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We consider the Dirichlet problem for the Laplace operator with rational data on the boundary
of a planar domain. Our main results include a characterization of the disk as the only domain
for which all solutions are rational, and a characterization of the simply connected quadrature
domains as the only ones for which all solutions are algebraic of a certain type. This note is an
exposition, and full details will appear in a forthcoming paper.
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This is an exposition of the authors’ work on the Dirichlet problem in the plane with
rational boundary data. In the present note, we report our main results and give only an
indication of the ideas involved in their proofs. Full details will appear in the forth-
coming paper [1].

Let � be a bounded domain in the plane R2 and assume that @�, the boundary of �,
consists of finitely many non-intersecting Jordan curves. We shall consider the Dirichlet
problem

�u ¼ 0, in �
u ¼ v on @�,

�
ð1Þ

where v 2 Cð@�Þ (and C(A) denotes the space of continuous functions on a topological
space A). It is, of course, well known that this Dirichlet problem has a unique solution u
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in Cð ��Þ. The case where the data function v is the restriction of a polynomial in x and y
is an important special case, since, by the Stone–Weierstrass theorem and the maximum
principle, any solution of (1) with continuous data can be approximated uniformly on ��
by solutions with boundary data that are restrictions of such polynomials. Now, if � is
a disk, or more generally the interior of an ellipse, then the latter solutions are polyno-
mials themselves (the corresponding statement holds even in higher dimensions; see e.g.,
[2]). It was conjectured in [3] that this property characterizes the ellipses. This conjecture
was recently proved by Render (also in higher dimensions; see [4]), under a mild addi-
tional assumption. In this note (with full details appearing in the article [1]), we consider
the more general situation where the data function v is the restriction to @� of a rational
function R(x, y) whose polar variety does not meet @�.

If the boundary of � is real-analytic, then the solution of (1), with a restricted
rational function (without poles on @�) as data, extends harmonically to a larger
domain. We are interested in characterizing those domains � for which this harmonic
extension encounters only ‘‘mild’’ singularities. For instance, if � is a disk, then the
solution itself is rational and extends to the Riemann sphere with only a finite set of
poles (see subsequently). One of our main results in [1] is that this property characterizes
the disk (with a vengeance; see Theorem 1). We also show that if all solutions are alge-
braic (and hence extend as multi-valued functions to the Riemann sphere minus a finite
set of points at which only algebraic singularities are encountered), then � is simply
connected and a Riemann map to the unit disk is algebraic (Theorem 4). We further
characterize those simply connected domains with algebraic Riemann maps for which
all solutions are algebraic with singularities that are controlled by those of the
Riemann map (in a sense made precise subsequently; see Theorem 5).

We now proceed to formulate our results more precisely. Our first result, which was
alluded to above, is the following.

THEOREM 1 Let � be a bounded domain in R
2 whose boundary consists of finitely many

non-intersecting Jordan curves. The following are equivalent:

(i) � is a disk.
(ii) The solution u(x, y) of (1) is rational for every v 2 Cð@�Þ that is the restriction of a

rational function R(x, y) whose polar variety does not meet @�.

The implication (i)¼) (ii) is easy (see e.g. [5] for a proof; see also [6]). The opposite
implication follows from the more general result Theorem 2 subsequently. To state it
in a more convenient way, we shall identify R

2 with the complex plane C in the usual
way, i.e., via z ¼ xþ iy. By the relations 2x ¼ zþ �z and 2iy ¼ z� �z, any real-analytic
function v(x, y) can be expressed as a function vðz, �zÞ. We shall abuse the notation slightly
and write either v(x, y) or vðz, �zÞ (i.e., dropping the ~ ) for the same function v. Clearly,
v(x, y) is rational as a function of x and y if and only if vðz, �zÞ is rational as a function
of z and �z.

