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Abstract 

The object of the present study is to develop a new forecasting model for the 

atmospheric temperature of the continental United States. We shall analyze the pattern of 

the temperature time series, and illustrate the usefulness of the duplicated mean of the 

signal. In removing the duplicated mean time series from the original temperature 

recording series simplifies the forecasting process. The accuracy of this proposed 

methodology will be demonstrated in comparison with the classical multiplicative 

Autoregressive Integrated Moving Average, ARIMA model that is often used.  

 

Introduction 

There are two methods being used in recording atmospheric temperatures in the 

continental United States and we shall refer them as Version 1 and Version 2 data sets. 

Version 1 data was collected by the United States Climate Division, USCD, and Version 

2 data by the United States Historical Climatology Network, USHCN. For additional 

information concerning Version 1 and Version 2 data sets, see (Alexandersson & Moberg, 

1997; Baker, 1975; Easterling & Peterson, 1995; Easterling et al., 1996; Easterling et al., 

1999; Hughes et al., 1992; Karl et al., 1986; Karl & Williams, 1987; Karl et al., 1988; 



Karl et al., 1990; Karl et al., 1990; Karl et al., 1988; Karl et al., 1986; Karl & Williams, 

1987; Lund & Reeves, 2002; Menne & Williams, 2005; Peterson & Easterling, 1994; 

Quayle et al., 1991; Quinlan et al., 1987; Vose et al., 2003; Wang, 2003). Although we 

found the two different sets of temperature data to be somewhat similar, we believe from 

a statistical perspective that the Version 2 data set is more appropriate to use. Therefore, 

we will use the Version 2 data to represent the temperature series of continental United 

States in this study. 

In the present study, our object is to forecast the monthly average atmospheric 

temperature in degrees Fahrenheit in the Continental United States using historical 

monthly data from 1895-2007. A graphical presentation of the monthly average 

temperature of the continental United States is given by Figure 1.  
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Figure 1 Time Series Plot for Monthly Atmospheric Temperature, 1895-2007 

As can be visually seen the temperature series contains a seasonal pattern, and it repeats 

itself every 12 months. We shall discuss it further later in our study. 

 



Seasonal Multiplicative ARIMA Forecasting Model 

In time series analysis, seasonal variations usually dominate the variations of the 

original nonstationary time series and make it very difficult to analyze. It occurs often on 

environmental data along with some type of periodic trend that we must address in 

developing a forecasting model. In our study we will treat the seasonal time series as a 

nonstationary time series that varies along some sort of seasonal periodic trend. Hence, 

addressing the seasonal variations for the forecasting model becomes very useful when 

we deal with these types of difficulties.   

(Box & Jenkins 1994) first introduced the seasonal multiplicative autoregressive 

integrated moving average, ARIMA, model that is capable of developing a forecasting 

model of a given time series with seasonal variation. This forecasting process addresses 

the issue of the incapability of predicting a time series with seasonal trends for the 

classical ARIMA methodology. The seasonal multiplicative ARIMA model is defined by 
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where p is the order of the autoregressive process, d is the order of regular differencing, q 

is the order of the moving average process, P is the order of the seasonal autoregressive 

process, D is the order of the seasonal differencing, Q is the order of the seasonal moving 

average process, and the subindex s refers to the seasonal period. We shall denote the 

subject model by ARIMA sQDPqdp ),,(),,( × , and  defined 

as follows: 
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The order of the multiplicative ARIMA model determines the structure of the model and 

it is essential to have a good procedural approach in terms of developing the forecasting 

model. 

(Shih & Tsokos 2008) summarized the model identifying procedure as follows: 

• Determine the seasonal period s. 

• Check for stationarity of the given time series }{ tx  by determining the order of 

differencing d, where ,...2,1,0=d  according to KPSS test, until we achieve 

stationarity. 

