
 

 

  
Abstract—The objective of the present research manuscript is to 

perform parametric, nonparametric, and decision tree analysis to 
evaluate two treatments that are being used for breast cancer patients. 
Our study is based on utilizing real data which was initially used in 
“Tamoxifen with or without breast irradiation in women of 50 years 
of age or older with early breast cancer” [1], and the data is supplied 
to us by N.A. Ibrahim “Decision tree for competing risks survival 
probability in breast cancer study” [2]. We agree upon certain aspects 
of our findings with the published results. However, in this 
manuscript, we focus on relapse time of breast cancer patients instead 
of survival time and parametric analysis instead of semi-parametric 
decision tree analysis is applied to provide more precise 
recommendations of effectiveness of the two treatments with respect 
to reoccurrence of breast cancer. 
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I. INTRODUCTION 
XTENSIVE literature and studies can be found related to 
whether radiation shows a benefit to breast cancer patients 

with respect to relapse time. It is clear that radiation makes a 
difference in recurrence for some women. However, the 
potential side effect of heart damage from breast radiation 
makes it desirable to avoid radiotherapy unless it is absolutely 
necessary. Therefore, it is of great importance to identify the 
patients who could potentially benefit from radiation and 
those who would be put at higher risk for receiving radiation 
treatment. The aim of the present research is to perform 
parametric, nonparametric, and decision tree analysis to 
answer the above question. Our parametric and nonparametric 
analysis confirms the overall advantage of combined radiation 
and tamoxifen (RT+Tam) over tamoxifen (Tam) alone in 
reducing the probability of relapse; however, after utilizing 
decision tree analysis in conjunction with survival analysis of 
relapse time of breast cancer patients, we have concluded 
under some conditions, giving both treatments to patients 
without considering the clinicopathological characteristics 
could be negatively effective or catastrophic.  
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II. DATA 
Between December 1992 and June 2000, a total of 769 

women were enrolled and randomized, of which 386 received 
combined radiation and tamoxifen (RT+Tam), and the rest, 
383, received tamoxifen-alone (Tam). The last follow up was 
conducted in the summer of 2002. Only those 641 patients 
enrolled at the Princess Margaret Hospital are included: 320 
and 321 in RT+Tam and Tam treatment group, respectively.  

 
 
 
 
 
 

                
                           Patient treatment data  

This censored data consists of 77 uncensored observations 
and 564 censored observations. The censored observations are 
mostly due to two reasons: (1) the breast cancer patient 
emigrated out of the study area; (2) the individual survived 
(did not experience occurrence) past the end of the study 
period. Due to the fact that nearly 90% of the data are 
censored observations, we take into consideration two 
datasets, 77 uncensored dataset, and 641 censored dataset for 
later analysis. 

In the original data, three relapse events are recorded: local 
relapse, axillary relapse and distant relapse. The original 
dataset was used to analyze competing risks (also called 
multiple causes of death) including relapse, second 
malignancy, and other causes of death. Since in the present 
study we are interested in the relapse time regardless of the 
reoccurrence type, minimum time of the three types of relapse 
is chosen for analysis purpose, and the values of censoring 
indicator variable are adjusted accordingly. Variables assessed 
at the time of randomization are: pathsize( size of tumor in 
cm) ; hist(Histology: DUC=Ductal, LOB=Lobular, MED= 
Medullar, MIX=Mixed, OTH=Other); hrlevel( Hormone 
receptor level: NEG=Negative, POS=Positive); 
hgb(Hemoglobin g/l); nodediss( Whether axillary node 
dissection was done: Y=Yes, N=No); age(Age at diagnosis in 
years). All these attributable variables will be used in the 
modeling of breast cancer in a separate study where various 
statistical models are used to identify the significant 
prognostic factors in the relapse of breast cancer, as well as 
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the interactions between the variables and ranking of 
significant individual attributable variables and interactions. 

III. NONPARAMETRIC ANALYSIS  
Kaplan-Meier estimator [3] (also known as the product 

limit estimator) estimates the survival function from survival 
related data. In many medical researches, it is used to measure 
the portion of patients living for a certain amount of time after 
treatment. Kaplan-Meier is useful when we have censored 
data, and it is equivalent to the empirical distribution when no 
truncation or censoring occurs.  