THEOREM 2 Let � be a bounded domain in C whose boundary consists of finitely many
non-intersecting Jordan curves and let a 2 �. Suppose that the solution uðz, �zÞ of (1) is
rational for every v 2 Cð@�Þ that is the restriction of Rðz, �zÞ, where Rðz, �zÞ ranges over
all polynomials of z and �z, and the single function

Rðz, �zÞ ¼
1

ðz� aÞ
: ð2Þ

Then, � is a disk.
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Remark 3 (a) Our proof of Theorem 2 actually shows that if �, in addition,
is assumed to be simply connected, then it suffices to let Rðz, �zÞ range over the four
functions z �z, z2 �z, z3 �z, and (2). The conclusion is again that � is a disk. (b) We would
also like to mention the paper [7], in which a problem similar to the one studied here
is considered. In [7], the Dirichlet problem (1) is considered for data functions v that
are holomorphic rational functions R(z), i.e., rational functions of z alone without
poles on the boundary @�. This is, of course, a smaller class of data functions than
that considered in the present article. The main result in [7], paralleling that given in
Theorems 1 and 2 earlier, is that all solutions of (1) with rational holomorphic data
are rational precisely when a Riemann map ’: � !D is rational. Thus, the class of
rational holomorphic data functions is not large enough to characterize the disk. In a
subsequent paper [8], the authors obtain a constructive algorithm for solving the
Dirichlet problem with rational holomorphic data in terms of a Riemann map to
the unit disk. (c) Finally, we point out that the solution of (1) with data v given by
the restriction of (2) is closely related to the Bergman kernel of the domain � (see [9]).

We also consider the case where the solutions uðz, �zÞ to (1) with rational data (in the
sense described by earlier Theorem 1) are only real-algebraic; i.e., uðz, �zÞ satisfies a poly-
nomial relation Pðz, �z, uðz, �zÞÞ ¼ 0, where Pðz,w, tÞ is a polynomial of three variables.
(Note that uðz, �zÞ is rational as a function of z and �z precisely when it is real-algebraic
and Pðz,w, tÞ has degree one in t. Also, note that a function uðz, �zÞ is real-algebraic if and
only if the polarized, or complexified, holomorphic function uðz, �Þ is algebraic). We
have the following result.

THEOREM 4 Let � be a bounded domain in C whose boundary consists of finitely many
non-intersecting Jordan curves, and let a 2 �. Suppose that the solution uðz, �zÞ of (1) is
real-algebraic for every v 2 Cð@�Þ that is the restriction of of Rðz, �zÞ, where Rðz, �zÞ
ranges over all polynomials of z and �z, and the single function (2). Then, � is simply con-
nected and every Riemann map ’ : � !D is algebraic.

We shall now describe the proof of Theorem 2. Suppose that a domain � satisfies the
hypothesis of Theorem 2. It follows that � must have a real algebraic boundary.
Indeed, the hypotheses yield that jzj2 may be decomposed as

jzj2 ¼ RðzÞ þ RðzÞ for z 2 b�,

where R(z) is rational with no poles on ��. This shows that the boundary of � is con-
tained in the real-algebraic curve defined by the zero set of jzj2 � 2ReRðzÞ.
Consequently, the Jordan curves that define the boundary of � are piecewise real
analytic. This boundary regularity allows us to see that the Bergman kernel K(z,w)
associated to � is equal to ð@=@zÞ of the harmonic extension of the rational function
which is the Cauchy kernel (see [10, p. 97] for the smooth case and [1] for the more
general case we need here). To be precise, let a 2 �, and let u denote the harmonic
extension to � of the boundary values of ð2�iÞ�1=ðz� aÞ. Then

Kðz, aÞ ¼ �2i
@

@z

� �
�u:
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Note that since the boundary values of u are rational, the hypotheses yield that u is
equal to R1ðzÞ þ R2ðzÞ where Rj are rational, j¼ 1, 2. Hence, it follows that the
Bergman kernel K(z, a) is rational in z for fixed a. The formula for K(z, a) can be differ-
entiated with respect to �a and the argument repeated to see that @=@ �að ÞKðz, aÞ is also
rational in z for fixed a. It was proved in [9] that the Bergman kernel K(z, a) cannot
be rational in z for each fixed a in a domain of connectivity bigger than one, and so
we may conclude that � is simply connected. Now, old formulas of Stefan Bergman
show that the Riemann map fa : � ! D1ð0Þ which maps a to the origin is given as
c1 þ c2QðzÞ where Q(z) is the quotient @=@ �aKðz, aÞ=Kðz, aÞ. Hence, fa is rational. (The
proof of this part given in [1] is longer, but more self-contained and straightforward.
It does not use results from [9].)

