a globalizing
family satisfying (i)-(v), then any solution u of Lu = f holomorphic in
Q extends to Q.

Indeed let £ = {t € {0,1] : » is holomorphic in Q;}. Then
a} F is nonempty because of (iii).
b) E is obviously closed (follows at once from (i) and (v)).
¢) E is open in view of (iv), Zerner’s theorem, and compact-

ness of 9%,.
Hence E = [0,1] and so u extends to & by (ii).

The following simple examples hopefully illustrate well the power of
the method. '

Corollary 6.2 Let u be holomorphic in a C*-neighbourhood of the isotropic
cone .
{zeC:) A2 =0}
ge=l
and satisfy the Laplace equation there. Then u extends as an entire
function to all of C*.

Proor: The corollary follows at once from the Globalizing Principle if
we choose the following globalizing family:

Q={z:) |7]> <}, t € [0,00).
Jj=1

Remark. In Zerner’s theorem the hypothesis of £ being C? can be
relaxed somewhat. It suffices to require that 0! has a tangent every-
where and when that tangent plane is moved parallel to itself inside
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by the distance ¢ in normal direction the intersection with  contains a
polydisk of radius R(e) so that

£
lim = = 0.
ST

Corollary 6.3 The solution of the Cauchy-Goursal problem

P w = Z!akm aa(z)é‘°’w+ f;
w o= om0y = Oﬂ{zlzo}Q
| w o= =81y =0 on{z, =0}

18 an entire function provided oll the coefficients a,, f are entire.

PrOOF: We are going to prove this with a particular choice of 8 =
{0,0,...,m), leaving the general case as an exercise,
Let us define the globalizing family to be the family of cocentric balls

L={z]zll<t,0<t <o}

It is easily seen that a point on O is characteristic if and only
if Z;™ = 0, and so characteristic points aze all located in the initial
hyperplane.

Near those points the solution is holomorphic by the Cauchy-Ko-
valevskaya theorem. For all other points on 89, w extends across by
Zerner’s theorem. Thus, again letting £ = {t € [0,00) : w is holomor-

phic in €}, it follows as before that E = [0,00) and so w is an entire
function.

Corollary 6.4 The Riemann function R{z,w;&,n) (cf $§3.3) for the
operator

2

L= 5aw

+ a(z,w)—a% + b(z,w)é% + ez, w)
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is entire for any point (£,n) provided that all the coefficients are entire
functions.

Example 6.3. Let £ = 3f;w + A% be the Helmholtz operator. Then,
we have {cf. [Ha])

R(Z?w; 5?77) = Jﬁ}(}‘\p‘ (Z - 6)(’(1) - ?7))1

where Jy is the Besse] function of order zero given by

Hom) = 3o S

B (nh)?

Corollary 6.5 (The generalized heal equation). If u is a holomorphic
solulion of the equation

*u du du

ol T X ==

p; + a(z, w) 0 + b( z, w)é)z

in a bidisk D{0, R) and a,b,c,f are entire functions then u extends as a

+e(z,w) = fz,w)

holomorphic function to the "eylinder”
{(z,w): 2 Clw|< R}
In particular, the "data” u(z,0) must be entire.

Proor: Consider the family of ellipsoids

0= {(mw): L5h 4 2 <),

where R’ < R is fixed.

To check that {Qt}ta{} is a globalizing family we only have to verify
the condition (iv) in the definition of (GF). The defining function for
the boundary 0, is
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zZ W
(P(z,w)z"{g“%—w”l:g

9o the characteristic points are precisely those for which 2 = 0. But
these points are in D(0,R) where u is nolomorphic. The rest of the
argument follows mutatis mutandis.

Notes

Zerner’s theorem is proved in [Ze]. Here, we have followed the expo-
sition in Hormander’s book [Hor1, Theorem 9.4.7]. Theorem of Delassus
and Le Roux can be found, e.g., in Hadamard’s book [Ha].The method
of globalizing families in various editions based on a continuous deforma-
tion of the boundary of a domain of regularity has appeared in works of
many authors: F. John [J2] and L. Hérmander [Hérl) used it for proving
various unigueness theorems in R*; J. Bony and P. Schapira [BS] applied
this idea to extend the domain of regularity of the solution of a PDE
in C° (also cf. [Hérl, Theorem 9.4.8]). The method has%een devel-
oped further and used extensively by Johnsson [Jo). Here, we followed
the outline given in [KS2]. Corollary 6.2 is due to Johnsson (private
communication). A proof of corollaries 6.3 and 6.4 {(but not the facts)
is due to the author. For a "classical” proof of Corollary 6.4 see, e.g.,
Vekua's book [V]. Corollary 6.5 for the heat equation was observed by
Kovalevskaya in her Habilitationsschrift [Ko]. An extended version and
the proof given here follow [KS5]. ‘

Chapter 7
The Bony-Schapira Theorem

Theorem 7.1 Let Qy ¢ Q, be conver, bounded domains in C*. Let

L= Z Qo (2)0%

o] <m

be a differential operator whose coefficients a, are holomorphic in (1,
Every w holomorphic in Qy and satisfying L w = f, with f holomorphic
in §lp extends holomorphically to Q1 provided the following condition

holds: for- eqch z € Yz and each real hyperplane H passing through z and
characteristic with respect to £ at z, H Ny # §.

Corollary 7.1 Assume that all leading coefficients are constants, i.e
ag=const, |a| = m. If Q1, Q3 are convez, open sets in C 'such’ th'm.:
Q1N Q3 # O and every characteristic real hyperplane H that meets §2
also meets Qy, then every solution w of L w = f holomorphic in ﬁj

eztends to Qg := co(Qy U Q) := {convez hull of O ;
_ = U}, d
all coefficients are holomorphic in Q.. 1 ohy provided that

PROOF OF THE COROLLARY 7.1: 3 O 04 and convex so it remains to
check the hypothesis of the theorem. Let 2% € £, and H 3 2° be a real
hyperplane so that H is characteristic with respect to £. We have three
posibilities:
(1) HN Q3 # . H is characteristic in H
. neQ d
hypothesis H meets y; » and hence by the
(11) If H 1 Qy 5 @ there is nothing to prove;
0 ¥ H ﬂ 3:21 =0 ,H N O3 = § then because 4 U 3 is connected
1 ,{23 both lie in the same half-space with respect to H. Therefore Q, =,

37
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co{€2; U £2y) lies in the same half-space contradictory to our assumption
that Qu N H £ 0.

Corollary 7.2 Let u be harmonic in the ball of radius R in R*, n > 2
centered al the origin. Then it extends as a holomorphic function to the
ball B (0, %) n C® and the constant -% is the best possible, i.e. y need

not eztend to any ball B(0,R') in C* with R > %.

PROOF OF THE COROLLARY 7.2: Without lost of generality we can
assume R = 1 and u to be harmonic in the closed unit ball Bga(0;1).
Since u is harmonic in Bg(0;1) it is holomorphic in a closed convex O
neighborhood §; of Ba{0, 1). Let Q3 = Ben (0,%). By Corollary 7.1
it suffices to check that V20 : [29] < Jﬁ and any chararacteristic plane
H : 3V ajz; 4 bjy; = t passing through 2%, H N Bre(0,1) # 0. The
characteristicity of H (with respect to the Laplacian) is equivalent to

T i n
Za? = be and Zajbj = {.
1 i 1

Hence, without loss of generality, we can rescale the equation of H so
that [lall = |[6]] = 1. If H N Bpa(0,1) = 0, then for any & € R :
< a,z >= t it follows that ||z}l > 1. Hence, |t} > 1, otherwise we
could simply take z = ta. Now since H passes through z°, we have
(20 = 2% + i4%):

1< = [<ae>+<by® >
2l + l1°1

V2 (1212 + s ]12)
= Va2

and then 2% > ;1,—5 The proof that the constant —\}—5 is the best possible

is easy and left as an exercise.

IA

IA
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Remark 7.1 The same conclusion holds for any operator

n_ 42
L= ; %—2— + (lower order terms) ,
3

provided that the coefficients are holomorphic in Ben(0, R).
Ie particular, we obtain the following

Corollary 7.3 If u satisfies the equation

2, % o
2—87+ Eaa(z)é?u:f
1 Y4

le<1

in a C*-neighborhood of R* and all al,s and [ are entire functions, u
extends as an entire function to all of C*.

Let us now {urn to the proof of the theorem.

PROOF OF THE THEOREM 7.1: Let 2" € 2\ 0. Take 2" € Oy, consider
7,2 = {2 =t +(1-1)2" : 0 <t <1} C Q. Take a convex neigh-
borhood U D €4, so that u is holomorphic in U/. Without ambiguity we
shall denote U := QN U and can assume that dU N, is smooth. Choose
§ > 0sothat By := Bon(z,8) C Qg, forall 2 € {z’ \ z”]. Let Dy denote a
convex hull of U and By. For small £, Dy = U. Note that {Di}o<i<y sat-
isfy properties (i)-(v) of a Globalizing Family (cf. Chapter 6). Now the
argument proceeds as in similar situations in chapters 5 and 6. We want
to show that u extends to all (Dy)'s, 0 <7 < 1 by showing that the set
{t:0<t<1:u extends holomorphically to D,} is nonempty, open
and closed. Indeed, as usual, the only point that really needs checking
is that the set {¢ : 0 < ¢ <1 : u extends to D;} is open. For any #°,
all points on 8D \ U are non-characteristic with respect to £ since a
real tangent plane at any such boundary point does not meet U Ny
and hence cannot be characteristic by the hypothesis. Although perhaps
not everywhere C'*-smooth 8D, nevertheless satisfies the hypothesis of
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an extended version of Zerner’s theorem (see the remark following the
proof of Corollary 6.2). Hence, u extends across all points on AD\T.
Also, © is holomorphic at all points on 8D N U, Hence u extends to a
neighborhood of Dy, i.e. to Dy, for s > t© sufficiently close to 0.

Remark 7.2 If all a,, |o| = m are constants one can relax the hypoth-
esis a bit assuming only that v is holomorphic in ;. The argument
is proceeding along the following lines: Consider O O [2,2'],0 C O,
where for O we can take a convex "tube” around [, 2"].

Claim. There exists a compact set K C 0 such that all real hyper-
planes H that meet © and are characteristic with respect to L also meet
K.

PROOF OF THE CLAIM: Suppose there exists a sequence of points z; € [}
and characteristic planes H; 9 z; so that H; N K; = 0 where {K;} is
an increasing sequence of compact sets in §; satisfying U; K = Qy. By
compactness we can assume that z; — L e 0, H ; — Ho D 2, Hy
being a characteristic plane. But then, Ho N K; = § for all j, and so
Ho Ny = 0, a contradiction.

Now the remark follows from Corollary 7.1 if we take a convex,
smoothly bounded, open set U: Ucy, U KU z and O for &4
and {23 respectively.

The following " Corollary” follows rather from the method of proof
than the statement of Theorem 7.1. {cf. Chapter 5!}.

Corollary 7.4 Let £ be a differential operator with constant coefficients
in the principal part. Let Qy C Q3 C R™ be bounded convex domains and
all coefficients are real-analytic in (ly. Assume that for any 22 € Qs and
any hyperplane H 3 2° characteristic with respect to £, H Ny #0. If
u satisfies L= 0 in§y and uz 0 iny, thenu =10 in Q.

PrOOF: Repeat the construction in the proof of the Bony-Schapira the-
orem (modified as in the latter remark) and use Holmgren’s theorem
instead of Zerner’s theorem.

The Bony-Schapira Theorem 41

In particular, Corollary 7.4 implies the following
Corollary 7.5 (cf. Theorem 5.1).Let

2. 92 &2
902 5 + (lower order terms),

1 Yy L1

where the coefficients in the lower order terms are real analytic in R,

Ifu € C*RY) satisfies Lu = 0 and w = 0 in a neighborhood of
R™ x {0}, then u = 0.

Notes

Theorem 7.1 is due to J.Bony and P.Schapira [BS]. Also, ef. {Hérl].
Kiselman {Ki] proved a special version of the result for equations with
constant coefficients by Fourier analysis methods. Coreollary 7.2 is due
to W.Hayman [Hay], whose proof is based on the power serjes expansion.
More on this and other closely related topics can be found in the books
by N.Aronszajn, Th. Creese and L.Lipkin [ACL] and V.Avanissian [Av].
Corollary 7.4 is due to Hérmander {H6r1, Theorem 8.6.5].



Chapter 8

Applications of the Bony-Schapira Theorem.
Vekua’s Theory.

Example 8.1 The Lie ball in C2.

Let us find the maximal domain in C* to which all functions harmonic
in the unit disk D> = {(z,y) € B? : |z|*+|y|* < 1} extend as holomorphic
functions of complex variables X,Y. '

Proposition 8.1 Any function u harmonic in I extends holomorphi-
cally to the Lie ball

D:={(X,Y) e @ X+ Y]+ 222y} + 2y? — 201200172 < 1}
where X = o1 + 129, ¥ = th + iy, =5, 1 € R, =12
Proor: Change variables to z = 414y, 7 = 2 — iy, so L := 5%;2» + 5@2-5 =
. y

45%%—. Since solutions of the equation g—’% = 0 in D are analytic fenctions,
while those of %5— = 0 are anti-analytic functions, any harmonic function
u can be written in the form u = f(z) + g(%), where f,g are analytic in
D. Clearly, f(z) extends as a holomorphic function in €7 to the cylinder
{(X,Y): X +iY € D} by simply setting f(X,Y) = f(X +1Y). Similarly
9(Z) extends as a holomorphic function to {(X,Y) : X —i¥ ¢ D},by
9(X,Y) = g(X —iY).

Thus u extends holomorphically to the domain in C* defined by
{(X,Y):|X +iY| <land |[X —Y]| <1}. Now

IX+i¥P <l & (X+iV)YX-i¥)<1
& IXP+Y)P+iXY -XY)<1
& |X[P+ V12 - 20m(XY) < 1.

42
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Similary,
X — Y2 <1le | XP+ VP +20m(XY)<1.

Thus, w extends to {(X,Y) : [X|* +{Y]* + 21Im(XY )} < 1} which
is the Lie ball D.

The following exercises may help better familiarize the reader with
the geometry of D

Exercise 8.1 (i) Show that there exists a function u harmonic in D that
does not extend holomorphically to any domain containing D.

(i} Show that the n-dimensional analogue of the Lie ball is defined
by '

{zeC :(jlall* = 120 AR + AP < 1)
j=1 '

(iii) Let m > 1. Show that any function u satisfying A"y = 0 in I
extends holomorphically to D.

(The exercises (i), (ii) are not exactly routine and intended for an
ambitious reader. See Notes at the end of this chapter).

Now let us adapt stightly the concept of Globalizing Families (GF)
from Chapter 6 to the situation studied in this section.
Let V; C Vo C C* be bounded open domains and

L= Z e 0"

fofsm

be a differential operator with coefficients aq holomorphic in V.

We say that a family of domains {Q}o<i<i is a Globalizing Family
(GF) for (V3,Va, £) if the following properties hoid:

(i) All Q; are bounded and ¢ C Q4,, t1 < 2.

(i) There exists § > 0 so that QO C Va,t < 8.

(i) The family Q2 is contimmous, i.e

Do = Ytto S8
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\Q._go oy nt>¢0 Qt.

(iv) 8Q¢\V; are sufficiently smooth to satisfy the hypothesis of Zerner’s

theorem (see Remark following Corollary 6.2) with respect to the oper-
ator £.