Let )(tS  be the probability that an individual will not have 
reoccurrence of breast cancer after time t . For a sample of 
size n , denote the observed times until death of n sample 
members as ntttt ≤≤≤≤ ...321 . Then the nonparametric 
Kaplan-Meier estimator of the survival function is estimated 
by :  
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where in  is the number of survivors just prior to time it , and 

id is the number of deaths at time it . 
Kaplan-Meier estimates of the survival curves of relapse 

time for the two treatment groups are shown in Fig. 1. 

 
Fig. 1 Survival curves of two treatment groups 

 
Kaplan-Meier is a nonparametric procedure for estimating 

the survival curve; however, it is not commonly used to 
compare the true mean effectiveness of the two treatments. In 
the present study, we perform actual nonparametric analysis 
utilizing Wilcoxon rank sum test and Peto & Peto 
modification of the Gehan-Wilcoxon test. We proceed in 
nonparametric direction for comparison purpose with the 
results obtained using parametric analysis. Utilizing the two 
different nonparametric tests, we found the information in 
Table 1, which shows that the combination of the two 
treatments (RT+Tam) is more effective than using the single 

treatment (Tam) which is consistent with Fig. 1. 
 

IV. PARAMETRIC ANALYSIS  
First, censored dataset which consists of 641 patients are 

analyzed, and the characteristic of the behavior of relapse time 
in RT+Tam arm is investigated through goodness of fit tests. 
The best probability distribution is the lognormal distribution, 
with corresponding maximum likelihood estimator (MLE) of 
the following form μ̂ =5.148, σ̂ =2.47 (as shown in Table 2). 
A graphical presentation of the cumulative distribution 
function (CDF) is shown by Fig. 2 where Kaplan-Meier curve 
and its 95% confidence band, as well as CDF of the fitted 
lognormal distribution are plotted. 
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Fig. 2 Fitted lognormal CDF curve for RT+Tam 

 
As can be seen from the above graph, lognormal probability 

distribution seems to be a good fit for the relapse time of 
breast cancer patients in RT+Tam, and the survival curve from 
the lognormal probability distribution with estimated 
parameters is very close to the Kaplan-Meier survival curve 
and it is within the 95% confidence band constructed from 
Kaplan-Meier survival curve.  
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TABLE II 
ESTIMATED  PARAMETERS  AND  LOG-LIKELIHOOD  OF  LOGNORMAL 

DISTRIBUTION  

 μ̂  σ̂  Log-likelihood 

Totality 4.101 2.04 -367 

RT+Tam 
 

5.148 2.47 -134.4 

Tam 3.491 1.79 -227.3 

TABLE I 
TEST THE DIFFERENCE OF MEAS OF TWO TREATMENTS 

 Chi-Square Degree of 
freedom P-value 

Log-rank 9.8 1 0.0017 

Peto & Peto 9.6 1 0.00197 
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Similarly, we perform a parametric analysis for patients in 
Tam arm. It has been proven through goodness-of-fit test that 
the subject data follows a lognormal distribution as well, with 
MLE of μ̂ =3.419, σ̂ =1.79 (as shown in Table 2). Therefore, 
the final estimated form of the lognormal probability 
distribution is given in Table 2 and a graphical form of the 
cumulative distribution function is given in Fig.3.  
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Fig. 3 Fitted lognormal survival curve for Tam 

 
Since relapse time in RT+Tam and Tam arm both follow 

lognormal probability distribution, the log-likelihood ratio test 
can be applied to test hypothesis  

                 μμμ == 21:oH  vs. 211 : μμ ≠H  
The log-likelihood ratio test statistic is given by 
                    6.10)](),([2 21 =−−−= μμμμ llT   

with one degree of freedom, and from the Chi-square 
distribution table, p-value is between 0.05 and 0.001. Thus, 
there is significant difference between the locations of the two 
treatment groups, which is consistent with the conclusion 
using nonparametric tests. 

While for the uncensored dataset of the 77 breast cancer 
patients, of which 26 are treated with  RT+Tam  and 51 with 
Tam alone, in order to perform goodness of  fit test to identify 
the PDF of the 26 patients, we employ bootstrapping 
technique to increase the sample size of the RT+Tam arm. 
Through goodness of fit tests including Kolmogorov-Smirnov, 
Anderson-Darling and Chi-Square tests, the best fit for 
RT+Tam is log-logistic probability distribution while the best 
for Tam arm is general Pareto probability distribution. 
Considering the difference in probability distributions of the 
two groups, further analysis or tests are not conducted to 
check the mean difference in relapse time. Since consistent 
results were obtained using nonparametric and parametric 
tests with regard to the censored dataset, we only considered 
the censored dataset for the subsequent analysis. However, as 
we will see in the following discussion, after applying 
decision tree analysis to partition the subject data as a function 

of the tumor size, age of patient and haemoglobin, the findings 
of the two treatments give contradictory results which could 
be quite misleading in the treatment of breast cancer patients 
as the nonparametric and parametric analysis indicates.  