Thus, we may claim that � is simply connected and there is a rational mapping
h which maps � one-to-one onto the upper half plane.

The extended complex plane P (or complex projective plane or Riemann sphere) is
subdivided into regions G1,G2, . . . ,GN by the piecewise real-analytic curves that com-
prise h�1ðRÞ. Let G1 ¼ �. Think of the regions Gj as countries on a spherical planet
(with no lakes or oceans).

The mapping h is a proper holomorphic mapping of each domain Gj onto either the
upper or the lower half plane, and as such, is a finite-to-one branched covering map
between the two domains. A branch of h�1 can be defined by choosing either the
upper half plane or the lower half plane and thinking of h�1 as the continuation of a
local inverse of h, where h is viewed as a proper holomorphic mapping of one of the
Gj’s onto the half plane. Note that we may continue any branch of h�1 as a finite
valued holomorphic function with only finitely many algebraic singularities in the
half plane.

Let S(z) denote the Schwarz function for a smooth part of the boundary of � near a
point z0 2 b�. The anti-holomorphic Schwarz reflection function for the boundary of �
near z0 is given by

SðzÞ ¼ h�1ðhðzÞÞ,

where h�1 is holomorphic near hðz0Þ 2 R and is the inverse to h viewed as a one-to-one
map on a neighborhood of z0. This mapping, defined near a point z0 in a smooth part of
the boundary of �, analytically continues to all of Ĉ as an antiholomorphic algebraic
function.

The boundary data �zzn has a harmonic extension to � given by RnðzÞ þQnðzÞ where
Rn and Qn are rational functions of z with no poles on ��. (There are some minor details
to attend to in this statement which are addressed fully in [1].) The Schwarz function is
holomorphic on a neighborhood of b� near z0 and satisfies SðzÞ ¼ �z on b�. We may
insert this fact into the identity

�zzn ¼ RnðzÞ þQnðzÞ

and its conjugate

z �zn ¼ RnðzÞ þQnðzÞ,
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which hold on b�, to obtain the identities

SðzÞzn ¼ RnðzÞ þQnðSðzÞÞ, and

zSðzÞn ¼ RnðSðzÞÞ þQnðzÞ,

which hold for z 2 b�. Since the functions on both sides of these indentities are holo-
morphic on a neighborhood of the point z0 2 b�, the identities extend to hold on this
neighborhood, and they analytically continue to hold as we continue S(z) along any
curve.

Rewrite the last two formulas as

RnðzÞ ¼ SðzÞzn �QnðSðzÞÞ ð3Þ

QnðzÞ ¼ zSðzÞn � RnðSðzÞÞ: ð4Þ

These identities reveal how to analytically continue the functions Rn and Qn outside of
� ¼ G1. Indeed, continue to think of the Gj’s as countries on a globe, and think of a
curve � as being the path of an ‘‘explorer’’. As the curve � parametrized by z(t)
moves from � into a region Gj adjacent to �, the ‘‘shadow curve’’ � given by
ZðtÞ ¼ SðzðtÞÞ moves into G1. [To be more precise, Z(t) is produced by analytically con-
tinuing SðzÞ ¼ h�1ðhðzÞÞ along the trace of �, i.e., by analytically continuing h�1 along
the curve traced out by hðzðtÞÞ.] Since Rn and Qn have no poles in the closure of G1,
equations (3) and (4) reveal that the Rn and Qn may be continued along � into Gj

and the continuations of Rn and Qn have no poles in the closure of Gj either. (Note
that S(z) remains bounded because it is the conjugate of SðzÞ, which stays in the
bounded domain G1.) This process may be repeated. As we extend � into ‘‘new coun-
tries’’, the shadow curve is always in a country that has previously been explored
where Rn and Qn have already been seen to extend. One by one, we may extend �
into new countries, extending Rn and Qn as we go. As long as the point at infinity is
not in the new country, equations (3) and (4) reveal that the extensions do not have
poles in the new country.