V) Vg = (Ut t) U Vl.
Then, we have the following "Meta-theorem” that we shall call the
Globalizing Principle (GP).

GLOBALIZING PRINCIPLE (GP). If u is a holomorphic solution of
Lu = f in Vi with f holomorphic in Vs, then u extends holomorphically
to Vg.

(The proof of (GP) is immediate -cf. Chapter 6). The following
- Corollary follows from the proof of the Bony-Schapira Theorem.

Corollary 8.1 Let ®; C V C C* be bounded, open, convez domains

and the coefficients of £ are holomorphic in V. Then for any 2° € V,~ " 3
there exist o convez domain Dy C V so that 2° € Dy and a (GF) that L
extends any solution of Lu = f holomorphic in D7 holomorphically into

Dy (provided that f is holomorphic in V).

Remark 8.1 If the principal part of £ has constant coefficients, the
same is true only if Lu = f in D,

We assume that from now on n = 2 and
L=0M+ 3 aq(X,Y)0°
‘ Jai<om~1
For the sake of simplicity all the coefficients a, and non-homogeneous

terms are assumed to be entire functions in €2,

Definition 8.1 Let & C R? be ¢ domain. A domain Q ¢ C? is called
the Vekua hull (or, the harmonicity hull) of Q iff for any (X, Y) €
O, X+i¥V e, X - Y e ={z: z€ Q}.
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Example 8.2 If we let O = D, then () is the Lie ball.
Proposition 8.2 If Q1 is convez, then Q is also convez.

Proor: Let Zy = {X1,Y1), Zo = (X3, Y2) € 0. We want to show that
tZ1 +(1-1)Z; € 2,0 <t < 1. We have

EX (1= )X+ iV + (1~ 0)Y2 = (X1 + V1) + (1~ )Xo +1Y2) € ©
because X; +1¥; € Q, j = 1,2 and Q is convex. Similarly,

1Xy+ (12X~ ity + (1 0)Y2) = H{ Xy —i¥1)+ (1~ ) (X3 —iYy) € OF
because (¥* is also convex.

Corollary 8.2 Let @ C C = R? be a conver domain, Q its Vekua
hull, Then any solutwn of Lu = [ in Q extends holomorphically to
0. Moreover for any 2% € Q there exists a conver domain Dy contain-

ing 2%, Dy ¢ § and a (G’F) extending solution u from D, a convez
nezghbchood of Q in C?, to D,.

ProoF: In view of Definition 8.1 and Proposition 8.2 the corollary fol-
lows at once from Corollary 8.1.

Proposition 8.3 Let Q, &' C C be simply connected domains. Let f
map Q conformally onto V. Then, there ezists a biholomorphic map F
of Q onto ¥ so that Flo = f and F preserves all (GF) with respect to
the operator

L=0"+ 3 a.(2)8°

Joxl<2m~1

ProoF: Changing the coordirates to z = X +¢¥, w = X ~ Y we
see that & = O x Q*, O @ O x (¥)* (2 means the domains being
biholomorphically equ;va,lent) Set f*(w) = f(w), f* is a conformal
mapping of * onto ()*. Set F(z,w) := (f(2), f*(w)). F maps @ xQ*
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onto Q' x (Q)* biholomorphically. For the second part, we only have to
check that F' preserves non-characteristic points (with respect to £) on
smooth real hypersurfaces.

Let T’ := {(#,w') : g(#',w') = 0} be a C"-real hypersurface in o
and let T':= {(z,w) : G(z,w) = g(F(z,w)) = 0} be its pull-back to .
The characteristic points on I” are those satisfying

99 99

Bz ow

and on I
9G 06 0

Bz 0w
But (F := {Fy, Fb)),

2606 _ (9905 (008,
0z dw ~ \B8z Oz Aw' Jw

e 85__@& ! LAY
= 2520 p )1 (w)

and the proposition follows since f', (f*)' do not vanish in Q, O re-
spectively.

Corollary 8.3 Let u be ¢ solution of Lu = f in a simply connected
domain  C C. Then, u extends holomorphically to §).

Proo#: Follows at once from Corollary 8.2, Proposition 8.3 and (GF)
since by the Riemann mapping theorem {2 is conformally equivalent to
a convex bounded domain §'; e.g., the unit disk .

Corollary 8.4 Let as above £ = 5;?;«5}” + (lower order terms), and
let T = {w = S§(z)} be a holomorphic hypersurface in 2. Suppose S
is univalent in Uy C C,, where Uy is a simply connected and bounded
domain. Let Uy = S(U3). Then any solution of the Cauchy Problem
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L=
8w~ g} =0, |a] <2m—-1onl,

with f, g holomorphic in Q == Uy x Uz, extends holomorphically to Q.

Proor: Let v be a conformal mapping of Us onto the unit disk . Define
F(z,w): Q@ — D? by F(z,w) = ((5(2)),¥{w)). ¥ is a biholomorphic
isomorphism of  onto D?. Clearly,

FT) = {{(£,w)eD?: 2 =w'}=T"

T is convex and each real hyperplane through a point Z' = (), (v°)') €
? that is characteristic with respect to the operator

32
(32" w

Y™ 4 (lower order terms)

ie., Re(?) = Re(2°Y or Re(w') = Re(uwY, intersects I'. Thus, for any
convex neighborhood V' of IY and any point Z' € I* there is a (GF)
with respect to {(V/, D?, £ = ﬁ%&)m +...) as in Corollary 8.1. The
pre-image of this (GF) is then a (GF) with respect to 2 neighborhood V
of T', ©, £ and the point F~}(Z") € ©. The corollary now follows from
the (GP).

Remark 8.2 Let us pause for a moment to come back to guestion B
posed in the Introduction but set in the dimension 2 rather than 3.
The function u harmonic in the annulus @ = {z € C:1 < |2 < 2}
extends holomorphically to its Vekua hull 0 (perhaps, as a multival-
wed function, since € is not simply connected). It is easy to see that
fn{y =0} 2{(X,0): 1 < |X| < 2}. Indeed, for any (X°,0), 1 <
|X°] < 2, both complex lines X + ¥ = X O intersect R? at’ points
20+ % = X9 X9 € Q. Thus, the line segment {~2,~1] and [1,2]
that are disconnected in ) are connected through ). Hence, since u is
holomorphic on & N {Y = 0} and vanishes on {{,0): -2 <z < -1}
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it must vanish on the whole intersection N {Y = 0}, in particular, on
{(2,0) : 1 < z < 2}. Although there is a simple direct proof of this
fact for n = 2 (the reader is encouraged to find it!), the advantage of
this viewpoint is that with no extra work it allows the same conclusion
for solutions of other equations, e.g. A™wu = 0, or exhibiting a little bit
more care, even Lu = 0 with £ as above. Still with a bit more techni-
calities but essentially no new ideas, one can extend the result to higher
dimensions to answer the gquestion B completely.

Notes

The notion of the Vekua hull (of course, not the name) appears in
Vekua’s work [V]. Also, ¢f.[Gil], [Hen] and the references therein. The
extension to higher dimensions under the name of 7hull of harmonicity”
is due independently to P. Lelong and N. Aronszajn-cf. [Av], [ACL].
The Lie ball is discussed in {Av], [ACL] in great detail. Corollaries 8.3
and 8.4, the main achievements of Vekua’s theory, are due to Vekua [V],
[Hen|. His methods are based on explicit representations of solutions by
~ Riemann’s formulae for solutions of hyperbolic eguations in two variables
and restricted to second order operators or constant coefficient operators
for the higher order case. Also, Vekua states Corollary 8.4 for a domain
2 C R? with the Cauchy problem posed on an analytic curve y C .
In that context, one has to assume that @ is conformally symmetric
with respect to v {cf. [V], [Da), [Hen]). That means that v is given
by the equation Z = §(2), § being an analytic function in © so that §
maps {2 bijectively onto itself. (More on this is contained in Chapter 9).
The presentation here, based on a powerful though geometrically simple
method of Globalizing Families allowing to bypass entirely the explicit
representation formulae, and essentially ignore the lower order terms of
the operator, is from [KS2].

poak T

Chapter 9
The Reflection Principle

From now on by a non-singular analytic Jordan arc y we will un-
derstand an object satisfying either one of the following (equivalent)
definitions:

(i) vy ={zeCiz=f(t),0 <t <1, fus analytic and one to one in
some neighborhood of {0,1]}.

: (i) v ={(=.y) € R? : o(z,y) = 0, where ¢ is a restriction of a holo-

morphic function ¢(X,Y) in ¢ C2- neighborhood of v such that
voly # (0,0) 1

Proposition 9.1 (The Schwarz function of a curve.) Let -y be an ana-
lytic Jordan arc. Then there exists a (unique) function S(z) analytic in
a neighborhood of v such that Z = S(z) on 7.

The function S(z) is called the Schwarz function of 7.
Example 9.1 If v = R, then §{(z) = z.

Example 9.2 If v = {z: |z — 2] = R}, then

2
Z=2t

P §(z).

PROOF OF PROPOSITION 9.1: Indeed, using the definition (ii) and the
change of variables z = X +1iY, w=X —iY (=%in R?), we obtain
the equation of v in the form ®(z,%) = 0, where ® is 2 holomorphic
function of two complex variables. Note that %%27 = %(gﬁ + i%";—)l,;, # 0.
By the implicit function theorem we can solve that equation for Z and
obtain 7 = S(z), with the (implicit) function § being analytic in 2
neighborhood of 7.

49
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Remark 9.1 If v is closed, then S{z) is analytic in a ring-like domain
containing v and since § = ¥ on 7, S has a single-valued branch near 7.

The following example illustrates this remark.

2 v] 2
Example 9.3 Let v = {(z,y) ¢ R? : & +‘%2~ = 1,a® — b* = 1} be an
ellipse. Solving a quadratic equation we easily find

§(2) = (a? + b)z — 2ab(z* — 1)%.

The following theorem is one of the many ways to formulate the
celebrated Schwarz Reflection Principle.

Theorem 9.1 Let 7 be an analytic arc and 2L € 1. f??herfe exists
a neighborhood V of 2° homeomorphic to a disk and a bijective map
Ry =R:V -V such that

(i) R is anti-conformal.

(ii) Rl = identity.
(i4i) If Vy and V3 are the components of V' \ 7, R(Vy) = V4.
(iv) R is an involution, i.e. Ro R = identity.

PrOOF: If we parametrize v in terms of the arclength 5 as z = z(s), we
note that on v we have S{z(s)) = z(s) and
dz  dS(z)

ds ds

o 4z
zS(Z)'&; y

——2 . .
so §'(2(s)) = 7(s) , where 7(s) = £ is the unit tanﬂgent vector. In
particular, 15°(2)| = 1 on 7, so 5(z) is univalent near z°. Now set

R(z) = 5(z).
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() is obvious and (41) holds by the definition. (Ro R)(z) = R(5(2)) =
S(5(2}) is analytic and Ro R = §(2) = zon 7. So RoR = 2. Hence, it
remains to show (4¢). By Taylor’s Theorem we can write

§(2) = $() + §()(z = 2°) + of | - %)),

for |z — 2% small, so that

R(z) = 5() + S(0)(z - ) o]z — 29).
Set
B#(2) = 22 4 74z - D).

(Without loss of generality we can assume that 20 = 0 and 7 = (1,0)).

Note then that RB¥ is simply the reflection about the tangent line to
at 20 and (444) now follows.

Corollary 9.1 (Schwarz’ Reflection Principle)

(i) Let D C C be a domain and o C 3D be an analytic arc. Suppose
that f is analytic in D and continuous in D, f(D) = E so that
flo) = 7 C OF is an analytic arc. Then [ extends analytically

across ¢ and for points z € D sufficiently near o the following
"reflection law” holds

F(Bs(2)) = R, (f(2)),

where R, and R, are the reflection maps with respect to the arcs
o and T respectively,

(1) Let u be harmonic in D, continuous in D and vanishing on o.
Then u extends as a harmonic function across o and for z € D
sufficiently close to o the following "reflection law” (RL) holds

w(z) + u(Ry(2)) = 0. - (9.1)
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Proo¥: (i) Shrinking D if necessary without loss of generality we can
assume that R,{D) is on another side of o. This is guaranteed by (1)
of Theorem 9.1. Define [ in R.{D) by

f(2) = B F(R;(2)) = Bro [ 0 Ral2)-

f 1s analytic in R,{D) and continuous in R,(D). Moreover, flo = flo-
Hence, by the Morera theorem f is an extension of { across &.

(i) First of all, applying a conformal mapping if necessary we can
assume that o C R. Define iz, —y)} = —u(z,y). Then & is harmonic in
R,(D) and smnooth and continuous in Rq{D). Moreover,

iy = ulo =0

and

YO 0—(-y) g0t Y Byl(“”o)'

By the Kovalevskaya theorem {Theorem 4.1) 4 is an extension of v and
(11) follows.

Study’s interpretation of the Schwarz Reflection Principle

Consider the "real” wave equation

v
dzdy ~

Let 7 be a smooth curve, say a (2-curve, given by {y = s(z)}, where
s is a C?, strictly monotone decreasing function. Let w = f(z) + 9(y)
be a C2-solution of the wave equation in the region bounded by 7 and
the lines ¢ = a, y = b, contipuous up to the boundary, and such that
ul, = 0. Let a’ = sTHB), b = s(a), A= (s71{b),b), B = (a,s(a)}-
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Then © extends as a C* solution to la,a) x [b,b7] and the following
reflection principle holds:

where P = (a,b) and @ = (s71(D),s(a)). We call such P and @ sym-
metric with respect to the curve 7.
Indeed,

w(P) = f(P)+g(P)
= f(B)+g{4)
= —g(B)~ f(A) (since ul,, = 0)
= —g(@)~ f(Q)
= —u(Q)

Turning back to the Laplace equation in R2, let v be an analytic
arc in R, u satisfy Au = 0 In 2 neighborhood of v and uly = 0.
Then u extends as a holomorphic function o a (?-neighborhood of 7.
Also, as we know, 7 is the intersection of the holomorphic hypersurface
T={(X,Y)eC: o(X,Y)=0} with R2. '

By changing variables z = X +iY,w = X — 1Y, we can write the
equation of I' in the form w = S(2), where § is the Schwarz function of
~, and if we are sufficiently near v, we can assume that $(z) is univalent
(cf. the proof of Theorem 9.1). Then, u satisfies

9*u

dzbw 0
near T and, since u is holomorphie, uir = 0. Now, u = f(z)+ g{w),
where f and g are analytic functions of one variable. Then Study’s inter-
pretation of the reflection principle is as follows. Take P = (20,;6) € R?
near v and pass a complex line M = {(z,w) : z = 2°} through P. Then
MOT = B = (2°5(2°). Similarly, the complex line N = {(z,w) :
w = 20} meets I af a point A = (§-3(29),29). Pass through A and B
the complex lines M’ and N', respectively:

4
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M = {(zw) 2= ST

N = {{z,w):w= 5=}

Set Q == M'NN' = (5-1(79), 5(z°)). However, & € R21, Indeed,
5‘“1(;6) = 3’@53 since according to Theorem 9.1, 24 =9 (?@55} and
hence 20 = § (m) The rest of the argument extends word for word
and (9.1) follows with € = R,(P).

