

Statistical Modeling of Breast and Lung Cancers

Cancer Research Team

Department of Mathematics and Statistics University of South Florida

Outline

- Nonparametric and parametric analysis of treatment effectiveness of breast cancer
- Statistical modeling of relapse time of breast cancer with different treatments
- Markov modeling of breast cancer states
- Statistical analysis of lung cancer mortality time
- Sensitivity analysis of breast cancer doubling time

Objective 1.

Using data which was collected from 1992 to 2000 on breast cancer, a total of 641 women were randomized: 320 in the combined <u>radiation</u> <u>and tamoxifen</u> arm (RT + Tam), and 321 in the <u>tamoxifen-alone</u> arm (Tam). The objective of this presentation is to investigate whether treatment <u>RT + Tam</u> is more effective than <u>Tam</u> alone with respect to the <u>relapse time</u> of a given patient, in which both parametric and nonparametric methods as well as decision tree technique are used.

Reference: Decision tree for competing risks survival probability in breast cancer study by N.A Ibrahim, et al. International Journal of Biomedical Sciences Volume 3 Number 1, 2008

Data

- For the 641 patients, the data includes censored and uncensored observations. Since there are only 77 uncensored observations (26 in RT + Tam arm and 51 in Tam arm) which means nearly 90% are censored observations, the data is analyzed separately for the uncensored data (77) and censored data (641). For simplicity, we call these two datasets dataset 1 and dataset 2 for later use.
- Response variable: relapse time
- Attributable variables:

- 1. pathsize: size of tumor
- 2. age: age of patient
- 3. hgb: haemoglobin
- 4. hist: histology (DUC,LOB,MED,MIX,OTH)
- 5. hrlevel: hormone receptor level (NEG,POS)
- 6. nodediss: Whether axillary node dissection was done (Y,N)

Nonparametric and parametric analysis of treatments

Nonparametric: Log-rank Test are used to test the difference of mean relapse time of RT + Tam and Tam arms.

Parametric: Goodness-of-fit tests are used to find the classical distribution for $\underline{RT + Tam}$ arm and \underline{Tam} arm with respect to the two datasets.

Results

	Nonparametric	Parametric
320 RT+Tam 321 Tam	Log-rank test p-value = 0.0017 $\mu_1 > \mu_2$	RT + Tam (320): Log-normal $\mu = 0.903 \ \sigma = 5.148$ Tam (321): Log-normal $\mu = 0.583 \ \sigma = 3.491$ Likelihood ratio test : p-value = 0.001~0.05 $\mu_1 > \mu_2$

Decision Tree

- The clinicopathological characters of breast cancer patients are heterogeneous. Consequently, the survival times are different in subgroups of patients. Decision tree is used to homogenize the data by separating the data into different subgroups.
- As can be seen from the following graph. <u>RT+Tam</u> arm is divided into 3 groups denoted by <u>RT1,RT2,RT3,RT4</u> from the left to the right; <u>Tam</u> arm is divided into 4 groups denoted by <u>T1,T2,T3,T4</u> from the left to the right.

Decision tree

t

University of South Florida

10

Conclusion

- As can be seen from the above, although <u>RT+Tam</u> arm has overall better performance than <u>Tam</u> arm, after the partition of each arm, both the best (RT4) and worst (RT1) survival curve come from RT+Tam.
- Overall comparison of the 7 subgroup survival curves shows some clustering

★ RT2,RT3,RT4,T1,T2
★★ T3,T4
★★★ RT1

Objective 2

Using data which was collected from 1992 to 2000 on breast cancer, a total of 641 women were randomized: 320 in the combined <u>radiation</u> <u>and tamoxifen</u> arm (RT + Tam), and 321 in the <u>tamoxifen-alone</u> arm (Tam). The objective of this presentation is to identify the significant factors and possible interactions of those factors that contributes to the reoccurrence of breast cancer, moreover, statistical modeling of <u>relapse</u> <u>time</u> as a response variable based on other attributable variables are presented for predicting purpose. Furthermore, cure rate model is used to compare the effectiveness of different treatments with respect to the cure rate of breast cancer patients.