We may categorize the countries on the planet into which we extend � as follows.
G1 is the ‘‘level one’’ country. Next, G1 together with all adjacent countries is level 2.
The next level is obtained from the previous level by adding to previously explored
countries all those adjacent countries which have not yet been explored. The key to
the argument is that the shadow curve is always a level behind the exploring curve.

At some stage, when we reach the next level, we will have covered all the countries on
the entire Riemann sphere. We shall call this the last level. We need it to happen that the
point at infinity falls in the interior a country added at the last level . To ensure that this
is the case, we may modify our original domain � using a linear fractional transforma-
tion. Indeed, if the point at infinity is not in the interior of the last level domain, then
pick any point p0 that is. Let LðzÞ ¼ 1=ðz� p0Þ, and replace our original domain by
L(�). This new domain still satisfies the hypothesis of the theorem because linear frac-
tional transformations and their inverses preserve rational functions. Furthermore, the
sequence of countries and levels that we constructed earlier is simply picked up and
moved by L on the Riemann sphere.
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As we let the exploring curve � run out to infinity in the country added at the last
level via a parametrization z(t), the shadow � tends to a point in the finite complex
plane in the closure of a previously explored country, which is a bounded domain.
Equation (3) now shows that Rn has at worst a pole of order n at infinity and
equation (4) shows that Qn has at worst a pole of order 1 at infinity. Since these are
the only poles, we conclude that Rn is a polynomial of degree at most n and
QnðzÞ ¼ Azþ B for some constants A and B.

Now, if any function Qn were to be the zero function, then identity (3) would yield
that S(z) is a rational function, and it would follow from a theorem of Davis [11]
that � would have to be a disc, and the conclusion of the theorem holds true. So we
need only consider the case where Q1, Q2, and Q3 are nonzero. Any three nonzero
first degree polynomials are linearly dependent, and so there exist constants, c1, c2,
c3, not all zero, such that

c1Q1ðzÞ þ c2Q2ðzÞ þ c3Q3ðzÞ � 0:

Now, taking this same linear combination of the identities (3), we obtain

c1R1ðzÞ þ c2R2ðzÞ þ c3R3ðzÞ ¼ SðzÞðc1zþ c2z
2 þ c3z

3Þ,

and we again see that S(z) is rational, and Davis’ theorem yields that � must be a disc,
and this completes the proof of the theorem.

Now, suppose that � is simply connected and that a Riemann map ’ : � !D is alge-
braic. The following result characterizes those domains for which the solutions to (1)
with rational data are real-algebraic with singularities controlled by those of the
Riemann map. To explain this in greater detail, we need to introduce some more nota-
tion. We let X be the (compact) Riemann surface of ’ realized as a branched cover
� : X ! P, where P denotes the Riemann sphere (a.k.a. the extended complex
plane), and � the meromorphic function on X obtained by lifting ’ to X via the projec-
tion �. More precisely, there is a simply connected domain � � X and a meromorphic
function � on X such that �j� is a biholomorphism of � ! � and �j� ¼ ’ � �j�. The
function � is called the lift of ’. If f(z) is any function holomorphic in �, then there is
a unique holomorphic function F, called the lift of f, on � such that F ¼ f � �.
If F extends as as a meromorpic function on X, then we say that f lifts to a meromorphic
function on X. This means, loosely speaking, that f is an algebraic function and its ana-
lytic continuation along curves on P can only encounter branch points at points where
the Riemann map ’ does. Moreover, the branching of f at such a point is ‘‘no more
complicated’’ than that of ’, i.e., the branching order of f at such a point divides
that of ’.