Failure of the Reflection Law for other operators

H. Lewy [Le] showed that if « satisfies a second order p.d.e. with the
Laplacian in the principal part in a domain D adjacent to the real axis
and ulg = 0, then u extends to the mirror image D' of D with respect to
R. Even, if u satisfies a "linear relation” on R, e. g. u+ uy = 0 on R, it
still extends to D', He has also given a counterexample showing that the
latter property fails in 3. However in regard to point-to-point reflection
laws like (9.1) the situation {for other operators even slightly varying from
the Laplacian (or, the wave operator) is drastically different.

Let v be an analytic curve in B2 and u satisfy the ” Helmholtz”

equation
0%u
dxdy

L My =0 (9.2)
near 7, A > 0, and uly = 0.

Theorem 9.2 If for two points P and @ sufficiently close to -y there
ezists a constant k = k(P,Q) such that the *reflection law”

w(P) + ku(Q) = 0, (9.3)

holds for all u satisfying (9.2) near vy and vanishing on vy, then vy must
be o straight line.

The Reflection Principle

We wi
e will need a lemma that goes back to B. Riemann. Recall that if
‘ . i
& d
d
Bay TUBYI5 + b(w,y)wéa + ez, y)

L=

is a hyperbolic differenti
‘ al operator wit i i
variables its adjoint is defined by 10 By centire functions of o

I#y o 9%y B o 9
b O dy ﬁ(““)—@(bu)ﬂu.

The Ri i
emann function Ry := R(z,y;£,7) at a point (&,m) for the

operator L is defined as th . '
problem e solution of the following Cauchy-Goursat

L#R =0 near (5,77) .

B vieom) = ean( [ afe,ryar) (9.4)

Rz, m5€,m) = e:vp(fb(r, n)dr).

i\l:)fi ghji ff‘;)rrjm (9.4) it'foliows that r(y) := R(¢,y;€,7) satisfies r, —
. Furth;rfn}(; Wh;ie r(z) = R(z,n;¢,n) satisfies r, — br = Oyon
N ivagis re, observe ti.xa,t R(&m€,m) = 1 and as we noted in
_lepte Ve;if t},ly, £,7) is an entire function. Moreover, since it is not

Y the symmetry property of the Riemann function namely

Ri{z,y;6,m) = R ) .
Ve (€, m 2, y) it foll , S
entire function of all four va,fi)a,bies(.) ows that B(z,ys, 7) is in fact an

Lemma 9.1 {Riemann’
real- n's Lemma). Let v = {(z,y)

ty = s(z)} bea

analyti -
partz’culaatzz t;'e;?;:e i:iaat 18 non-characteristic with respect to L. So, in
’ s~ are real-analytic n S
Lu =0 nea . ear 7. Let u be a solution o
ry. For all points P(x°, ¥°) sufficiently close to v we flavef

85
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B
WP) = S(uR)a+ 5wkl - [ (Udy - Vda),
where R = R(z,y;2% y%), A = (s7Hy?), 4°), B = (29 s(z")) and

L

1
U:aRu+—2—Ruym—2

Byu
1 1

V=5 = Ry — — B u.

Ru+2Ru QRu

Proor: The proof is a rather straightforward calculation. Let us sepa-
rate the following assertion.

Assertion.

0= R(Lu) — w(L¥R) = U, + V.

Assuming the assertion let G denote the region bounded by PA, PB
and the arc AB. We have (applying Green’s formula):

0 = ]/G(RLu_uL#R)

Udy — Vdz
e

I

il

/j(my —Vdz) - /: Udy - ]: Vi, (9.5)

Now, using the properties of the Riemann function we compute

B
-—/ Udy
P

fl

B 1 1 B
- /P {(uR - Ryju+ —é(Ru)y]d'y = “§(R“)§P

= %R(P; Pu(P) - %R(B; Pu(B)

= -1—u(P) (Ru)ig,

_1
2 2
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and similarly,

4 A 1 1 1
- / Vde = — / [(bR— Bo)u+ =(Ru),ldz = =u(P)— =(Ru)|a. (9.6)
P P 2 2 2
So, combining (9.5)-(9.6),
1 1 B
u(P) = S(uB)a + 5(uR)l5 - /A (Udy - Vde).  (9.7)
The proof of the assertion is straightforwaa‘d and left as an exercise,

For the proof of Theorem 9.2 we shall need the following:

Corollary 9.2 In particular, if v = 0 on 7,

1B du du
u(P) = §/A R(é:;dm - ggj—dy). (9.8)

Proor oF TaEOREM 9.2: The operator L now is L = ag;y + A% We
assume that P and @ are sufficiently close to -y so that all the solutions

of Cauchy problems

Lu=10;
- (9.9)
{ d%u = 0%{(y - s(=))g(z,¥)l, lol £ 1,

with g being a polynomial, are real-analytic at P and . Recall (cf.
Chapter 6) that for our operator L

R(z,5;5°%1°) = Jo(Ay/ (3 — 2°)(y — 4°)),

where Jp is the zero Bessel function. Replacing u on 7 by the Cauchy
data in (9.9) we obtain

du Ou B ;
(vggdm - 3ydy> |l = —2gs'(x)dz],.
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So, in view of {9.8) we have

Bp
up)=- [ (e = a0~ (e, s (e)ds, (9.10)

where we put A = Ap = (s7'(3°),4°), B = Bp = (2°,5(2°)) to stress
their dependence on P. First, we show that (9.3) implies that P and @
must be "symmetric” with respect to 7. Suppose they are not. Without
loss of generality we can assume then that Ag is inside ApBp while
Bp is inside AgBg (other possible configurations can be treated simi-
larly). By the Weierstrass’ approximation theorem we find polynomials
g so that |g(z,y)| is arbitrarily small on (Ag, Bp) while the integral
pr Jo(A/(z — 2%y — y%)g(z,y)s ’(m)dx is larger than some fixed pos-
itive number 7. This is possible since s’ # 0 and Jy > 0 near the origin.
We see then, using (9.10) for P and @ respectively, that [u(@)] can be
made arbitrarily small, say < ¢, while |u(P)| > 1~ ¢. Hence, u(P) can-
not equal —ku(Q)). Thus, P and @ must be symmetric with respect to
7ie @ = (7140, 5(a).

The Reflection Law 9.3 implies that for all polynomials g we have
(./-1 B Ap = AQ,B B Bp = BQ):

B
[, s/ = 29 = 10) 4 ka0 la = 5Ny — ()l () = 0

Therefore,

Oz =2°)(y = ) + kI /(2 = 571 (50))(y — o(z)) = 0 (9.11)

on ¥. In particular, taking (z,y) = (2% s(2°)) and using the fact that
Jo{0) = 1, we conclude that k = —1. Hence

Jo(h/(@ = 20)(y ~ 1)) = Jo(A/(z ~ s 1 (1)) (y ~ (2%))
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on v and since Jy is monotone decreasing on the positive semi-axis near
the origin we must have (z — 2%)(y — %) = (z — s 1 ¥}y - 5(z%)) on
. Therefore, ¥ must be a line,

By using Study’s change of variables 2 = X + Y, w = X — Y,
that reduces the "real” Helmholtz’s operator A + A? to the complex
hyperbolic operator 4% + A% and applying a similar argument we
obtain the following

Corollary 9.3 Let v be an analytic curve on B2, If for all solutions u
of Au -+ A?u = 0 vanishing on v the Reflection Law

W P) + ku(Q) =0 (RL)

holds just for two points P and Q sufficiently close to v, then k = -1 and
v must be a line pagsing through the midpoint of PQ and orthogonal to

PQ.

Remark 9.2 For the operator L = 83:3 the Riemann function equals
1 identically. Hence the representation formula, (9.8) becomes

u(P)= /( dm—wdy)

Therefore arguing as in the proof of the theorem we can show that

if (RL)

: u(P) + ku(@) = 0
holds for all u satisfying Lu = 0,u}y = 0, then P and @ must be sym-
metric with respect to y and k = —1.

Similarly, for L = A, the Laplace operator, the Reflection Law (i.e.
the Schwarzian Reflection Law) holds near v if and only if P and @ are
symmetric with respect to v, i.e. Q = R(P), or equivalently, KpNT =
KonT where P = (zp,yp), @ = (zg,y0), and

Ep={X,Y)eC: (X ~ep)* +(Y —yp)’* =0}
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and
Ko={(X,Y)€C: (X ~20) + (¥ - yo)? = 0}

aze | . .

Frsi 1;2)};051;: gcgnes in C? emanating from P and ¢} respectively, and
.“_ ) : “ZYZS(X+$Y is the * . » , all

5 is, as usual, the Schwarz functigi 1os'f fy.e romplexied” curve v while

Corollary 9.4 LetT = {{
4 = U1, 22, 73) 1 {@1,29,0) € - _
. curve} be a cylinder in R® with base 7. Ilf thze’ fgeﬂgc’tgozeg;iuan e

u(P) + ku(Q) = 0

ficiently close to T' ;
then T' is a pl
respect to T. ’ plane and P, Q are symmetric with

ProoF: If 2 # 29

harmonic 11:;1- ok ‘ta,ke u(21,22,23) = (23 — of)v(e1, ;) where v is
vt o ’Y}DV&nlSheS on v and v(2%,29) # 0. Then u is harmonic
By the prev’iyc;;s( re) , %;ﬂd u(@) # 0. S, we can assume mg =23 = 0,
mar and () must also be o with tormont
to 7. For all A > 0, consider fanctions Fymmetric with respect

u(xl,mg,w(g) = uo(wl,mz)e)‘a:g?

so that u®(zy,22)], = 0 .
v =0 and satisfy A 0. 42,0
u's are h ; . (z1,8) % +A"u” = 0. Then all
armonic and vanish on I Then, the Reflection Law im;TEZ};

that the hypothesis of C
orollary 9.3 i :
- st be a line. ry 9.3 is satisfied for all u°, and therefore

Notes

The t ” e
book {Dafrx?n Schwa,r.z Fanction” was introduced by Ph. Davis in hi
6.1 we fo}iow I};Ie;ent;flg ’the Schwarz reflection principle via Theoreni
- Shapiro’s book [Shi] although Corollary 9.1 is very
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close to the reasoning in [Dal. E. Study’s beautiful interpretation of the
reflection principle via the wave equation is from his paper [$t], though
he reasons right away for the ?complex case”. Apparently, his paper fell
into oblivion and the idea was rediscovered again in the 1950’s by a num-
ber of mathematicians, most notably by H. Lewy {Le] and P. Garabedian
[G1]. In their papers they also associated the Schwarzian Reflection with
that for solutions of real wave equations. Theorem 9.2 or, more precisely,
its complex analogue Corollary 9.3, is implicitly contained in [KS3] as an
Ansatz in proving Corollary 9.4. Riemann’s Lemma can be found, e.g.,
in Hadamard's classic [Hal. Detailed discussions pertinent to Remark
9.9 can be found in [KS3], and in a more expanded form, in [Sh1]. A
far reaching extension of Corollary 9.4 35 contained in [EX] (also see the
following chapter). Finally a “positive result” going the opposite direc-
tion from Corollary 9.3 has been found in [8S]. There, the value at a
point P of a solution of the Helmholtz equation vanishing on & curve 7
is calculated by means of certain integrals along paths joining point Q,

symmetric to P, to 7.



Chapter 10
The Reflection Principle (continued)

In the previous section we have studied the Reflection Law (RL) for
two points P, ¢} in the plane and a real-analytic arc I'. Namely, we were

interested in existence of a constant k only depending on P and () such
that

w(P)+ ku(Q) = 0 (RL)

holds for every function « harmonic near the arc I and vanishing on it.

In this section we shall discuss the possibility of extending the (RL)
to higher dimensions. Recall now two cases for which the Reflection
Principle does hold in all dimensions.

1. Taking for a “reflecting” surface the hyperplane T' := {z ¢ R* :
z, = 0}, we have

w(z', 2a) + u(a’, ~zn) = 0,
for all # such that Aw = 0 near I’ and ulr = 0.
2. For the sphere ' = {2 : -7, 2? = R*} we have,

u(e) + amaﬂ-“umﬂ,{;) =0,

for all 4 harmonic rear T' such that ulr = 0.
Using the previous terminology it is easy to check that in both cases,

the “Study Relation” (cf. Chapter 9) also hold for symmetric points P
and ¢, namely:

EKpnT=FKonT, (SR)
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where Kp and Kg are, respectively, the isotropic cones emanating from
Pand @, 1.6

Kp = {zEC”:Z(Zj—mff:O},
g=1

Ko {zeCn:Z(zjma:?)zzﬂ},

i=i

i

P=(zf),Q = (m?),j = 1,...,n and [ is the “complexification” of
T (ie. T':={z € C": 2 =0} in the first case and [ := {z € C" :
Yo zjz- = R*} in the second).

Then, the first question one may pose here is the following: if the
reflection law (RL) holds for P, @ near a real-analytic surface I' in R",
n > 3, for all harmonic functions % vanishing on I' (and defined in a
fixed neighbourhood of T' containing P and ), does it imply that the
Study Relation (SR} holds? Or, in other words, is (SR) necessary for
the (RL) to hold?

The answer is in the affirmative [EX]. Here, however, we will only
present a much simpler result [KS3]. Let us first introduce the following
definition.

Definition 10.1 We say that a harmonic function u(z) has a polar
singularity at o point z¥ if it is harmonic in a punctured neighbourhood
of 2% and there exists N > 0 such that |z — 2%V u(z) is bounded near

11)0. .

Theorem 10.1 Suppose that the Reflection Law (RL ] holds for an “en-
larged” cluss of test functions, i. e. for harmonic functions u(z) van-

ishing on I and admiting finitely many polar singularities near I'. Then
the Study Relation (SR) holds for the poinis P, Q.
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We shall need the following lemma.

Lemma 10.1 Let u be harmonic in the punctured ball B(z% R)\{z"}

and suppose that u has a polar singularity at z°. Then u can be written
in the form

u(z) = Q) + v{z),

le — 20

where m is a positive integer, vw(z) is harmonic in B(z°,R) and Q is a
polynomial relatively prime with |z — 292,

PROOF OF THE LEMMA 10.1: By the growth condition on u(z) near the
singularity = 20, u can be extended as a distribution u € D'(B(z°, 7))
to the whole ball B(z°, ) 1. Thus,

supp Au C {z°}.

By the well-known theorem of L. Schwartz (cf.,e. g., [R, Theorem 6.25),
we can write then

Au = R(8) (5{550}) )

where R is a polynomial and 6{;,50} is the point-mass at 2%, Also we have

Cn
b =& =}

a (u- 20 (=3 ) =0

*Foz example one can define such an extension simply by

- l .o ;0 O\ ax
(v, 0)ppr = /B o u(z) (w(:ﬂ)~ Y. H0%e() (s - 5) ) dz

Thus,

jolgn—]

for every » € C5°(B{a°, R)).
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in the sense of distributions and according to Weyl’s Lemma it must be
harmonic in B(z% R). The lemma is proved.

Proor oF THE THEEOREM 10.1: Let us first observe that u must have a
polar singularity at € provided it has a polar singularity at P. Applying
Lemma. 10.1 we can write w in the form

G1(z) + Qa(z)

lz —ap|™ |z —zq|™

u(z) = + v(z), (10.1)

where @(z), @2{z) are polynomials and v(z) is harmonic. Let £ €
Kp T and assume that ¢ ¢ Kgn T'. Let us denote by V a domain in
C" to which u can be extended holomorphically with the exception of
the singularity set KpU K. Since v =0 on \(Kpu Kg)thenifz — &
in V with z € T\(¥p U Kg), while the left hand side in (10.1) remains
zero, the right hand side becomes unbounded. Indeed, the first term
tends to infinity, the second remains bounded since £ ¢ Kg N T and the
third term is always bounded. Therefore we arrive at a contradiction
and hence £ must lie in Kg N T

The following result ([KS3]) shows that unlike in the case n = 2,
there is no generic reflection in higher dimensions.