Reference: Decision tree for competing risks survival probability in breast cancer study by N.A Ibrahim, et al. International Journal of Biomedical Sciences Volume 3 Number 1, 2008

AFT Model and Cox-PH model

An accelerated failure time model (AFT model) is a parametric model that assumes that the effect of a covariate is to multiply the predicted event time by some constant. Consider a random variable *w* with a standard distribution and generate a family of survival distributions by introducing location and scale parameter.By adding covariates to the location parameter ,we obtain the AFT model

$$\log T = x^{\prime}\beta + \sigma W$$

An alternative approach to modeling survival data is to assume the effect of covariates is to multiply the hazard by a constant

$$\lambda(t,x) = \lambda_0(t)e^{x^{\beta}}$$

Significant Prognostic Factors

Attributable variables: pathsize, age, hgb, hist, hrlevel,

nodediss

RT+Tam	lognormal	exponential	Weibull	Cox-PH
age	0.002*	0.008*	0.011*	0.01*
pathsize	0.01*	0.0002*	0.0002*	0.00086*
nodediss	0.021*	0.009*	0.012*	0.012*
hrlevel	0.027*	0.010*	0.008*	0.016*
age:nodediss	0.037*	0.022*	0.026*	0.028*
nodediss:hrlevel	0.009*	0.0005*	0.0008*	0.00067*
pathsize:hrlevel	0.078	0.060	0.041*	0.099

Significant Prognostic Factors

Tam	lognormal	exponential	Weibull	Cox-PH
age	0.343	0.294	0.287	0.32
hgb	0.037*	0.645	0.630	0.68
pathsize	0.339	0.316	0.300	0.33
nodediss	0.025*	0.017*	0.020*	0.018*
hrlevel	0.006*	0.002*	0.003*	0.002*
age:pathsize	0.143	0.112	0.106	0.120
age:nodediss	0.038*	0.006*	0.007*	0.0065*
hgb:nodediss	0.054	0.077	0.079	0.075
age:hgb	NA	0.131	0.128	0.150

Survival Curve for RT+Tam

16

Survival Curve for Tam

Cure Rate Model

- Any clinical trial consists of heterogeneous group of patients that can be divided into two groups. Those who respond favorably to the treatment and subsequently become insusceptible to the disease are called cured. The others that do not respond to the treatment remain uncured or susceptible to reoccurrence of disease.
- Let π denote the proportion of cured patients and $1-\pi$ is the proportion of uncured patients, and then the survival function for the group is

 $S(t) = \pi + (1 - \pi)S_u(t)$

where $S_{u}(t)$ is the survival function of the uncured group

• Covariates can be included to uncured survival function using AFT model, and they can also be included to cure rate using logistic regression

$$\log(\frac{\pi}{1-\pi}) = \exp(x'\beta)$$

Results

RT+Tam	No covariates	Covariates in survival function	Covariates in survival function and cure rate	Covariates and interactions in survival function
Weibull	0.2471	0.1	Not fixed	0.1
L.normal	0.2593	0.0057	Not fixed	0.1
Gamma	0.8053	0.0064	Not fixed	0.1
G.L.L	0.6118	0.1	Not fixed	0.1
L.logistic	0.2903	0.1	Not fixed	0.1
G.F	0.0065	0.002152	Not fixed	0.1
E.G.G	0.0043	0.0038	Not fixed	0.1
Rayleigh	0.8799	0.1	Not fixed	0.1

Results

Tam	No covariate	Covariates in survival function	Covariates in survival function and cure rare	Covariates and interactions in survival function
Weibull	0.1980	0.0748	Not fixed	0.0748
L.normal	0.1127	0.0748	Not fixed	0.0748
Gamma	0.1695	0.449	Not fixed	0.0748
G.L.L	0.1515	0.0748	Not fixed	0.0748
L.logistic	0.1874	0.0748	Not fixed	0.0748
G.F	0.0166	0.0748	Not fixed	0.0748
E.G.G	0.0186	0.5582	Not fixed	0.0748
Rayleigh	0.7572	0.0748	Not fixed	0.0748

Objective 3

 To investigate the progression of breast cancer patients between three different states in different treatment groups (RT+Tam and Tam). Transition intensity between different states and transition probabilities among the three states during different time periods such as 2-year, 4year,5-year, and 10-year are calculated.

 Same data is used and the three stages that we are interested in the study are: alive with no relapse, alive with relapse, and deceased.