In order to lift real-analytic functions in �, we introduce the conjugate Riemann sur-
face X* as follows: X* equals X as a smooth manifold, but the coordinate charts on X*
are of the form fU�,��ð�ÞÞ, where fU�,��ð�ÞÞ are the coordinate charts on X.
This is equivalent to saying that the holomorphic functions on X* are of the
form Hð�Þ where H(�) is holomorphic on X. We embed X as the diagonal
D :¼ fð�, �Þ 2 X� X�: � ¼ �g in X� X�. Observe that D is a totally real two-dimensional
submanifold of the two-dimensional complex manifold X� X�, since �� � is an anti-
holomorphic (conjugate of a holomorphic) mapping X� ! X. Thus, we may think of
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e� as a relatively open subset of D � X� X�. If vðz, zÞ is a real-analytic function in �,
then there is a holomorphic function V in an open neighborhood of e� � D in
X� X� such that Vð�, �Þ ¼ vð�ð�Þ,�ð�ÞÞ. We will say that v lifts as a meromorphic func-
tion on X� X� if V extends as a meromorphic function on X� X�. Observe that if
vðz, zÞ is a harmonic function in the simply connected domain �, then
vðz, zÞ ¼ fðzÞ þ gðzÞ, where f and g are holomorphic in �. In this case,
Vð�, �Þ ¼ Fð�Þ þ Gð�Þ, where F and G are the lifts of f and g, respectively. It follows
that u lifts to X� X� as a meromorphic function if and only if f and g lift to X as mer-
omorphic functions. In this way, we see that if u lifts as a meromorphic function on
X� X�, then uðz, �zÞ is real-algebraic and the singularities of u are controlled (via f
and g) by the singularities of the Riemann map ’: � ! D. We have the following result.

THEOREM 5 Let � be a simply connected domain in the plane with smooth boundary.
Assume that a Riemann map ’ : � ! D is algebraic and let � : X ! P be the
Riemann surface of ’ realized as a branched cover. Let X* denote the conjugate
Riemann surface. If the solution uðz, �zÞ to (1) lifts as a meromorphic function on
X� X� for every v 2 Cð@�Þ that is the restriction of a polynomial Rðz, �zÞ, then the inverse
’�1 : D ! � is rational (i.e. � is a quadrature domain).

For our last result, we need to introduce some more notation. Suppose that uðz, �zÞ is a
harmonic function in a domain G � C. Let � : ½0, 1� ! G be a closed piecewise smooth
curve and define the period of uðz, �zÞ relative to � by

perðu; �Þ :¼

Z
�

�du, ð5Þ

where � is the (Hodge) star operator; i.e. �du ¼ �uydxþ uxdy. (Thus, a local harmonic
conjugate of uðz, �zÞ is obtained by vðz, �zÞ :¼

R z

z0
�du for z in some small disk centered

at z0.) Observe that �du is a closed 1-form, and hence the period with respect to a
curve � only depends on the homotopy class of �. We shall say that uðz, �zÞ is period
free if perðu; �Þ ¼ 0 for every closed piecewise smooth curve � in G. (Thus, if u is
period free in G, then u has a harmonic conjugate in G). The last result we formulate
is the following.

THEOREM 6 Let � be a simply connected domain in the plane with smooth boundary.
Assume that a Riemann map ’ : � ! D is algebraic and that, for every v 2 Cð@�Þ that
is the restriction of a polynomial Rðz, �zÞ, there is a discrete subset A � C (possibly depend-
ing on v) such that the solution uðz, �zÞ to (1) extends as a period-free harmonic function in
CnA. Then, � is a disk.