Theorem 10.2 Let T' C B* be a smooth algebraic surface. If
Volume {P near I :3 @ such that P,Q satisfy {(SR)} >0,
then I' must be either a sphere, or a plane.

It is an easy excercise to check that spheres and planes satisfy this
hypothesis. Recall that for planes @) is simply the symmetric image of
F while for spheres ¢} is the inversion of P.

The following result [EK] provides a complete answer as to the va-
lidity of the (RL) for odd-dimensional spaces.

Theorem 10.3 If the Reflection Law (RIL) holds for two points P, Q
sufficiently close to the real-analytic hypersurface T C R*™*1, then I
must be etther a plane or g sphere.
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As for the (RL) in even number of variables the situation is far more
delicate. The following example already shows that the (RL) holds in a
much greater variety of cases than in odd dimensions,

Example 10.1 Consider in R? an axially symmetric surface

I'= {($1,$2,$3,£E4) : f(fu"]_,p) = 0,,0 = m}}

where f is, for instance, an entire function and p stands for the distance
to the ; axis. The meridian curve 7 defined by the equation f(az;, p)=10

in the plane (z1,p), 1. e. v := {(z1,0) : F(z1,p) = 0}, is then symmetric
about the z; - axis.

By making the change of variables:
£:$1+ip7 f*lem‘ip,

and solving the equation f(z1,p) = 0 for £* we can write the “compleki-
fication” I' of T in terms of the complex variables £,&* as ' 1= {z € C*;

£ = S(£)}. The analytic function § = S(£) is the Schwarz function of
the cuzrve v (cf. Chapter 9).

First, observe the following

Lemma 10.2 The Schuwarz function § preserves the zi-axis, in other
words, if P = (2,0,0,0) then S(P)=(Z,0,0,0).

Proor: In view of the definition of § and since v is symmetric about
the z1 - axis, i. e. £ € v provided that £ €, it follows that

£=8(6) and €= S(&) on 7. (10.2)
From (10.2) we have S{€) = S(£) on 7, or conjugating,

S(€)=5(&) on 1. (10.3)

The Reflection Principle (continued) 67

Since both functions in (10.3) are analytic and equal on v they coin-

cide thus giving S(P) = S(P) = §(P) for all P on the zy-axis implying
the lemma.

Let us now state a positive result regarding the (RL) for the case of
axially symmetric hypersurfaces in RY.

Theorem 10.4 For points P = (a,0,0,0) on the axis of symmeiry, the
following (RL) holds:

u(P) + (=5(P)u(S(P)) =0 (10.4)
for all u harmonic near I and vanishing on .

Before giving the proof of the theorem let us see how examples (1),
(2) fit into the context.

Example 10.2 Planes. In this case v coincides with.the*ima,g;ina,ry axis
v = {ip} (here T := {1 = 0}). The equation for v 1Sr§ = £ andhso,
5{¢) = 6. H P = (e,0,0,0), S(P) = (-e,0,0,0), § (_P) = —1. Then
{10.4) simply yields for this case the well-known reflection law

u(a,0,0,0} + u{—a,0,0,0) = 0.

Example 10.3 Spheres. In this case I' = {2 € R“}: 22 4 p? = 1}, The
equation for v becornes ££ = 1 and thus §(¢) = i ‘If P = (a,0,0,0),
S(P) = (%,0,0,0) and, since §'(€) = — the relation (10.4) now be-
comes the familiar Kelvin reflection in the sphere in R?*

11 B
- (4,0,0,0) + —u(>,0,0,0) = 0.

Let us also check the Study Relation for points

P=(a,0,0,0) Q= S(P)=(5(a),0,0,0)
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on the zj-axis in the last example. We have (as before £ = z; + 10,8 =
Ty — tp)

I(px{xé@“:(n—a)z-%pz::{)}:{:EEC“:(gwa)(E*wa)mU}

and

Kspy = {z € T (€~ S(a))(&" - $(a)) = 0}.

Thus if (£,6*) € Kp N T then ¢* = 5(€) and € = @ or §(£) = a. If
§ = a then S(¢) = S(a) and (£,€") € Kgpy N T I S(€) = a then
¢ = 57Ya). Since a = $(8(a)) and so 5~ Ha) = S(a), £ = 5(a) and
hence (€,6*) e Kgpy N T. It just remains to note that all the steps are
reversible.

PROOF OF THE THEOREM 10.4: Let u be harmonic in a neighbourhood
of ', ulp = 0. Let us separate the following claim.

Assertion. The function u can be written in the form u = ug-+uy where
the functions ug and uy are both harmonie, vanish on T' and ug({z) =
ug(z1,p) is azially symmetric while u1{1,0,0,0) = 0.

Assuming the assertion let us continue with the proof of the theorem.
Since uy vanishes on the z;-axis, it suffices to prove (10.4) for axially
symmetric harmonic functions u(z) = w(z3, p). It is easy to check that
an axially symmetric function u{zy, p) is harmonic in R* iff

2 2
g%g + _‘?%?; + 20u =
zy. O0p*  pop
(It is crucial here that the dimension of the space is 4! For other dimen-
sions, say n, the axially symmetric harmonic functions satisfy the equa-
tion similar to (10.5) but the constant 2 is replaced by n—2, so the follow-
ing trick fails). Thus, if u(21, p) is harmonic then v(@1,p) = p u(zy, p)
is harmonic as a function of the variables z1, p in the meridian plane.

0. (10.5)

i
i

&
3
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Indeed, (10.5) can be written as

P (a0 + 2V (o0 VigypP = 0,

or, in other words A, (0 u) = 0. But now v(zy,p) satisfies the
Schwarz Reflection Principle with respect to 7, thus

o(€) + 2(S()) = 0

for all ¢ sufficiently close to . In other words,

pu(z1 + ip) + ImS(z 4 ip)u (S(a:l + ?,p)) = . (10.6)

Differentiating {10.6) with respect to p we obtain

TIE Ty e OU o\
o u(5)+ip%§/—§—p (1m 5(6) u (S(g)) +Im 5(@55 (S(g)) = 0. (10.7)

Since by Lemma 10.2 Im (S(£)) = 0 when p = 0 the relatiox} (10.4)
follows from (10.7) and the fact that according to the Cauchy-Riemann

equations and Lemma 10.2

RN g (@) o =)
it Ye b

g ‘:P.-ROOF OF THE ASSERTION: Let us now proceed with the proof of the

assertion, If u(zy, 29,3, 24) is the given harmonic function, define

wenn) = o [ e Sea@) #EO,

2 _
where y= (y27y3=y4) € RB: S(ﬂ?;,p) = {(3317 y) yE R® y%;‘ y% _%'3‘49;’3
p*} is the 2-dimensional sphere centered at (z1, 0,@,0) of radius p, -
Lebesgue measure on S(xz1,p). It is clear then that lim,..o4 uo(mii =
u(z1,0,0,0) and it is also clear that ug|r = 0. Let us now s‘how that ug
i¢ harmonic. As observed above we must check that ug satisfies

82'11.{} 82%1,{) 23’&0 —0
b S = (.
bz?  0p?  p Op
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2 .
If §%(0,1) denotes the unit sphere in B and dS, stands for Lebesgue
measure on i, ug can be expressed as,

1
wofen) = o [ w(4,0,0,0) 45 (0,0)) 45,

Hence,

9%ug 1 &%y
Oz? ZT—I:]S?-(O,I} 5;?((931,0,0,0) +p(0,y)) dS,. - (10.8)

On the other hand,

Jug _ 1

where z' = Sw?,$3,$4). Taking into account that for each y ¢ 5%(0,1)
the vector § is the exterior unit normal v with respect to the ball
B(0,p) = {(z1,9) : y € B : ||yl| < p}, the divergence theorem implies:

Oug 1 du
dp  dmp? S(z1.0) e ds(wlgp}(y)
; :
- i '
p /B(D,p) Apu{{zy, ")) do’. (10.9}
(Here Ay := Zj‘m? %). Differentiating again with respect to p we

obtain using (10.9)

6%0 2
4mp® Jp(0,0)

302 Agpuley, 2’y do’

1 9
—, 14 !
4mp? dp {fB(o,p) Aoz, 27) do } (10.10)

Il

-+ A.
p dp
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. . . 2 .
Now since u is karmonic — g;% = Ay u and we calculate using spher-
i

ical coordinates and {10.8):

1 9 e 5
A = Inp? Bp {/0 ( et Agpu{zy,Ty) dSy) 7 dr}

! / Awru((24, py) S, (10.11)
52(0.1)

in
1 §u
- T4 /32(0 1) 5;?((%:0&0} + 0 (0,9)) dSy
__8%0
dzt’

From (10.10-11) we obtain

8%:0 . __EQ_EL_@. _ agw}

dp* ~ p Bp Ozt
and the proof of harmonicity of up is concluded. Therefore the assertion
follows by writing u(z) = ug(z) + u1(z) with wi{z) 1= u{z) - ue(z).

The general even-dimensional case
For a point 2° € R” set
g(- =2 = (; = 29 4 oo ok (2n — 20,

the defining function of the isotropic cone Koy with vertex at z°.

Let T be a real-analytic hypersurface in R* and I' its extension to
Cn. Consider two points 20,27 € RP\T' that satisfy the Study Relation
(SR), i.e.

.K{WO} Nl = f&{x‘s} nT. (SR)

Let us now introduce the following definition.
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Definition 10.2 Let the dimension n be an even number. We say that
the points 2%, 2! ¢ R" satisfy the Strong Study Relation ((SSR) for short)

if 2°, & satisfy (SR) and
o0 =% = (A5 +h() (o ~ 2 ) )g(- — eV, (SSR)

where p = 3%-2-, A is a constant, and h is some holomorphic function.

The following theorem [EK] then completely settles the problem of
reflection in even-dimensional spaces. :

Theorem 10.5 Let the dimension n be even. The (RL)
u(z%) + ku(e') = 0

holds, for all functions u harmonic near I’ and vam’sﬁing on I', if and
only if 2° and 2! satisfy the (SSR) with A = %5

A proof of this result is beyond the scope of these lectures. However,
as an example, let us analyse the {(SSR) for the case of axially symmetric
hypersurfaces I' in R4 already studied in this chapter. As above zy, p
denote the meridian complex coordinates, £ = z; +ip, £ = 2 — ip and
the complex extension T of T to €4 is given by £* = §(£). As already seen
in. Theorem 10.4 the (RL) holds for all pairs of points z° = (2,0,0,0)
and &' = (5(a),0,0,0). In this case:
90 =2 = (- a)(€ ~a), g(--2') = (¢~ S(a))(" - 5(a)),

and
g0 =2 = (€= a)(S(©) ~a), (-~ 2z = (£ - S(a))(5(E) - S(a).
As before (cf. Example 10.2)) one easily verifies the (SR):

ff{g‘m} nT = I({xl} nT

= {ml fuesd {Z+§(a) frened G»"I"S;l(a),p oo :i:L*-——(*—-l)-a_fia‘ }

= {(aa S(O;))} U {(Snl(a)va‘)}'
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We now have n = 4, so p = 1. Since p = 1, (8SR) simply says that
= e 2 . We have
dg(. — mo)lfﬁf({xo}'m )\dg( z )‘Fﬂff{xl}

dg(- —%)p = (($(¢) —a) + ()€ —a)) dE
dg%- chi%‘i; =" ((8(&) ~ §(a)) + S'(§)(¢ - 5(a))) dE.

e - = (S(a)~a) de
dg( miﬂl)(a,S(a}) sty a) .
dg(+ = 2" )(a,50a))
and {SSR)
dg(- — mo)(a,g(a)) = Adg(- — :EE}(Q,S(Q)), (10.12)

for A is
holds with A = ~gts (cf. Theorem }t{}.él). tl‘he samfa valuefozr
obtained in (10.12) if we calculate both differentials at points ci‘m MK (03
where (£,£*) = (57 (a),a)) and recall (Lemma 10.2) that §~*(a) = S(a)
and thus §'(5(a)) = g-

Notes

The notion of Study Relation (SR} appeared in [KS3]. Theorem
10.2 has been proved in {KS3] (for n = 3). Th'eorems 19.3 ’and.l(].li
that completely settle the problem of point-to-point reflection in hllgher
dimensions have been established rather recently in [EK] The notion of
Strong Study Relation (SSR) has also been introduced in [EK].

Theorem 10.4 appeared earlier in [Kh2].



Chapter 11

Behaviour of Solutions of Cauchy Problems in
the Large

Let n = 2 and £ = 5%5 + a(z,w)a—a; + b(z,w}g% + ¢(z,w) be a
differential operator with all coeflicients assumed to be entire functions.

Let I' be a hypersurface in €2, non-characteristic with respect to L,
given by {w = §(2)} or {z = §~Y(w)} with 5, §~" holomorphic near T.

The following theorem was nroticed by several authors, e.g., Garabe-
dian, Vekua, Henrici, H. Lewy to name a few. '

Theorem 11.1 The solution u of @ Cauchy Problem

Lu = 0:
(11.1)
u-f)=0, |lo|<Llonl

with entire data [ extends (perhaps as o multivalued Junction) along
any path in C? starting at a non-characteristic point on I provided that
§(z), 571 (w) extend as holomorphic functions along that path.

Proor: Take (2%, w®) sufficiently close to T', so the solution u is holomor-
phic at (2°,w°) by the C-K theorem. Represent u(z°, w°) by Riemann’s
formula ((9.7), Lemama ©.1) applied in the context of C?. However, since
on I' we have w = §(2), 2 = §7Yw), u = f(2,8(2)) = S(S™Hw),w),
% = 552 5(2) = BE(S(w), w), 8 = & (5,8(2)) = L5 (w), w)
and f, R are entire (the latter in view of Corollary 6.4 and the remark
preceding Lemma 9.1), the right hand side of (9.7) extends holomorphi-
cally to any point (2°,w°) in €% as long as §(z) and S~ (w) extend to
that point.
Consider now a special (CP)

By .
{ Bzaw_o’

O (u—z2w) =0, o/ <lonl.

(11.2)

T4
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Denote the (unique) solution by up. Then, upr = F'(2}+ G(w), where
F,G are analytic functions of one variable, and so

dz
Hence, %&in = §(z). Similarly, %%1 = 5~ (w).

Therefore Theorem 11.1 can be restated to say that solutions to all
Cauchy problems (11.1) with entire data extend holomorphically along
any path starting at a non-characteristic point on I' and avoiding the
singularities of the solution ur of (11.2}. .

Restricting ourselves to R® = {(z,w) : ® = z} while changing
variables to z = z + 4y, 7 = ¢ — iy, and accordingly, the operator to
L=+ A-{% + BEZ 4+ (where A, B,C are entire functions), with

a1
vi=TNR C {(z,3) JE = S(2),8(z) is the Schwarz function of v} and

recalling (cf. Chapter 9) that §71(%) = §(2) we are led to the following
corollary.

Corollary 11.1 All solutions of (CP)
= {; ‘
b (11.3)
*(u—f)=0, |a] £1lony

with entire data f (as a function of two complex variables) extend along

all paths in B2 provided that S(z) is analytically continuable along those

paths, or equivalently, ur (=u.) defined by
Pur =0 (114)
8 (ur ~ |2} = 0, lel <1 ony

is continuable along those paths.