• Deciding the order m  of the process, for our case, we let 5=m  where 

mQ . Pqp =+++

• After ),( md  being selected, listing all possible configurations of ),,,( QPq  for 

mQ . 
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• For each set of ),,, , estimates the parameters for each model, that is, 
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• Compute the AIC for each model, and choose the one with smallest AIC. 

• After ( QPq ) is selected, we determine the seasonal differencing filter by 

selecting the smaller AIC between the model with 0

dp ,,,,

=D  and 1=D . 

• Our final model will have identified the order of ( QDP ). qdp ,,,,,



The forecasting model that we identified using the above procedure is 

ARIMA(2,1 ,1)× (1,1,1)12  process, analytical given by 
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Expanding both sides of the above ARIMA, we have 
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Simplify it, we obtain 
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Thus, the one-step ahead forecasting model for the atmospheric temperature data is 

calculated to be 
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where 0899.1 =φ , 04.2 =φ , 9853.1 =θ , 0058.1 −=Φ , and 9761.1 =Γ . 

We shall compare the result of the classical multiplicative ARIMA with our proposed 

methodology in later section. 

 

The Proposed Forecasting Model 

It is clear that the average monthly atmospheric temperature of the Continental 

United States contains a seasonal pattern without any upward or downward trend present, 

see Figure 1. The idea of our proposed forecasting model is assuming that the overall 



mean of all January, February, …, December data equals to 12 constants, hence, we can 

treat the atmospheric temperature series as a nonstationary time series that varies along 

those 12 constants that we can estimate.  

Let  denotes the average monthly atmospheric temperature from 

year 1895 to 2007,  denotes the mean of Januarys, Februarys, … , 

Decembers, and the year 1901 to 2000 be the base period. It is obvious that 

 of the atmospheric temperature series represents the monthly temperature 

from 1901 to 2000, and then we can calculate  by using the following 

transformation. 
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We proceed to create a new time series }{ tγ  by simply repeating the series , 

that is, 
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 },...,,{},...,,{ 1221135613461345 mmm=γγγ  (5) 

 



The time series plot of the new time series }{ tγ  is illustrated below by Figure 2. 
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Figure 2 Time Series Plot of the Series }{ tγ  

We have assumed that the original atmospheric temperature series varies along the series 

}{ tγ . Let }{ tλ  be the difference between the atmospheric temperature series and the 

new series 

}{ tx

}{ tγ , that is,  

 ttt x γλ −=  (6) 

and the resulting nonstationary time series }{ tλ  will be used to develop the forecasting 

process. The new nonstationary time series is shown below by Figure 3.  
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Figure 3 Time Series Plot of the Series }{ tλ  

Since the above process is invertible, we proceed to turn a seasonal nonstationary time 

series into a simple nonstationary time series without losing any information. Once we 

obtain the forecasts from the series }{ tλ , we can obtain the forecasts of the actual time 

series of the atmospheric temperature series . By using the methodology that we 

discussed in (Shih & Tsokos 2008), we have found that the best ARIMA model on the 

series 

}{ tx

}{ tλ  is ARIMA(2,1,1), that is,  
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The final analytical form of the above forecasting model can be written as 
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where .09031 =φ , 0414.2 =φ , and 9837.1 =θ . 

We can transform back to the original atmospheric temperature series by combining (5) 

and (6). Thus we have 
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This forecasting model as we will show below gives a more accurate forecast then the 

classical model of Box & Jenkins. 

 

Comparison of the Classical and Proposed Models 

The basic statistics that shall we use to compare the classical and proposed 

models are the mean r , variance , standard deviation  and standard error 2
rS rS

n
Sr  of 

the residuals. Table 1 and 2 are the basic results of the classical multiplicative ARIMA 

model and our proposed forecasting model. 

Table1 Basic Evaluation Statistics for Classical Multiplicative ARIMA Model 

r   
2
rS  rS  

n
Sr  

-0.008972434 4.314059 2.077031 0.05640443 

 

The mean residual, 34-0.0089724=r , of the classical multiplicative ARIMA 

model consistently overestimates the atmospheric temperature forecast by a factor of 

0.008972434. Thus, we subtract 0.008972434 from (3) to correct for the overestimating 

the actual forecast.  