We remark that the conclusion of Theorem 6 is not true without the assumption that
the Riemann map is algebraic. For instance, as mentiond earlier, if � is an ellipse, then
every solution to the Dirichlet problem (1) with polynomial data is a polynomial, and
hence extends to C as a period-free harmonic function (see e.g., [12]). There are also
other domains � (with nonalgebraic Riemann maps, of course) for which all solutions
to the Dirichlet problem with polynomial data extend as period-free harmonic functions
to CnA for some discrete set A (see [6]).

The ideas behind the proofs of Theorems 5 and 6 rest on an idea of Hansen and
Shapiro [13] of placing ‘‘rectangles’’ p0 ¼ ða, cÞ, q0 ¼ ðb, cÞ, p1 ¼ ðb, d Þ, q1 ¼ ða, d Þ on
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the complexifed boundary V of � in C
2. Here, a 6¼ b, c 6¼ d are complex numbers and

if the (algebraic) equation of @� is given by Pðz, �zÞ ¼ 0 in R
2, where P is an irreducible

polynomial, then V :¼ fðz,wÞ 2 C
2: Pðz,wÞ ¼ 0g represents its complexification in C

2,
i.e., V \R

2
¼ @�. These ideas are closely related to the notion of a closed lightning

bolt in R
n introduced by Arnold and Kolmogorov to study Hilbert’s 13th problem

on expressing a function in n variables as a superposition of functions of fewer vari-
ables. We shall refer to [14] for the history of the problem, detailed discussions and rele-
vant references. Here we just very briefly sketch how this notion applies to our situation
and the proof of Theorem 5.

A complex ‘‘lightning bolt’’ is a finite set of points (vertices) p0, q0, p1, . . . , pn, qn in C
2

such that each complex line connecting pj to qj or qj to pjþ1 is either ‘‘horizontal’’ or
‘‘vertical’’, i.e., has either its first or second coordinate fixed. A lightning bolt is said
to be irreducible if it does not contain a lightning bolt with smaller number of
vertices still connecting the first and last vertex ( p0 and qn). A lightning bolt is closed
if p0 ¼ qn. Every closed lightning bolt, as is easily seen, has an even number of
vertices and supports a finite measure � consisting of charges with alternating signs
at the vertices, i.e.,

� :¼
Xn
j¼0

�pj �
Xn
j¼0

�qj ,

where �pj(respectively, �qj) denotes a unit point mass at the point pj (respectively,qj). The
measure � is an annihilating measure for all holomorphic functions in C

2 representable
in the form fðzÞ þ gðwÞ. Therefore, if a variety V, representing the complexified bound-
ary of the domain � in C

2, i.e. V \R
2
¼ @�, supports a closed lightning bolt, there

exists a vast set of functions, holomorphic in a neighborhood of V (even polynomials!),
that cannot be approximated by sums of (holomorphic) functions of one variable,
fðzÞ þ gðwÞ. The crux in the proofs of Theorems 5 and 6 is a construction that produces
on the variety V, a connected component of the complexified boundary of the domain
�, a closed irreducible lightning bolt that carries a measure annihilating all functions
fðzÞ þ gðw), with f , g, holomorphic in a neighborhood of V. In fact, already the existence
of a closed lightning bolt on V would be sufficient, but of course, it is not hard to see
that every closed lightning bolt contains an irreducible lightning bolt. Essentially, the
technical subtlety of the construction reduces to the following; since V represents a
Riemann surface of degree at least 2, we could, starting at any noncritical point p of
V construct a lightning bolt by simply going on a horizontal fz ¼ z0g, or vertical
fw ¼ w0g line from p until we hit V again and then proceed at each step changing the
‘‘type’’ of the line emanating from a newly obtained vertex to the opposite from
the type of the complex line on which we have arrived at the vertex, of course, avoiding
critical values and critical points of V, a finite set. The difficulty is to show that the pro-
cess will terminate rather than produce a lightning bolt with infinitely many vertices
running away to infinity. To achieve this we have to resort to the specific construction
of a rather special family of grids of points obtained as orbits of a special finite sub-
group of the monodromy group with two generators, to prevent an associated lightning
bolt ‘‘running away‘‘ to infinity.