Example 11.1 Let £ := A,

(i) Take v = R, then S(z) = z. Thus, all solutions of {11.3} are
entire harmonic functions {(already noted in connection with the
Bony-Schapira theorem - ¢f. Corollary 7.3).
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(ii) Take vy = {z : |2] = R|}, then §(2) = %3. Thus, all solutions of
(11.3) extend harmonically to &2\ {0}.

However, solutions can become multi-valued when continued in the

comglex space, e.g., for R = 1, up = 2loglzi+1 and is multi-valued
in C°.

{iii) Consider any quadratic curve, e.g. an ellipse, v = {(z,y) : g
. &

12
jr=1,a>b, a®> b = 1}. Then §(z) = (a? + b1z — 2abv/2E ~ 1
and all solutions of (11.3) extend harmonically to R? \ {£1}.

Recall the problem A stated in Chapter 1 but now posed in R?, Con-

sider a domain 2 bounded by a simple analytic curve 4 and define the
potential of Q by

wol?) = 5= [ loglé ~ #| da(e).

{(dA is the Lebesgue measure). Then ug solves (in the distributional
sense} the problem Aug = xq and as is easily seen is Cl-smooth in K2,
The problem is then to find a harmonic extension of U across ¥ into ).
Let w, be the solutjon of the (CP)

A, =0
{ 0%(uy = §121*) = 0, |ef<1on . ()
- Let us denote by v, := 112|? — u the solution of
_ Dy = 1;
{ 0%y =0, lo| < 1onn. (11.8)

Proposition 11.1 ug(z) — Uy(z) is harmonic in Q and provides the
desired extension of ug inside 9.

Proor: In © and near v we have A(ug — ty) = 1~1=10. On 7,
9%(uq ~ vy) = 8%uq for |a] < 1. Then we have the functions 1g and
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ug — vp harmonic in B? \  and in § respectively and having the same
Cauchy data on-y. Hence, by Kovalevskaya's theorem (Theorem 4.1},
uq — Yy provides the desired extension.

We consider now the above problem in greater generality. Define

unp(2) = 5= [ P(O) loglé = 2| dA0),

where p(¢) is, say, a polynomial (or, an entire function} of two real

vatriables.
Let P be another polynomial such that AP = p and u, p be solution

Duyp =03
" (11.7)
*(u,p—P)=10, |la| <lon7.

Define v, p = P — u, p. It solves the problem

Doy p=p;
v, p =0, Jaj<lonv.

of

(11.8)

Then, arguing as in the proof of Proposition 11.1 we obtain

Proposition 11.2 ug ,(z) — v, p(z) is harmonic in & and provides the
desired extension of ugq, inside (1.

As a corollary of this result and Corollary 11.1 we obtain Herglotz’
theorem mentioned in Chapter 1. ‘

Corollary 11.2 All potentials uq , with polynomial, or even entire den-
sities extend harmonically into Q along any path free of singularities of
the Schwarz function of the boundary v of Q or, equivalently, free of
singularities of u., the solution of the Cauchy problem

Hu, =03
(11.9)
0%(uy — §l2f) =0, Jo| <1 ony.
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The function u., turns out to be responsible for a great many potential-
theoretic properties of the domain (.

In particular, let us note in passing the following.

Remark 11.1 Suppose the Schwarz function § of v extends as a distri-

bution inside . Since it is analytic near v, in the sense of distributions
we have %g = T, where T is a distribution compactly supported in Q.

Then the following quadrature identity holds:

/QfdA::fodT=< £T >

for all analytic functions fin Q.
Indeed , by Green’s formula

/ngdA:%_LfgdZ:%Lfg(z)dz:fglf%dA*<f=T>-

Similarly, if Au, = T, we have the quadrature identity

/vdA =<0, T >
)

hold for all » harmonic in (.

Qs then called a quadrature domain with respect to the distribution
T.

¥or example, if Q2 is the interior of an ellipse v := {(z,y) € R? :
A .
2—2 +&H=1,a>h o - b* = 1}, then (cf. Corollary 13.5)

1
/ vdA = const f v(t)V1— % dt
§2 -1
for all harmonic polynomials .

In order to investigate a possibility of extending Corollaries 11.1,
11.2 to higher dimensions let us give the following definition.
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Definition 11.1. We shall call the Schwarz Potential (SP) 'U.[“.Of a noz—
singular, real analytic hypersurfoce T C R, n 2 2 the solution of the
(CP)

HDur =0 | (11.10)
8*(ur — Lzl>) = 0, |af <1 onT.

 The following conjecture if true would be an analogue of Corollary
11.1.

The (SP)-Conjecture. All solutions of the Cauchy problems

Dy =10;
d*u—-f)=0, laf <1lonT

with entire data f, extend ha%monically along all paths free of singular-
ities of ur.

For the sake of convenience let us adapt the following notation.
Notation. We shall write f=gon [ for 8%(g— f) =0, |a|<1onT.

To see why the (SP)-Conjecture may be at least plausible let us note
the following proposition.

Proposition 11.3 Let T' be, as usual, the complem’ﬁcation_ of T, z:.e.,
T= {z € € : ¢(2) = 0} where ¢ is holomorphic and non-singular in o
neighborhood of I'. Let 2° € T be a characteristic point (with respect to
). Then up must be singular at z°.

) i e A2
PRrOOF: Suppose up is holomorphic near z°. Then, soisvp = 33 721 %
up. R . ~ R
Now, vp = 0 on I and Avp = n # 0. Since o =2 00 on T, the
Weierstrass’ Preparation Theorem implies that vp = ¢°g for some ¢
holomorphic near 2°.
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But on the other hand since ¢(2°) = 0 we have
n =A@ = 2332 e,
=1 82:,\

This e . et .
- hemfl\gz}: (c;;egj)rgeiociné'radmmon since z° is a characteristic point
According to an intuitive feeling that singularities of solutions to
a C‘auchy problem appear only as a result of propagation through C*
of smg_u%&rities originated on the initial surface, where by the above
pz‘opos@on the (SP) picks up all of them, we “conclude” that the (SP)
should in principle exhibit all possible singularities for solutions of all
Cauchy problems (for the Laplace equation). '

ifiiemark 11.2 If this conjectu.re was indeed true it would, in particular,
ave answered Herglotz’ question in all dimensions. Namely, the same
twhord for word‘a,rgument as that used in two dimensions would show
at all potentials uq,p with a polynomial (or, even an entire) density

p extend inside Q to any region free of si iti
the boundary 80 of Q). & ee of singularities of usn (the (SP) of

’Fhe fol.iowing simple example is the first in a row of similar exainples
continued in the next sections for which the (SP)-Conjecture does hold

}]flxample 11.2. Suppose I' = {2z € R* . 2oj=10;Z5 — ¢ = 0} be a
yperplane. First, let us find upr. It is easier to start out with o=

Hzl|? ~ up that solves )
Dop=mn;
vr = Oon T,

One easily guesses that

vp = ﬂ{‘?ﬂg (Zajmj - c) s

i=1
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where a = (a3, ..., 6 ). Hence,

. 2
ur = %lel2 tfﬁgll—z (Z a;t; — c) .

J=1

.-’f
f d
-
rere”

The (SP)-Conjecture then would imply that solutions to all Cauchy
problems with entire data on I are in fact entire harmonic functions; this
is indeed the case in view of the Bony-Schapira theorem (cf. Corollaries
7.1 and 8.1) since every characteristic with respect to the Laplacian
complex hyperplane intersects T, the complexification of ['. Another
more direct proof of this can be obtained by applying the estimates in
Chapter 2.

Remark 11.3 Of course, the previous example can be extended to the
case of a complex hyperplane T' = {z € C* : i1 057 €= 0} as long
as [ is not characteristic, i.e., 2=t a? # 0. In fact, Proposition 11.3
shows that for characteristic I, un does not even exist.

Notes

An important yet simple Theorem 11.1 is contained in various forms
in [G2], [Hen], [Le], [V]. Here we followed the presentation in [Kh1] where
the reader can find more references. Most frequently, it is stated in the
form of Corollary 11.1 (first statement)- cf., e.g., [Da]. Propositions 11.1
- 11.2 and Corollary 11.2 are from Herglotz’ often overlooked memoir
[Her]. Yet some versions of it, in all dimensions, were noted earlier by E.
Schmidt and later by Wavre. We refer the reader to a detailed historic
account and references in Shapiro’s book [Sh1].

The remark following Corollary 11.2 is a subject on its own. Some-
one interested in pursuing this direction further is referred to works by
Aharonov, Gustafsson, Sakai, Shapiro and references therein. Here we
simply refer the reader to [Da], [KS1], [Sa], {Sh1] where a great many
references are given. Definition 11.1 and the (SP)-Conjecture appeared
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in [KS1] and so did Proposition 11.3 although, to some degree, the (SP)-
Conjecture was anticipated in [Sh2]. Also, cf. (Khi1] and [Shi]. First
few nontrivial cases (spheres, cylinders, cones and ellipsoids) for which
the (SP)-Conjecture holds although restricted to polynomial data were
investigated in [KS1] by the ad-hoc, “hands on” methods. Some of those
results are discused in the following sections. There is by now a consid-
erable progress achieved in verifying the Conjecture mostly due o the
efforts by Sternin and Shatalov and their school (cf., e.g., their book
(53]} and, independently, by G. Johnsson [Jol. The latter, in particular,
verified the conjecture for all quadratic surfaces.

A direct argument handling the last example can be found, for in-
stance, in Hormander’s book [Hérl, Lemma 9.1.4].

Chapter 12

The Schwarz Potential Conjecture for Spheres
Let T = {z € RN : |z] = R}. First let us calculate the SP up by

Aur = 0;
{ ur = £z} on T,

The rotational symmetry of A, [ and the data together with uniqueness
of solutions imply that one should seek a solution in the form

solving

¢y log || + o, when N =2
ur —

ellel* N + ¢y, when N > 3.

Calculating the constants we find

R*(loge] + § — log R) when N = 2;

o - Y ! + N R? when N > 3.
N —-21z|¥N-2 " 2(N - 2)

So the SP conjecture would imply the following
Theorem 12.1 All solutions of the (CP)
A = 0;
{ vz fonl
with entire data f extend harmonically to all of RV \ {0}.

From now on we shall assume N > 3 and R = 1.
Our strategy is rather straightforward.

83
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denote the decomposition of u,, and v, into homogeneous polynomials;

Let P, = lynomials in N variables of deer < m} and let . .
-~ {poly 1 [V variables of degree < m} and le thus %y j, Um ; are harmonic and in Hj.

Hy C Py, be a subspace of homogeneous polynomials of degree k.

Let f(z)= > fu(z), where f, € Hp,. Lemma 12.2 The solution Uy, of the (CP)
We are goinﬁgmt?) solve the (CP) AUy =0,
AU, = 0; {Umsfmonf‘, fm € Hn
{ Unwz=fm onT is given by
m m=2 T
for all m > 0 and show that the series i Up(z) converges uniformly s Un = k%%um.k + kgg 5 I\?—— gk(lx!N~'2k+2k = Vm,k); (12.2)
on compact subsets of R \ {0}. = Where Ui, and vy, x are the same as in (12.1) ( and Lemma 12. 1). {In

! .. = {J, 1 -~ = D .
Lemma 12.1 Let f,, € P,,. Then, fom = um+(lx|? - Dy on T, where i the trivial cases of m = 0,1 Vm,k /
Um € Py vm € Prog (or =0 if m =0,1 ) are harmonic polynomials. |

PROOF: Recall Fuler’s formula: if g € Hy, then
Proor: Consider operator T : P, — P, defined by . ”

T(p) = Al(l=]? - 1)p]. ! ’
Claim. T is surjective, Let h € Hy be harmonic. We have
Si’nce dimP,, < +oo it i.s sufﬁcien.t to che'ck tha',t T is injective. Let _ _Q?_ ( h ) o By lxlez—mc +2(2- N - 2k)xj|$|“1\’"2khxj
p € KerT, then (fx]* — 1)p is harmonic. But it vanishes on I', hence the i 8z \ (jo]N-2-2F) o

maximum principle implies that it vanishes identically. Therefore p = 0.

For m = 0,1, the lemma is obvious, so let m > 2. Find pE Ppo

such that Al(lef* — 1)p] = Af,. Then uy, = f, - (lz]* - Dp € P,

; Is harmonic. Now, by the same taken p = v, + Uxfz - 1)g, where
Um € Py is harmonic and ¢ ¢ Pr_4. So,

~(2 = NV = 2K)(N + 2k) h a3|a| V=272

#

+(2~ N~ 28)js| N A,

m
and the lemma follows. monic. Now Z Uk = Um While
Let k=0
Um = Um0 + Um,1 o 4 U, s (121) : ; T (lmlj\i:z’gkw.gk _ ’Um,k) oo (lmlz - 1)’.‘)m,k on I (124)

Pm = Um,() + U, 1 LR o Ui ir e 2
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(12.4) and Lemma 12.1 complete the proof of Lemma 12.2.
It’s worthwhile to pause here to observe the following corollary.

Corollary 12.1 All solutions of (CP) with polynomial data on the sphere
I' extend harmonically to RN \ {0} thus confirming the (SP} conjecture
for polynomial deia.

Remark 12.1 With a little bit more work, one can show that any so-
lution Up, of the (CP} with data f,, € P, can be written in the form

Un =t + R(D)(ur),

where u,, € P, is harmonic and R is a polynomial.

Lemma 12.3 Let Fyy = max{jfm(z)| : 2 € T} and Gp, 1= max{||V fm(z)|} :
z € I'}. Then,

L A
lim Fp = lim GX =0,

T+ Tt OO

Proor: We shall conduct the argument for G, the proof for F,, is
similar.

For any @ € T fixed and any ¢ € C, the function £ — f{tz) is an
entire analytic function.
We have

fliz) = Ztmfm
Foreach 7,1 < j < N, we have

833_7' - Zt a$_;, ’

0

9fm(z)

Bz are the Taylor coefficients of the entire function ¢ ~»

5’f(t:c)
Oz -
The Cauchy~Hada,mazd estimate then implies
Ofn(z)|  max{|? 1t < T}
Oz; |~ rm
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for all T > 0. Therefore,
max{lw_mf 2 ze OV |2} € T
z;

max{ Q%%?—l rzel}h < T
and
(I dmax{i22 : 2l < T)))°
max{||V/im(z)jl 2 €T} < T .

Taking mit-root and letting m — oo gives

S 1
lim G& £ .

T OO T

Since T was arbitrary, the lemma follows.

From row on Ay, By, Cn, etc. denote constants that only depend
on the dimension of the space.

Lemma 12.4 Let h € Py, be harmonic and b = hg + hi+ -+ h'k +
oo+ ho, be its decomposition into homogeneous harmonic polynomials.
Then, .
max |hi(2)] € Cnk® max|h(z)], 1<k<m.
z&l &l

Also,
|ho(z)i = |ho(0)} S rggg{lh(x)i-

Proor: Without loss of generality suppose maxger [h(z)i = L. The case

k = 0 is obvious, so consider & > 1.
Recall that h;Lh; if i # j ia L*(T,do), where do is the surface

measure on L. Hence
[nspdo < [ ipPda < IT),
r T

where |I'} is the (V ~ 1)-dimensional measure of I'.
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‘Therefore, it follows easily that

/B ]hkada < Ay, (12.5)

ix

to the biue Bs'cgif;dfli " ’ft; I’dthe mean value theorem applied
) ry with radi -

fanction |g|? gives the estimate radius (1~ r) and the subharmonic

[he{r)|? 1 A 4
Al < | B/ /B’ Ihe(e)fds < fN(ljjr)N - (1 fi’l\f)N .