V. DECISION TREE ANALYSIS 
The clinicopathological characters of breast cancer patients 

are heterogeneous. Consequently, the survival times are 
different in subgroups of patients. Decision tree analysis [4]-
[9] is used to homogenize the data by separating the data into 
different subgroups on the basis of similarity of their response 
to treatment. The general goal of such applications is to 
identify prognostic factors that are predictive of survival 
outcome and time to an event of interest (relapse time in this 
study). For example, a tree-based decision analysis enables the 
natural identification of prognostic groups among patients, 
using information available regarding several 
clinicopathologic variables. Such groupings are important 
because patients treated with RT+Tam and Tam present 
considerable heterogeneity in terms of relapse time, and the 
groupings allow physicians to make early yet prudent 
decisions regarding adjuvant combination therapies. 

The concept of exponential decision tree analysis [10] is to 
reduce the impurity within nodes by splitting based on 
covariates using a specified loss function. Assuming the 
hazard rate within a given node is constant, ( ) jh y λ=  for 

all y in group j , and then the survival function within each 
node is an exponential function. The split point is selected so 
that the loss among the possible binary splits defined by the 
covariates are minimized. The loss function for a node t  is 
given by 

            )/log()(ˆ)( Tttt YDDDtLtR −=−=           (2) 
where t i

i

D d= ∑ is the number of complete observations at 

the node and t i
i

Y y= ∑ is the total observed time. 

Considering our main focus here is to compare the two 
treatments instead of analyzing each treatment alone, the 
maximum tree depth is set to be 3 with complexity parameter 
0.02. The trees of RT+Tam and Tam are shown in Fig.4 and 
Fig.5 as follows: 

 
 
          Fig. 4 Radiation +Tamoxifen          Fig. 5 Tamoxifen  
 

1. Kaplan-Meier (nonparametric) 
2.  Lognormal (parametric) 
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RT+Tam arm is divided into 4 groups denoted by 
RT1,RT2,RT3,RT4 from the left to the right; Tam arm is 
divided into 4 groups denoted by T1,T2,T3,T4 from the left to 
the right. To further investigate the survival curves of a 
subgroup from different treatment arms, Kaplan-Meier 
survival curves are plotted in Fig. 6. 

 
Fig. 6  Survival time for different subgroups 

 
Using decision tree analysis we conclude that giving 

radiation to a patient whose tumor size exceeds 3.05cm would 
be catastrophic as has been shown in Fig.6 since patients in 
RT1 are most likely to relapse. Furthermore, treatment Tam is 
more effective than treatment RT+Tam with respect to relapse 
time has also been shown by the survival curves of T2 and 
RT2. In addition, we can conclude that by using decision tree 
analysis and the corresponding survival analysis, we can 
group the breast cancer patients into three clusterings that 
identify the effectiveness of treatment RT+Tam versus 
treatment Tam. For example, the survival curve of RT3 is very 
close to that of T1, which suggests that for patients whose age 
is under 74.5 and have tumor size between 1.45cm and 3.05 
cm, RT+Tam shows no advantage over Tam. Thus, it would 
be desirable for this patient not to consider receiving radiation. 

We summarize below when RT+Tam and Tam are almost 
equally effective 

(1)RT4, T2, RT3, RT2, T1 
    (2)T3, T4 

(3)RT1 
Thus, our findings are important in guiding the physicians 

to recommend tamoxifen alone without radiation rather than a 
combined treatment of tamoxifen and radiation when they are 
equally effective to breast cancer patients with certain size of 
tumor, age and hemoglobin level. 

VI. CONCLUSION  
Although overall parametric and nonparametric 

comparisons of RT+Tam and Tam arms show that the 
combination of radiation and tamoxifen is more effective than 
tamoxifen alone with regard to the relapse time of a breast 
cancer patient, a decision tree analysis for censored data 
reveals that the heterogeneity of clinicopathological 
characteristics lead to important difference between subgroups 

of the two treatment groups, thus affecting the decision 
making process in choosing suitable treatment for breast 
cancer patients.  
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