Let us conclude this article by sketching a proof of the following simplified version of
Theorem 5. If p is a polynomial, we shall denote by p* the polynomial obtained from p
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by conjugating all the coefficients and use similar notation for rational functions
as well.

PROPOSITION 7 Let � be a smoothly bounded Jordan domain in C such that the Riemann
map ’ : � ! D is rational, i.e. ’ðzÞ ¼ pðzÞ=qðzÞ where p , q are irreducible polynomials.
Assume, in addition, that the complexified variety W :¼ fðz,wÞ: Qðz,wÞ :¼
pðzÞp�ðwÞ � qðzÞq�ðwÞ ¼ 0g is irreducible, and hence coincides with the complexified
boundary V of @�. Suppose that the solution u of (1) is rational for every v 2 Cð@�Þ

that is the restriction of a rational function whose polar variety does not meet @�.
Then, � is a disk.

Remark 8 The assumption that the Riemann map ’ is rational means, of course, that
the Riemann surface X in Theorem 5 is just the Riemann sphere and � is the identity.
The conclusion in Theorem 5, under the additional assumption that ’ is rational,
implies that � is a disk. For, if both ’ and ’�1 are rational, then ’ is a linear fractional
transformation and, hence, � is a disk. The crucial hypothesis that W¼V in the above
proposition simplifies matters significantly. Unfortunately, it is often not the case for
domains � with algebraic boundaries, and the proofs then become much less transpar-
ent and more technical [1].

Sketch of Proof of Proposition 7 Suppose that � is not a disk, i.e., the degree m of the
rational function ’ is at least 2. Construct a family of closed lightning bolts with four
vertices (Hansen–Shapiro ‘‘rectangles’’) on the variety W which, according to the
hypothesis in our simplified version, coincides with V, the complexified boundary @�,
as follows. Let � be a point in the complex plane which is a noncritical value for the
rational function ’, i.e. the set f’�1ð�Þg consists of m distinct points. We can also
assume that neither f’�1ð�Þg nor fð1=’�Þ�1

ð�Þg contain 1. Choose a 6¼ b in f’�1ð�Þg
and c 6¼ d in fð1=’�Þ�1

ð�Þg. We have ’ðaÞ ¼ ’ðbÞ ¼ 1=’�ðcÞ ¼ 1=’�ðdÞ. Moreover, for
(z,w) such that z is not a pole of ’ and w is not a pole of 1=’�, Qðz,wÞ ¼ 0 is equivalent
to ’ðzÞ ¼ 1=’�ðwÞ, and hence M :¼ fA ¼ ða, cÞ,B ¼ ða, dÞ,C ¼ ðb, cÞ,D ¼ ðb, dÞg is a
‘‘rectangle’’ on the variety V ¼ W ¼ fðz,wÞ : Qðz,wÞ ¼ 0g. Moreover, there is a whole
continuum of such rectangles on V. Therefore, for every rational harmonic function
u representable in C

2 by uðzÞ ¼ fðzÞ þ gðwÞ, where f, g are rational functions of one vari-
able, we can always find a closed rectangle M with vertices A,B,C,D on V such that all
vertices stay away from the poles of either f or g on V. Then, as is readily checked,
uðAÞ þ uðCÞ ¼ uðBÞ þ uðDÞ holds for all such u. Thus, taking the data v for the
Dirichlet problem (1) to be a polynomial in z and w such that vðAÞ ¼ vðBÞ ¼ vðCÞ ¼ 0
while vðDÞ ¼ 1 (one can easily see that v can be chosen to be a quadratic polynomial),
we arrive at a contradiction. Hence, the degree of ’ must be 1 and � is a disk. The
proposition is now proved. g

Finally, we note that it follows from the argument above that the conclusion of the
proposition already holds if one only assumes that the solution u of (1) is rational for
every data v that is the restriction to @� of a quadratic polynomial.
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