From homogeneity of A; we derive then

)] < [——q%}

forall 0 <7 < 1. Taking r = 1 - 5r we obtain the lemma,

Lemma 12.5 [et f = 2
i Jm =t + (|22 = D,y on T be as in Lemma 12.1.

Vi := max{[vn(2)]} < Cn(Gr + m?V F,),

where F,, =
maXger{! fn(2)[}, G = maxxerl{Hme(m)H} are the same

as in Lemma 12.3. In particular, limy, .o Vi =0

PROOF: On T’ by the hypothesis we have for 1 <5< N

Ofm _ Oum
dz; é_x: +22vm ().

Therefore,

N
2
onT,ie forzel,

Fom(@)] € ClGom + [Vt (2)]]). (12.6)
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Lemma 12.6 Let h € Hy be a homogeneous polynomial of degree k.

Then
max [ VA(2)|| < k2 max h(e)l.

Assume Lemma 12.6 for the moment.
From Lemmas 12.4, 12.6 and the fact that u, = fm on I' we obtain

forz el
Hiy,

T
N
< Cnk2T1E,
iy <Y Cnk?

k=)

and, finally,
[ Vim(z)] < Cym’ 3 Fp < Oyt Fop. (12.7)

Now, (12.6) and (12.7) imply Lemma 12.5.

Proor oF LEMMA 12.6: Fix z € T. Then , in view of (12.3) the normai

derivative of h at z equals
Ok N ok
e () = (e = kP T ). 2.
) = Do = khie) (128)

Fix vector 7, |\l = 1 tangent to I' at z. Consider the 2-dimensional
plane II spanned by vectors Z, . TI intersects I' over a unit circle T'.
h vestricted to the plane II is a homogeneous polynomial Hj, of degree
k. In particular, by Lemma 12.1, the restriction of h on T, Hg|r, is &
harmonic polynomial of two variables of degree < k. Thus, if we use
polar coordinates (7,6) in the plane I, we have on T

k
Hle = Z(CLJ cos 768 + b;, Slﬁjg) = Hk(g)a
0

i.e. H, becomes a trigonometric polynomial of order k.
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Then, invoking classical Chebyshev’s inequality, we obtain

()] = [ L <m0
=k max|h(e)] < & max|h(z)| (12.9)

for an arbitrary vector f tangent to T' at z. From (12.8) and (12.9) the
lemma, follows.

Remark 12.2 It would be interesting to find the sharp constant in
Lemma 12.6. (12.8) suggests that +/2 probably is not optimal: the
maximum of normal and tangential derivatives cannot be attained at
the same point.

PROOF OF THE THEOREM 12.1: We want to show that 377, [Um ()] <
oo, for all ,0 < [z] < oo, where Uy, is defined by (12.2).

For tha}a, it suffices to show that the series:

(1) ¥, |um(ccn

(I1) % 1 [vm ()|

0 [2—N 3R] [g]N—2F2F
and

(HI) m:() Z:k*"(} me k(m)l

all converge.
(I) Lemma 12.3 implies that Fy, = ¢, where lim &, = 0.
Fix 2 : 4 < |z} < R,R > 1. From Lemma 12.4 it follows

|t b| < CNETeT2]* < Cl A% e RF, (12.10)

where Ay > 11s a constant. Thus,

> lumi(2)] < Civein S (ANR) < Chem(AnRY™  (12.11)
k=0 k=0
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and hence,

i i lﬁm,k(fc)l < CNANR i(ANst)m < A(R) < +o0

m=0 k=9 e

because &, — 0 when m — 0.
It is worth pausing here to observe the following

oo m

Corollary 12.2 The solution ug = Z Zum,k(m) of the Dirichlet
m=0 k=0
problem in the unit ball B
Au = 0
u=fonT

with entire data f is an entire harmonic function.

Note that the above argument immediately implies the convergence of
{111) as well. Indeed, Lemma 12.5 implies that Vin := maxger |vm(2)] =
8™, by~ 0 while Lemma 12.3 provides the estimate

om(2)] < CnkT 87 |l* (12.12)

which is identical with (12.10}.

Finally, to establish the convergence of (II}, we fix = : % < |z| < R.
Without loss of generality, we can assume z| < 1, since for |z| > 1
convergence of (II) is implied by that of (IIT).

Then (12.12) yields (cf. (12.11))

~2

v (@) m oS N2k

Z |$‘N STaE S Cnép Z]“R
kown(}

< CLERRNZ(ANRY™

Therefore, as before

oo me2 ., 7
S5 lka(%)z!k < A(R) < 400
S k~.0
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contained in [KS4] where Corollary 12.2 is shown to hold for arbitrary
ellipsoids. Lernmas 12.5, 12.6 that tie the loose ends together are from

[Kh3].

and hence series (II) converges as well.
From the estimates we have given it follows at once that the series

o0

w(z) = Z Um(2) giving the solution of our Cauchy problem or the
=0

sphere converges absolutely everywhere in CV \ {z: 1) z? = 0}. Thus

we obtain the following corollary establishing the (SP) conjecture for
spheres in the CV-context.

Corollary 12.3 The solution of the (CP)

{ Au = 0
vz fonl
with entire date f extends (perhaps, as a multi-valued function for odd

N ] to the whole complement in CN of the isotropic cone Iy 1= {z :
N _2
1 Zj = 0}.

Notes

Theorem 12.1 and Corollary 12.3 put in a context of the (SP) Con-
jecture are contained in G. Johnsson’s Thesis [Jol. In fact, Johnsson
has even solved the problem for all second order operators that have
the Laplacian as their principal part. Johnsson’s work is rather deep
and is based on the globalizing family arguments {cf. Chapters 6 and
7) blended with local uniformization of solutions of Cauchy’s problems
pioneered by Leray [L].

Similar and even somewhat more general results based on a set of
interesting topological ideas (R. Thom’s theorem) have been indepen-
dently developed by V.Shatalov, B. Sternin and their school (cf. [SS]
and references therein).

The elementary proof of Theorem 12.1 we present here was found in
[Kh3]. Lemmas 12.1, 12.2 and following elementary Corollary 12.1 were
obtained earlier in [KS1]. Lemmas 12.3, 12.4 and Corollary 12.2 are




Chapter 13

Potential Theory on Ellipsoids

Consider an ellipsoid T

I'={zcRV:

N .2
2ot

F=1"7

and let €2 he its interior,

Definition 13.1 A family of ellipsoids {T},

where —a% < A < +oo is called a confocal family (for N=2 these are

2

1=0,a: >0 > ..

. > ay > 0}

={zeRY: Z i ~1 =0},

2_!_/\

"’"‘EJ

ellipses with the same foci).

Observe that when A — —a%;,

N-1
Ty = {zeRY: zy =0, Z

2 _
==l aj

E is called the focal ellipsoid.
The following classical theorem goes back to MacLaurin.

0} =: E.

Theorem 13.1 Let u be, say, an entire harmonic function. Then

Jorall A:

1
m/ﬂ uw(z)dz = constent
A

2
A > —C!.N,

(13.1)

From now on, for the sake of brevity, we shall only consider the case

N > 3.
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Remark 13.1 MacLaurin’s theorem is a corollary of the following re-
sult of Asgeirsson (1949).

»Suppose u = u(z,y), where ¢ € R™,y € R™ satisly the ultrahy-

perbolic equation
Agu = Ayu.

Then if pi(z,y,7), 1 = 1,2 denote respectively the mean values
of u over m;-dimensional balls of radius r centered at (x,y), we have
p(z, y,T) 1”’2(937?7’77') 7

To see how the Asgeirsson theorem implies MacLaurin’s, change vari-
ables to

z; = & cosh i + misink oy, i=1,...,N,

where a; are some constants. One easily finds

) 2

g_;zf = g“"”i osh? o
2 2

gn—z = %—%« sinh? &;

Subtracting we obtain Asu = Ayu, and so we can apply Asgeirsson’s
theorem. MacLaurin’s theorem follows at once by noting that spheres
in the ¢ and 1 variables respectively ceritered at the origin, i.e.

N 2

e

7
= cosh” ey

and
2

>

are nothing else but confocal ellipsoids in the z-variables.

smh2 a1 -

The following notions are due to E. Fischer. Let Hj, as before be the
space of homogeneous polynomials of degree k. If f € Hy, then

f2)= ) fa?®

el =k
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Introduce an inner product on Hy (called the Fischer inner product), by
letting

<z",zﬁ>m{ 0, afp

al, a=j
If= Ziai;k fa?®, 0 = 2 |ai=k goz® then

< fig>= Y alfofa
lor| =k
Now consider the operator (%)a that maps Hy into Hy.|y, and
z%(f) = z*f which maps Hy_|,) back to Hy.
The main point of introducing such an inner product is the following:
Fact. The operators (-6,%)& and 2% are adjoint with respect to <,>.
We leave checking this property as an easy exercise for the reader.

The most immediate consequence is the foliowing.

Corollary 13.1 Let P be a polynomial with real coefficients. The oper-
ators P(D) and multiplication by P are mutually adjoint with respect to
<, >.

PrROOF OF MAGLAURIN’S THEOREM: It suffices to check (13.1) for har-
monic homogeneous polynomials. '

We shall need the following lemma. Let H,, denote the subspace of
homogeneous harmonic polynomials of degree m.

Lemma 13.1 The linear span of harmonic polynomials {z -EY™ for all

felp={£eC: ?’:1 (;“;“-’ = 0} (the isolropic cone) is dense in Hp,.

Proo¥r: Note that for any polynomial f € Hp,

R ACRIUEE P (132)
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Indeed, for all multi-indices e, | & |= m we have

1 - 1 -
< (BT > < () >

and (13.2) foliows.
Let us assume that u € H,, satisly

<u,{z 6™ »>=0, V¢eTo.

Then u(€) = 0, for all £ € I'p. By Hilbert’s Nullstellensatz,

N
u(€) = (3 8)all), 1€ Hnos.
=1
But then, since u is harmonic, we have
N
0 =< Au,q >=< 1, (fo-)q >=<C U U >
=1

and u must vanish identically. That proves the lemma.
In view of the lemma, we just have to check (13.1) for polynomials

(2‘ ’ E)m, ‘S = PO-

Fix A, Let b; = (a? + A\)'/? be the semi-axes of ). We have to show
that

: 0om —__.}._. L Eym
m/m(mf) dmw{&ﬂ]ﬂ(y £™dy, VEe Ty,

Changing variables in both integrals
zj = bzl . oy =aey, j=1,...,N,

we see that it suflices to show the following:

N e N m
jB(;ajmﬁj) da::fB(jgbj:chj) dz,
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where B is the unit ball in R, Or, since for £ € Ty

N N
- ((as6)* - (0:65)7) = =223 ¢ =,
j=1 j=1

it suffices to check the following assertion.

Assertion. The polynomial

N
P(t) :m]B(Ztﬂj) dz
J=1

depends only on "0, 12, for t € OV,
To prove the assertion first note that P € H,, and without loss of
generality we can assume that m > G.

Take t € RY and let U be an orthogonal transformation on RY,
Then

P(UY) = fB(Ut,a:)mdx = /B(t,U*x)md:c - fB(t,U*x)md(U*m) — P(t)

where (,) is the usual euclidean inner product, and U* is the adjoint of
U with respect to ( ).

Then P(t) = C = const on the n-dimensional sphere S“ -1 App}ymg .

Nullstellensatz again we obtain T

N

Py-c=(Se-Newm, %

7=l

where ¢} is some polynomial. But P(0) = 0, so C' = Q{0) and hence
(th) (1),

where R is relatively prime to ( f‘_r__l t?)
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But R is constant on SV~1, so repeating the above argument we
conclude that R(t) must be a constant. This proves our Assertion and
hence the theorem.

Let as above

N .2
[

Q={zeR": E:jgl,a1>ag>...>a;\r>0}
=1 %

and dy
=C '[ , T E RN Q
uq(z) N . (o —y V-2 \
be the exterior potential of 2.
Corolléry 18.2 Forz e RV \ Q
du(y)
up{z)=C Ty P2
where
N N—1 1/ S T
apy = 2(TLa) ( T(a2-ak)) (1= =) le
pma ] j:l =1 3 N
(dy' is Lebesgue measure on {yn = 0}).
Proor: We have by MacLaurin’s theorem
H_;n la’.':‘ ]
= v(y)dy,
ualz) = _Q'N H; Li(a j.}_)\)z/z £ )

where we set v(y) := T;%?Lm Now

N

gel G;j f d -
Hf?){_wl(a? + )\)1/2 o, v(y)dy
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N
Hjﬂl &

HJN:E(Q? + )\)1/2 ( /S"l,\(v(y) - v('y', 0))dy + /ﬂ;\ v(y', U)dy) .

We can apply Fubini’s theorem to each of these integrals, and letting

N-1 2

Y 1/2
)= (-3 o) ek N
Ju=l

we obtain

: HI'\;I @j
ug({z) = lim 9= 7Y [ 2w ) A1y
() Ar—a?, Hﬁl(a? 4+ )\)1/2( =0} o(y’, ) ANy )dy +

Ay
+ /ﬂm{wzo} / " (o) - oy, 0)) dyw dy'). (13.3)

~Axly")
Now, observing that

| ofy) ~ oy, 0) |< max || Vo || (af + 1),

we obtain from {13.3) that

ug(z) = Hm nﬁ;l %
V2, T (a2 4 W

20(y/,0)Ax(y )dy’
fgm{wo} o(y, 0)Ax(y)dy

or, applying Lebesgue’s dominated convergence theorem,

T3 a5 N3y i
wol{z) =2 2 ] 1 - J ' 0)dy
(z) H?;}l(a?—a}qv)m E( J_; a'?-l-)\) o(y, )dy

and the corollary follows.

Remark 13.2 For N = 3, with a little bit more care, the argument
implies the statements made in the introduction concerning oblate and
prolate spheroids in examples 1.1 and 1.2.
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Gince the density of the distribution dp is real analytic in the interior
of E we note the following corollary:

Corollary 13.3 The potential ug(z) extends as a (multivalued) har-
monic function into RY\ BE.

Since inside © the Schwarz potential of the boundary T of § satisfies

ur(s) = N(ua(@) ~ i) + 5 | = P

where ji{z) = C ]M,we have
pla) = ON [ Ta Ty 72

Corollary 18.4 The Schwarz potential up of 0% extends harmonically
inside Q\ OF.

The following quadrature identity is worth mentioning.

Example 13.1 Let Q= {z € R3: 2%+ 2% <1}, Then for all harmonic
functions u integrable in £ the following quadrature formula holds

/nu(m)d:ﬂ =7 /%O w(z1,0,0)dzy. (134)

Indeed, it is easy to see that the restriction of all such u on the
z-axis are integrable so the right-hand side of (13.4) is well defined.

Now applying Corollary 13.2 adopted to the family of prolate ellip-
soids

ﬂ’% 2 2
an a§+w2+$3§ 1}a
we have
f u(z)de = lim u{z)dz
e} o300 Qa

aZ-1}H12

w1

. 2 1y-3/2 2 1 p2
lim ma(a® — 1) [_{a%l)mu(ml,ﬂ,ﬂ)(a 1~ z7)dzy.

a oG

il
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Since a{a® — 1)"%%(a? —~ 1 — 23) tends to 1 as @ — oo, Lebesgue’s
‘dominated convergence theorem yields (13.4).