Markov Model

- Markov Chain if the conditional probabilities between the stages at different times satisfy the Markov property: the conditional probability of future onestep-event conditioned on the entire past of the process is just conditioned on the present stage of the process.
- The transition probability from stage to stage at time and transition intensity are defined by

$$p_{ij}(t) = p(X_{t+1} = j | X_t = i)$$

and

$$q_{ij}(t) = \lim_{h \to 0} \frac{P(X(t+h) = j \mid X(t) = i)}{h}$$

Results (transition intensity)

RT+Tam	State 1	State 2	State 3
State 1	-0.02301	0.01957	0.0034
State 2	0	-0.3074	0.3074
State 3	0	0	0

Tam	State 1	State 2	State 3
State 1	-0.03917	0.03528	0.003889
State 2	0	-0.08553	0.08553
State 3	0	0	0

Results (graph)

Results (5-year transition probability)

RT+Tam	State 1	State 2	State 3
State 1	0.8913	0.0466	0.0621
State 2	0	0.2151	0.7849
State 3	0	0	0

Tam	State 1	State 2	State 3
State 1	0.8221	0.1295	0.0484
State 2	0	0.6527	0.3473
State 3	0	0	0

Conclusion

- Combined treatment of tamoxifen and radiation is more effective than single treatment of tamoxifen in preventing the recurrence of breast cancer. However, for patients who had relapse of breast cancer, single treatment of tamoxifen proves to be more effective than combined treatment with respect to the survival probability.
- Transition probabilities between different stages during 2 years, 4 years, 5 years and 10 years are also calculated for predicting purpose.

Objective 4

- The objective of the subject study is to conduct parametric analysis to address the basic probabilistic behavior of mortality time of both female and male lung cancer patients of ex-smokers and nonsmokers, respectively.
- Mean mortality times are compared between non-smokers and exsmokers, female non-smokers and male non-smokers, and female ex-smokers and male non-smokers. Meanwhile, important entities related to lung cancer mortality time such as cigarettes per day (CPD), and duration of smoking (DUR) are compared between female and male ex-smoker lung cancer patients.
- Finally, we developed a model to predict the mortality time of exsmokers with a high degree of accuracy.

More than 40 different classical distributions are fitted to the data and three goodness-of-fit tests including Kolmogorov-Smirnov, Anderson-Darling, and Chi-Square are conducted for the mortality time of lung cancer patients for female exsmokers, male ex-smokers, all ex-smokers, female non-smokers, male non-smokers, all non-smokers, respectively

Results

	Johnson SB	Beta	Three - parameter Weibulll
Female ex-smokers	NA	73.995 (8.9577)	74.007 (8.9365)
Male ex-smokers	NA	74.543 (8.1875)	74.542 (8.2119)
Ex-smokers	NA	74.384 (8.4155)	74.387 (8.428)
Female non- smokers	NA	76.117 (10.213)	76.148 (10.165)
Male non-smokers	NA	76.011 (9.6368)	76.015 (9.6551)
Non-smokers	NA	76.085 (10.041)	76.103 (10.022)

Mean and Standard Deviation of Fitted Distributions

Results

	Johnson SB	Beta	Three - parameter Weibulll
Female ex-	(59.9, 87.622)	(58.586, 88.016)	(58.456, 87.916)
smokers	(55.419, 90.07)	(55.364, 90.327)	(55.371, 90.168)
Male ex-smokers	(60.527, 87.493)	(60.557, 87.52)	(60.304, 87.386)
	(57.827, 89.55)	(57.849, 89.591)	(57.519, 89.482)
Ex-smokers	(59.9, 87.622)	(59.98, 87.659)	(59.751, 87.541)
	(57.061, 89.701)	(57.057, 89.85)	(56.871, 89.68)
Female non-	(58.145, 91.777)	(58.304, 91.886)	(58.277, 91.742)
smokers	(54.682, 93.933)	(54.794, 94.142)	(54.582, 94.205)
Male non-smokers	(58.888, 90.419)	(58.87, 90.391)	(58.671, 90.298)
	(55.014, 92.541)	(55.045, 92.434)	(54.727, 92.425)
Non-smokers	(58.367, 91.373)	(58.461, 91.428)	(58.354, 91.302)
	(54.761, 93.541)	(54.811, 93.643)	(54.567, 93.657)

90% and 95% Confidence Interval

Nonparametric Comparison

To test if there is significant difference of mortality time with respect to gender and smoking status, and also difference of entities like cigarettes per day and duration of smoking with respect to gender.(for ex-smokers only since they are all zeros for non-smokers). Wilcoxon two - sample test is performed to test the difference of the means.