Table2 Basic Evaluation Statistics for Our Proposed Model 

r   
2
rS  rS  

n
Sr  

0.09095724 4.253849 2.062486 0.05600944 

 

In our proposed model, the mean residual, 0.09095724=r , which consistently 

underestimates the atmospheric temperature forecast by a 0.09095724. Thus, we shall add 

0.09095724 to (9) to correct the underestimating of the forecasting values.  

 From Table 1 and 2, it is clear that our proposed forecasting model given better forecast 

than the classical multiplicative ARIMA model with respect to variance, standard 

deviation and standard error. It speaks out the stability of our proposed methodology. 

Also the proposed forecasting model reduces the computational complexity that the 

classical forecasting model requires. 

 

Efficiency on Forecasting Models 

 To evaluate the efficiency of both forecasting models, we proceed to hide the 

atmospheric temperature observations of the last 12 months, and try to predict them only 

use the previous information. That is, we use to structure the model and we 

will predict ,  to predict x , … , to predict . T

3 below provides a month by month comparison in predicting the average monthly 

atmospheric temperature of the year 2007 between the classical multiplicative ARIMA 

model and our proposed forecasting model. The “Actual” column represents the actual 

average monthly atmospheric temperature of the year 2007. The “Classical Forecasts” 

column represents the predictions generated by the classical multiplicative ARIMA 
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model. The “Proposed Forecasts” column represents the predictions generated by our 

proposed model. The residuals are calculated by using expression (10).  

  (10) 
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Table 3 Month to Month Comparison 

Month(2007) Actual Classical 
Forecasts 

Classical 
Residuals 

Proposed 
Forecasts 

Proposed 
Residuals 

January 31.45 32.68155 -1.23155 32.18227 -0.73227 

February 32.87 36.29613 -3.42613 35.73977 -2.86977 

March 48.23 43.54954 4.68046 43.84947 4.38053 

April 51.3 53.73843 -2.43843 53.57107 -2.27107 

May 63.2 62.37962 0.82038 62.51967 0.68033 

June 70.66 70.53462 0.12538 70.74577 -0.08577 

July 75.46 75.62914 -0.16914 75.70057 -0.24057 

August 75.4 74.06826 1.33174 74.18117 1.21883 

September 67.13 66.76519 0.36481 66.86947 0.26053 

October 57.21 55.95558 1.25442 56.18677 1.02323 

November 44.28 44.02936 0.25064 43.91927 0.36073 

December 33.73 34.96153 -1.23153 34.81297 -1.08297 
 

From Table 3, we can see that the residuals generated by our proposed forecasting 

model are better than the classical multiplicative ARIMA model almost for all months.  

 According to the evaluation demonstrated in Table 2, we notice that the proposed 

model consistently underestimate the original temperature series by the residual mean 

equal to 0.09095724. We can improve our forecasts further if we add the residual mean 

back to the model. Therefore, the final analytical form of the proposed model becomes 

 . (11) tttttttx εγελλλ +++−−+= −−−−

∧

1321 09837.0.4140489.0903.109095724.0

 



Conclusion 

The classical multiplicative ARIMA forecasting process is a useful tool in 

predicting seasonal time series. However, its complexity increases tremendously once the 

seasonal order  increases. Expression (3) shows how complicated it becomes to 

actually obtain a workable final form of the forecasting model. We propose a new 

methodology that recognizes the presence of a periodic seasonal effect in the time series 

is actually a nonstationary time series varies along some periodic constants. Our results 

show that the proposed forecasting model is not only more accurate but also more 

effective than the classical multiplicative ARIMA forecasting model. In addition, the 

proposed model is far simpler in terms of its computational complexity than the classical 

model. Thus, we recommend the use of the proposed model over the classical 

multiplicative ARIMA process.  
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