%

Notation. Set g,(5)(z} := Eff:l Eﬁ-ﬁi - 1.
3
The proof of MacLaurin’s theorem yields the following

Corollary 13.5 For anym € N and any, say, entire harmonic function
u the following "mean value property” holds

1
N /Sh Giny(z)ul(z)de = const. (13.5)

2
for all X > —a¥%,.
In particular, arguing as before, we obtain another corollary.

Corollary 13.6 The exterior potential ug gn with density p = ¢ ex-

tends harmonically to RY \ E, and moreover, as o multivalued function
to RV \ AF.

PROOF OF COROLLARY 13.5: Set b; = (a? + A}'/%. As in the proof of
Theorem 13.1, by changing variables Tjo=aiy,T; = by, 7=1,...,N

we reduce the statement to showing that ’

N
Lyl -om(Lagw) ay= [or ~1)m(§_gjbjijj)’“dy

i=1

for all £ € T'o (the isotropic cone) and all k (B is the unit ball in RV ).
Or, equivalently, recalling that

N

>~ {(a38) - (465 = o,

i=1
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we have to show that
. N k
Pe)= [yl - (L tw) d
je=1

depends on Z?;i t2 only. But since (| y {? 1) is invariant under rota-
tions, we can extend word for word the argument used in proving the
last assertion in the proof of Theorem 13.1.

Remark 13.3 In fact we can replace the density qZ}A}(m) by fogun(z)
where f is a more or less arbitrary analytic function of one variable. In
particular, m in {13.5) need not be an integer.

Notes

Theorem 13.1 goes back to MacLaurin who considered prolate spheroids.
The general case was treated later by Lapiace {cf. [Ma] and the discus-
sion therein). The proof presented here is from [KS1]. A proof of the
Asgeirsson theorem and the derivation of Theorem 13.1 from it can be
found in [CH, vol. II]. Fischer’s product and its applications to partial
differential operators with constant coefficients appeared in his seminal
paper [Fi]. The reader is also referred to [NS1, N52] for more applica-
tions and other developments. Coroilaries 13.2, 13.3, 13.4 and Example
13.1 are taken from [KS1].



Chapter 14
Potential Theory on Elli;é»soids {continued)

We keep the same notation as in Chapter 13. Our first theorem and

the following corollary extend Corollary 13.6 to the case of an arbitrary .

polynomial density.

Theorem 14.1 Let p be a polynomial. Then the polential

up nlz) = CNLTX%@ (14.1)

extends harmonically across T 1= 8§ into Q\ E.

ProoF: Observe that in view of Corollary 13.6 the theorem follows
inmediately from the following two lemmas.

Lemma 14.1 Let Q denote the linear space generated by

{Z 2. Aaa"’qg“”j} ,

=0 i@iim—zj =0

where

m
, 9 m EVETE
m =

mzi_l.’ ™ odd
3 .
(ga =3 = —'1}. Then
E

Q = P := {all polynomials in Nvariables }.
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Lemma 14.2 Foranym e N, a:|aj <m, ¥y eRV\Q

Lajqﬁy)lw Ny = 0 fﬂ g (w)le —y*Ndy.

ProoF ofF LEMMA 14.1: The proof is by induction. Obviously Po € (.
Assume that Pi C . We want to show: z;2%, |a| = k, j = 1,...,N
are all in Q. Without loss of generality we may assume 7 = 1. By the
induction hypothesis we have

k.;
ﬂ?gwa = 3712( Z Ajaaqkmj(m))

i=0 \|o|<k—2j

i

k}
Z( > A;iml@”qk_j(’ﬂ))-

§=0 \|elgh-2i

So we only have to check that 2 d2¢*=3 € Q. First note that for
a = (oq,...,00) With oy = 0 there is nothing to prove. Hence, assume
oy > 1. Set f={oy+1,e,...,an)and o= (g — 1,a0,...,0N)-
Now
o= kg _ CL% 8{5 k417 8 k—j
21 0% = s T 0 - 07 .

Tndeed, if we write a = (a1,0,...,0) + o/, we have

o

Ly k+1-7 8&‘ 80:1—1 kwj+;c 8 k—j
shrion e { (q)l 101¢"")}

= 3""{3“1“2(%{?'“”5‘ +2:07¢"7)}

= @ 8¢+ 0%,

ProoF OF LEMMA 14.2: For m = 0 or & = 0, there is nothing to
prove. So, let m > 0. Fix o : |af < m with, say, a3 > 0. Let ¢ =
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(g — 1,@3,...,an). Note that 87¢™ = 0 on I' := 0. Therefore,
integration by parts yields

[ o5 @) oy = [ o0 (@70 () e~ o Ny
= [0 W) e -y ¥y = [ (@ @)l - Py
L Q

= [@ gz~ by = 0, @ a™e - yiay

Tterating this argument we move the differential operator 6 outside
the integral. This completes the proof of Lemma 14.2 and, hence, of
Theorem 14.1.

From Theorem 14.1 and Corollaries 13.5 and 13.6 it follows

Corollary 14.1 The exterior polential (14.1) with a polynomial density
can be represented as o finite linear combination of potentials of masses
supported on the focal ellipsoid

-1 22
E::{xeRN:xNzO,Zazjz——lg{]}
i

;TN

with real-analytic densities and their derivatives. In particular, all such
potentials u, o extend as (multi-valued) harmonic functions to RV\OE.

The Standard Single Layer Potential

In general, if I" is a compact, smooth, real hypersurface a single layer
potential with density p is defined by

(E) '““CNf |:U p(yi?’\f 2

Potential Theory on Ellipsoids (continued)

where dSy is Lebesgue measure on I
Clearly, u is harmonic in RV \ T and contiruous in R"Y. Consider the
homothetic ellipsoids I, defined by '

N .2
Te::{wERN:ZW%:1+5}.
. 1 %

Let Q. be the “cavity” between I' and I';.. Take the potential u.(x)
of the uniform distribution on . with density 1/g, then letting £ — 0
we obtain

w
gt L) — = -——-—-—-—--d ,
ue{z) — u(z) CN]F P Sy

where u(z) is a single layer potential on I' with density w = We

shall call u(2) the standard single layer potential

1
!V‘Iai ’

Theorem 14.2 Let p be a polynomial of degree m. Then, the potehtial

w(z) = up(z) = cN/

~——————dA

Pz —ylV? 2

equals o harmonic polynomial of degree < m inside .

Corollary 14.2 Lett > 1, Q:= t 2\ © be an ellipsoidal cavity and let
p be as above. Then, the volume potential with density p

. P
up’g(w) tem CN/Ei m-~—~———!$ -~ y]Nwzdy

equals a harmonic polynomial of degree < m inside Q. In particular, for
p = const, u_x(z) = const in @, i€, Vuy,q = 0 and we obtain the

theorem of Newton (ef. [Ke]): there is no attraction inside the ellipsoidal
cavity.

Proor or CoroLLARY 14.2: In view of Theorem 14.2 and Fubini’s
theorem we have for z € ©

upﬁ(m) = N f; dT{f?T -l—a—:-:%_?dsf(y)} = /lt ( Z aa{T) mo‘) dr

lodsm
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which is a polynomial of degree < m.

ProoF oF TEEOREM 14.2: Fix 2% € Q and a line [ through 20, Let
INT = {z1,29}. Take an infinitesimal circular cone of solid angle df
with vertex z® and axis [. It cuts T at two infinitesimal pieces Sy, Sz
and we are going to calculate the attraction at 20 by S1, S2. Fach piece

5. attracts z° with the force
mi .
fi = TF‘?-ZL, = 1)2a (142)

2

where r; are distances from S; to zg (along 1},

p(mi)dA%' (14 3)
my = T .
ivqa(mi)i
are the masses of §; and finally, the areas dA; of §; equal
2
A= e, (14.4)
cos,Bi

where f; is the angle between the positive direction of | {choose it to
be m) and the outer normal to [' at 2. Let t denote the parameter
along line . Without ambiguity we denote the restricsion of g, on [ by
ge(t). Then (t; denotes the value of the parameter corresponding o the
point z;, 1=1,2), we have

dga

b = di&(a;g)l cos J;. (14.5)

Combining (14.2-5) and dividing by d@ we see that the attraction at
20 by the infinitesimal elements S, i=1,2 along line [ equals

~ pt) 14.6
Z;q;(ti)' (145)

Now consider the imbedding of [ into a complex line L, i.e. simply
allow the parameter ¢ to take on complex values. Then (14.6) is nothing
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else but

Zres 2(t) ) (14.7)
(1)

the sum of the residues of the rational function p/g, on L. Expression

(14.6) depends or point 29 and a complex line L as parameters. Since

calculating (14.7) reduces to a contour integral, we can interchange the

differentiation of (14.6) with respect to z® and the operation of summing

up the residues. Hence for any multi-index o we have

2 (Zres i‘lL) =3 (res o iib) :

For e : |a| > m = degree of p, we observe that rational functions

% (p/a) L are holomorphic at infinity and hiave 9,2€10 of order at least
i B ST : e kA
two there, i.e. - __““9 o &

[

o (20N wofliY. | -
s (%IL> 0(t9>’ t -+ ooin L.

Now moving the contour of integration when calculating (14.7) to o
we obtain that for all a: laj > m

r‘\ C e

A - % [Zres (ilbﬂ = 0. (14.8)

Therefore, all derivatives of order > m of the attraction exhibited
on z° by infinitesimal elements of {1 T vanish. Summing (14.8) over all
lines I (or, strictly speaking, integrating (14.8) over RPN 1) we conclude
that all derivatives of order a : |a} > m of the attractive force Vu,(z%)

vanish. Hence, up(z) is a polynomial of degree < m. The proof is now
complete,

Remark 14.1 Tn order to extend the above argument to a more general
setting let us introduce the following definition.

109
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Definition 14.1 Let T = {z € RY : plz)=0,p € ’P_k? wrec?uczbll;z
be o smooth real algebraic surface of degree Ig. A domaz:r? 0 is ca le
a domain of hyperbolicity for T if for any z° € Q any line | passing
through z° intersects I' at precisely k points.

For example, the interior of an ellipsoid is & dom‘a,in of hyp‘erbohc%ty.
More generally, if a hypersurface of degre.e 2k consmfcs of an m;rela.,sx‘lilg
family of k ovaloids then the smallest one is the domain of hyper ob 1(;1 y.

The standard single layer density on T is defined exactly as beiore
with one distinction, the sign + or — is assigned on eac'h conne:‘;te.:d c’om’-’
ponent of I' depending whether the number of ‘opstrucm(?ns for v1evw§§g
this component from the domain of hyperbolicity of 1"" is even orﬁ) L

Then the above proof extends word for word to yield the following

theorem:

Theorem 14.3 Let T = {z € RV o(e)=0,¢ E'l?k} be an algebraic
surface of degree k and Q0 its domain of hyperbolicity. Then for any
polynomial p € P the potential of the polynomial layer pw

w

up() 1= CN/? E Wpyl

where w is the standard single layer density equals @ harmonic polynctu
mial of degree <m-k+2 inside Q. So, in particular, for m<k-2 there 1s
no attraction inside the domain of hyperbolicity.

vz 45(y),

Corollary 14.3 If Q is an ellipsoid and p € P then inside Q0 the
volume potential o0)

— dy
Up, 1 CNL iz _lewz

is a polynomial of degree < m+2.

N . s %
ProoF 0F COROLLARY 14.3: For ¢ > 1,let Q= {z e R : ) «(;é— <
{?} denote the ellipsoid homothetic with €. Without loss of generality
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we can assume p to be homogeneus, i.e. p € H,. Fix 2 € Q. Using
homogeneity and a simple change of variables we calculate

Up, () 1= CN/ —————‘?@“dy ="y, q (—?) . (14.9)

Qe 133 W le_2

By Coroliary 14.2 the potential of the cavity Q; \  inside £,

Up, 2, (T) — Up,a(2) =: hm(z) € P, (14.10)

is a harmonic polynomial. For any o : |a| = m + 2 using (14.9-10) we
obtain

0ty 0.(2) = 07 [™ 0 (7)] = 7uma (§) = 0705,0(0),

i.e. all such 0%u, o are homogeneus and of degree 0 in Q. Also, for any
o : lal > m we have, since deg p = m,

A(0%upn(z)) = 0% (Aup,alz)) = 8%(—p) = 0.

Thus for all o : |a| = m + 2, 6%, o(z) are harmonic and homeo-
geneus of degree 0. Hence, all 0%u, q(z) are constants for o @ |a| = m+-2
and the Corollary follows.

Remark 14.2 (i) In particular, the potential of the uniform density is
a guadratic polynomial inside the ellipsoid. This is an old theorem of
Newton (cf. [Ke],[Ma]).

(1i) It turns out that even a partial converse to Corollary 14.3 is also
true. Namely, if a potential of the uniform density in a solid K equals a
guadratic polynomial inside K, & must be an ellipsoid. In dimensions 2
and 3 this was proved respectively by Holder [Hol] and, independently,
by Dive and Niklibore [Di],[Nil. In full generality the result has been
obtained by DiBenedetto and Friedman [DF)].

By translation and rotation one easily sees that the potential ug(z)
can be written as ug(z) := B — 3 Ajz? inside ellipsoid {2, where
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B >.0,4; > 0, Z‘;\r Aj = % The main difficulty in proving the
DiBenedetto-Friedman theorem is to show that in fact every such poly-
nomial represents an interior potential of some ellipsoid. Recently a
simple proof of the latter assertion was obtained by L.Karp [Ka] by
making use of L.Brouwer’s domain invariance theorem. Assuming this,
the following beautiful argument of Dive finishes the proof. Namely,
find an ellipsoid © whose interior potential is the same quadratic poly-
nomial. By Corollary 14.2 all ellipsoids homothetic with , have interior
potentials equal B’ — Z{\r Ajm? with a different constant term, but the
same coefficients A4;. Let 19 := inf{t : & D K}. Then there exists
29 € 80 such that 2® 3 8K and Qp and K have a common sup-
porting plane H at 2%, The potential of the shell between Q0 and K
(i.e., Qo \ K) is constant inside K. Thus the attractive force vanishes
identically inside K. In particular, the attraction in the direction of
the norma) to H at z° vanishes. This leads to an obvious contradiction
unless Volume(§2e \ K) = 0, 1.e. Qp = K.

(iii) It is easy to compute an equilibrium potential of an ellipsoid .
Recall (cf. [Ke]) that V{(z) is called an equilibrium potential of a total
charge o on T 1= 00 if

V(z):= CNLF%CIA(?)

where p(y) is the density function, so that V{z) = 1 inside  and

llim 2" 2 V(z) = o

|z| o0

Then we have (as above, the volume potential ugl(z) = B~ Ay ok
inside Q).

- B
Corollary 14.4 he AN T

N -
V(z) = 5% (@;(az) - }:mjg%(m)) , (14.11)
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where (¢f. Corollary 13.2) E is the focal ellipsoid,
' - du(y’)
)= cN/ Y s
(@) E |z —yN-2

and

N . N— 1/2
dp(y’) = 2 B 172 (Z - zl 2 4 ) dy|g
- (a2 - a}) oo

In particular, the equilibrium potential extends harmonically to RV \ O F.