- (1) Mortality time between ex-smokers and non-smokers
- (2) Ex-Smokers mortality time between female and male
- (3) Non-Smokers Mortality time between female and male
- (4) Ex-smokers CPD between female and male
- (5) Ex-smokers DUR between female and male

Results

H_{o}	$ar{t}_{m(ex)} \geq ar{t}_{m(non)}$	$ar{t}_{m(female-ex)} = ar{t}_{m(male-ex)}$	$ar{t}_{m(female-non)} = ar{t}_{m(male-non)}$	$C\overline{P}D_{male} \leq C\overline{P}D_{female}$	$D\overline{U}R_{male} \leq D\overline{U}R_{female}$
P-value	0.0018	0.1180	0.8106	<0.0001	0.0001
Conclusio n	$ar{t}_{m(ex)} < ar{t}_{m(non)}$	$ar{t}_{m(female-ex)} = ar{t}_{m(male-ex)}$	$ar{t}_{m(female-non)} = ar{t}_{m(male-non)}$	$C\overline{P}D_{male} > C\overline{P}D_{female}$	$D\overline{U}R_{male} > D\overline{U}R_{female}$

AFT Model Results

variance: 0.1108183 mean: 0.1378148 variance: 7.911363

Percentage Plot of Male Ex-Smokers

mean: 0.007539421 variance: 0.1054347 mean: 0.1439845 variance: 7.651358

Conclusions

Probabilistic behavior of lung cancer patients mortality time is investigated. And comparison of key entities in lung cancer such as mortality time, CPD, and duration of smoking are conducted between different race groups and between different smoking status groups. Also, generalized gamma AFT model is found to be the bet model in predicting mortality time of ex-smokers lung cancer patients.

Objective 5

 The objective of the subject study is to illustrate the sensitivity of the probabilistic behavior of breast cancer tumor growth (doubling time) with respect to different volume and growth model assumptions.

Definition of Doubling Time and Assumptions

- Doubling Time: The time it takes for a tumor to double in volume. It depends on two assumptions: <u>how the volume is</u> <u>calculated the way tumor grows</u>.
- Tumor Growth Assumption
- 1. Exponential Growth
- 2. Linear Growth
- 3. Quadratic Growth
- Tumor Volume Assumption
- **1.** $V = \frac{4}{3} \cdot \pi \cdot r^3$ r = a/2
- **2.** $V = \frac{4}{3} \cdot \pi \cdot r^3$ $r = \frac{2a+b}{12}$
- **3.** $V = \frac{4}{3}\pi \cdot (\frac{a}{2})^2 \cdot (\frac{b}{2})$
- **4.** $V = \frac{4}{3}\pi \cdot \frac{1}{2}a \cdot \frac{1}{2}b \cdot \frac{1}{2} \cdot (\frac{1}{2}a + \frac{1}{2}b)$

Tumor Growth Assumption

 Plot the average tumor size of breast cancer patients in each age as follows (age 17-100). Partition the age into three groups: 17-49, 50-79, 80-100, exponential decay function was used to fit the curve from 17-49, linear and quadratic from 50-79, and exponential growth from 80-100.

age

Tumor Growth Plots

-• •

Age(50-79)

2

- 19

Results (Growth Assumption)

For <u>fixed volume assumption: spherical volume</u>. Using three different growth assumptions (*exponential, linear, quadratic*). The distributions and related properties are as follows:

Growth	Distribution	Mean	S.D	95% lower limit	95% upper limit
exponential	Lognormal(3- parameter)	628.61	2459.9	66.894	3824.6
exponential	Lognormal	419.36	551.35	35.631	1809.0
linear	Fatigue Life	466.69	726.68	11.84	2580.4
linear	Lognormal	573.99	1741.8	9.0575	3563.2
quadratic	Johnson SB	NA	NA	65.101	994.63
quadratic	Lognormal	336.95	345.11	44.756	1238.0

Rank of lognormal distribution using goodness-of-fit tests under spherical, exponential assumptions, 15, 12,11.

Results (Volume Assumption)

 For <u>fixed growth assumption: exponential growth</u> while using three different volume assumptions (spherical, averaged spherical, oblate spherical, averaged oblate spherical)

Growth	Distribution	Mean	S.D	95% lower limit	95% upper limit
Spherical	Lognormal (3- parameter)	628.61	2459.9	66.894	3824.6
Spherical	Lognormal	419.36	551.35	35.631	1809.0
Ave. Spherical	Lognormal (3- parameter)	778.0	2590.5	102.05	4542.0
Ave. Spherical	Lognormal	588.58	793.94	47.653	2578.4
Oblate Spherical	Frechet (3- parameter)	NA	NA	110.75	9073.2
Oblate Spherical	Lognormal	685.92	983.2	49.467	3113.7
Ave. Oblate Spherical	Fatigue Life (3- parameter	563.05	744.44	96.523	2728.1
Ave. Oblate Spherical	Lognormal	543.93	699.01	48.221	2313.48

Conclusions

 Different combination of volume assumption and growth model could result in different tumor doubling time, and thus the probability distribution of doubling time.
Necessary work should be done to determine which volume and growth assumption is the best to describe breast cancer tumor before simply assuming doubling time assumes Lognormal distribution.