PrROOF: The tight side of (14.11) is harmonic in RV \ @, vanishes at co
and since the exterior potential ug{z) equals (Corollaries 14.3 and 13.2)
BN 4 z? inside 1, and Ji(z) outside 2 (and is C*-smooth in RY )
we obtain that it equals I on I' := 00, Hence, it must coincide with the;
equilibrinm potential V{x) outside Q.

Remark in passing that the classical theorem of Ivory (cf..e.g., [Ma])

states that moreover, the equipotential surfaces of V are precisely ellip-
soids confocal with I := 9%,

Finailly, we are ready to prove the Schwarz Potential Conjecture with
polynomial data on ellipsoidal surfaces.

Corollary 14.5 All solutions v of Cauchy problems

Au =0,
w=ponl,

where data p is a polynomial extend harmonically to RV \ OE.

Proor: Consider the potential

(=Ap)(w)

o(z) = ey .
) o |z —y|V?

By Corollary 14.3 v(z)lg = p + h, where h is a harmonic polynomial
and deg(h)< deg(p). Also, Theorem 14.1 implies that v(z) extends
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harmonically to RY \ §E. Call this extension v;(z). But on I" := 8Q we
have:

vEp=Ev—h=uv —h

Hence v := vy — h provides the desired extension.

Notes |

Lemmas 14.1 and 14.2 are from Shahgholian’s paper [Sha], as well as
Theorem 14.1. However, from there he follows a different route to Corol-
laries 14.3 and 14.5 elaborating on a beautiful idea of Dirichlet. Theorem
14.2 is due to Ferrers [Fe] for dimension N = 3. The elegant proof here
and, what is more importart, the far reaching extension (Theorem 14.3)
are due to A.Giventa) [Gi]. Yet the crucial step of introducing the notion
of a domain of hyperbolicity (Definition 14.1) is due to Arnold [Ar] as
well as the partial case (although, by a different argument) of Theorem
14.3 when m < k — 2 which is a direct extension of Newton’s theorem
{cf. Corollary 14.2). For further interesting developments we refer the
reader to a paper by B. Shapiro and A.Vainstein [SV]. Corollary 14.3 is
also due to Ferrers [Fe] in case N = 3, although his proof based on heavy
computations with ellipsoidal harmonics is hardly extendible to higher
dimensions. Corollary 14.4 has been observed in [KS1]. Far reaching
generalizations of Corollary 14.5 with arbitrary entire data and for more
general differential operators with lower order terms have been obtained
by G.Johnsson [Jo] and, independently and by different methods, by
V.Shatalov and B.Sternin [SS].

References

[Ar]

[ACL)

Arnold,V.1., Magnetic analogs of the theorems of Newton and
Ivory, Uspekhi Mat. Nauk, 38, No.5 (1984), 253-254, (in Rus-
sian).

Aronszajn, N., Creese, Th. and Lipkin, L., Polyhar-
monic Functions, Oxford Mathematical Monographs, Claren-
don Press, Oxford, 1983

Avanissian, V., Celiule d’Harmonicité et Prolongement An-
alytiqgue Complere, Hermann, Paris, 1985,

Bony, J. M. and Schapira, P., Fristence et prolongement
des solutions holomorphes des équations aux dérivées partielles,
Invent. Math. 17 (1972}, 95-105.

Courant, R. and Hilbert D., Methods of Mathematical
Physics, vol. H, Interscience, 1962,

Davis, Ph., The Schwarz Function and s Applications, Carus
Mathematical Morographs No. 17, MAA, 1974.

DiBenedetto, E. and Friedman, A., Bubble growth in
porous media, Indiana Univ. Math.J., 35 (1986), 573-606.

Dive, P., Attraction des ellipsoides homogénes et réciprogue
d’un théoréme de Newton, Bull. Soc. Math. de France 59
(1931}, 128-140.

Ebenfelt, P. and Khavinson, D., On point to point reflec-
tion of harmonic functions across real-anclytic hypersurfuces
in B, J. d’Analyse Math., to appear.

Ferrers, ML.N., On the potentials of ellipsoids, ellipsoidal
shells, Quart. J. Pure and Appl. Math., 14 {1877), 1-22.

115



116

[¥i]

(G1]

[H3])

D.Khavinson

Fischer, E., Uber die Dzﬁemntidtz’onspmzesse der Algebra, J.
fir Math. 148 (1917), 1-17.

Garabedian, P., Partial differential equations with more than

two independent variables in complez domain, J. Math. Mech.
9 (1960}, 241-271.

Garabedian, P., Lectures on function theory and PDE, Rice
University Studies, vol, 49, no. 4, 1963.

Garabedian, P., Partial Differential Equations, Wiley, 1964.

Gilbert, R.P., Function Theoretic Methods in Partial Differ-
entiel Eguations, Academic Press, New York, 1969,

Givental, A.B., Polynomiality of elecirostatic potentials, Us.
pekhi Mat. Nauk, 39, No.5 (1984), 253-254, (in Russian).

Hadamard, J., Lectures on Cauchy’s Problem in Linear Par-

tial Differential Equations, Yale University Press, New Haven
(1923).

Hayman, W.K., Power series expansions for harmonic fune-
tions, Bull. London Math. Soc. 2 (1970}, 152-158.

Henrici, P., 4 survey of I. N. Vekua’s theory of elliptic par-
tial differential equations with analytic coefficients, 7. Angew.
Math. Phys. 8 (1957), 169-203.

Herglotz, G., Jber die analytische Fortsetzung des Potentials
ins Innere der anziehenden Massen, Preisschr. der Jablonowski
Gesellschaft 4 ( 1914), zu Leipzig, 56pp. Gesammelte Schriften,
Vanderhoeck & Ruprecht, Géttingen, 1979, pp. 288-355.

Hoélder, E., Uber eine polentialtheoritische Eigenschaft der
Ellipse, Math. Zeitschrift, Band 35 (1932), 632-643.

[Hol

{Hor1)

[Hor2]

[J1]

[72]

[Jo]

[Khi]

References 117

Holmgren, E., Uber Systeme von linearen partiellen D%ﬁerw
entialgleichungen, Oversigt af Kongl Vetenskaps-Akad Forth,
58 (1901), 91-103.

Hormander, L., The Analysis of Lineor Pertial Differen-
tial Operators, Vol. I, Springer Verlag, Berlin-Heldelberg- New
York, 1983,

Hormander, L., The Analysis of Linear Pariial Differential
Operators, Vol. 1I, Springer Verlag, Berlin-Heidelberg- New

York, 1983.

Ince, E. L., Ordinary Differential Fguations, Longman, Grenn
& Co., London-New York-Toronto, 1927,

John, F., On linear differential equations with analytic coeffi-
cients. Unique continuation of date, Comm. Pure Appl. Math.
2 (1949), 209-253.

John, F., Partial Differential FEguations, Springer Verlag,
Berlin - Heidelberg - New York, 1975.

Johnsson, G., The Cauchy problem in C* for second-order
PDE with datg on a quadric surface, Trans. Amer. Math. Soc.,
344 (1994), 1-48. :

Karp,L., On the Newtonian potential of ellipsoids, Complex
Variables, 25 (1994}, 367-372

Kellogg, O., Foundations of Potential Theory, Ungar, 4th
printing, New York, 1970. :

Khavinson, D., Singularities of harmonic functions in C7,
Proc. Symp. Pure and Appl. Math., Vol. 52 (1991), Paxrt. 3,
207-217.



118

[Kh2]

IKh3]

[KS1]

[KS2]

[KS3]

[KS4]

[KS5]

D.Khavinson

Khavinson, D., On reflection of harmonic functions in sur-
Jaces of revolution, Complex Variables 17 (1991}, 7-14.

D. Khavinson,Cauchy’s problem for harmonic functions with
entire data on a sphere, Bull. Can. Math. Soc., to appear.

" Khavinson, D). and Shapiro, H. S., The Schwarz Potential

in R™ and Cauchy’s Problem for the Laplace Equation, TRITA-
MAT-1989-36, Royal Institute of Technology, Stockholm, 1989,
112 pp.

Khavinson, D. and Shapiro, H. S., The Vekua hull of a
plane domain, Complex Variables 14 (1990), 117-128.

Khavinson, D. and Shapiro, H. S., Reﬁmrks on the reflec-
tion principle for harmonic functions, J. ’Analyse Math., 54
(1991), 60-76.

D. Khavinson and H. S. Shapiro , Dirichlet’s problem when
the date is an entire function , Bull. London Math. Soc. 24
(1992), 456-488.

Khavinson, D. and Shapiro, H. S., The heat equation and
analytic continuation: Ivar Fredholm’s first paper, Expo. Math.
12 (1994), 79-95.

Kiselman, C.O., Prolongment des solutions d’une equation
auz dérivées partielles ¢ coefficients constants, Bull. Soc. Math.
France 97 (1969}, 329-356.

Kovalevskaya, 8., Zur Theorie der partiellen Differentialgle-
ichungen, J. Reine und Angew. Math., vol. 80 (1875}, 1-32.

J. Leray, Uniformz'sation de la solution des probléme lineaire
analytique de Cuuchy, prés de lo variélé qui porte les données
de Cauchy, Bull. Soc. Math. France 85 (1957), 389-429.

[Sa]

[588]

[Sha)

Sh1}

References 119

Lewy, H., On the reflection laws of second order differential

equations in two independent variables, Bull. Amer. Math. Soc.,
65 (1959), 37-58.

MacMillan, W. D., The Theory of the Potential, Dover Pub-
lications Inc., New York, 1958,

Nadirashvili, N., Oral Communication.

Newman, D. J. and Shapiro, H. S., 4 Hilbert Space
of Entire Functions Related to the Operational Caleulus,
mimeographed notes, Ann Arbor MI, 1964.

Newmaxn, D. J. and Shapiro, H. S., Fischer Spaces of
Entire Functions, Proc. Sympos. Pure Math. II, Amer. Math.
Soc., Providence RI, (1968), 360-369.

Niklibore, W., Eine Bemerkung tber die Volumpotentiale,
Math. Zeitschrift, Band 35 (1932), 625-631.

Petrovsky, I. G., Lectures on Partial Differential Fquations,
Moscow-Leningrad, 1950, {in Russian).

Rudin, W., Functional Analysis, McGraw-Hill, New York,
1973.

Sakai, M., Quadrature Domains, Lectures Notes in Math.,

934, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

Savina, T. V., Sternin, B. Yu. and Shatalov, V. E., On
a reflection formula for the Helmholtz equation, Radiotechnika
i Electronica (1993), 229-240 (in Russian).

Shahgholian, H., On Newionian potential of o heterogeneous
ellipsoid, SIAM J. Math. Anal. 22 {1991), 1246-1255.

Shapire, H. S., The Schwarz Function and its Generalization
to Higher Dimensions, Wiley, New York, 1992.



120

1Sh2)

[SV]

Index

Shapiro, H. S,, Uﬁbounded quadrature domains, Lecture
Notes Math., 1275, Springer-Verlag, New York, (1987), 287
331.

Shapiro, B.Z. and Vainstein, A.D., Higher dimensional
analogs of the theorems of Newton and Ivory, Funkts. Anal. i
Priloz., Vol.19, No.1 (1985), 20-24 (in Russian}).

Shatalov, V. E. and Sternin, B. Yu., Differential Equa-
tions on Complex Manifolds, Kluwer, 1994.

Study, E., Einige elementare Bemerkungen iiber den Prozess
der analytischen Fortzetsung, Math. Ann., 63 (1907), 239-245.

Vekua, I. N., New methods for Solving Elliptic Equations,
North-Holland Series in Applied Mathematics and Mechanics
No. 1, North-Holland Publ. Co., Amsterdamm, 1967 (translated
from Russian).

Zerner, M., Domaine d’holomorphie des fonctions vérifiant
une équation auz dérivées partielles, C. R. Acad. Sci. Paris
272 {1971), 1646-1648.

Index

A

adjoint operator 22, 23, 35
analytic arc 49

analytic curve 48

Asgeirsson theorem 95
axially symmetric surface 66

B

Bessel function 35, 57

Bony-Schapira theorem 37, 40,
42,44, 75, 81

C
Cauchy-Hadamard estimate 86
Cauchy-Kovalevskaya theorem 6,
12, 14, 15, 17, 18, 19,
24, 31, 34, 74
Cauchy problem 3, 8, 13, 15, 17,
18, 24, 31, 46, 48
- for Laplace operator 3
- for linear differential equa-
tions 3
characteristic 24
characteristic form of a differen-
tial operator 18
characteristic point 19, 46
Chebyshev’s inequality 90
complex hyperplane 28
confocal family 94
conformally symmetric 48

121

continuity method 26

D

Delassus-Le Roux theorem 31, 36
differensial operator 28

Dirichlet problem 91

domain of holomorphy 30
domain of hyperbolicity 110

E
ellipsoid 1, 94

focal - 94, 106, 113
ellipsoidal cavity 107
existence theorem for ODE 22

F
Fischer inner product 96

G

globalizing family 32-34, 39, 43,
48

globalizing principle 33, 44

Goursat Problem 15, 34, b5

H

Hy 84

Hp, 96

harmonicity hull 44

heat equation 16, 18, 19, 35, 36

Helmholtz equation 54, 61

Helmholtz operator 35, 59

Herglotz’ theorem 77

Holmgren’s theorem 20, 21, 26,
27, 40

holomorphic function 5



122

homothetic ellipsoids 107

I

involution 50

isotropic cone 30, 33, 60, 63, 71,
92, 96

K
Kelvin reflection 67
Kovalevskaya’s theorem 52, 77

L

Laplace equation 33
Laplace operator 18
Laplacian 54

Lie ball 42, 43, 45, 48

M.

MacLaurin's theorem 95, 96, 99,
102

mean value property 1

Morera’s theorem 20, 52

multi-index 4

N

non-characteristic 18, 27

non-singular analytic hypersur-
face 16

Nuilstellensatz 97, 98

O
oblate spheroids 160

P
P, 84

Index
P 104
polar singularity 63, 65
polydisk 5

polydisk norm 5

potential 1, 76
equilibriuvm - 112
exterior - 99, 102, 106
interior - 112

prolate spheroids 100

Q

quadrature domain 78
quadrature identity 101

R

real hyperplane 28

reflection law 54, 58-60, 62, 63,
65

reflection principle 49, 62

Riemann’s formula 74

Riemann function 15, 19, 34, 55,
56, 59

Riemann’s lemma 55

Riemann mapping theorem 46

S

Schwarz function 49, 53, 60, 66,
75, 77,78 .

Schwarz potential 79, 83, 101

Schwarz potential conjecture 79-
82

- for polynomial data 86, 113

Schwarz’ Reflection Principle 2,

5, 50-52, 69

Index

single layer potential 107

standard single layer potential 106,
107, 110

Study change of variables 59

Study relation 62, 63, 67, 71, 73

strong - 72, 73

Study’s interpretation of the re-
flection principle 52, 53,
61

symmetric with respect to the
curve b3

T

theorem of Ivery 113

theorem of Newton 107, 111, 114,
115

A%
Vekua theory 42, 48
Vekua hull 44, 45, 47, 48

W

wave equation 52

wave operator 54

Weierstrass approximation theo-
Tem 58

Weierstrass’ preparation theorem
79

Weyl’s lemma 65

Z

Zerner’s theorem 28, 29, 31, 34,
36, 40, 44

Zerner characteristic 28-32

123



