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Abstract. The purpose of this survey paper is to recall the major benchmarks

of the theory of linear extremal problems in Hardy spaces and to outline the

current status and open problems remaining in Bergman spaces. We focus on
the model extremal problem of maximizing the norm of the linear functional

associated with integration against a polynomial of finite degree, and discuss

known solutions of particular cases of that problem. We examine duality
and its application in both Hardy and Bergman spaces. Finally, we discuss

some recent progress on the finiteness of the Blaschke product of the extremal

solution in Bergman spaces.

1. Introduction and Historical Remarks

Solving extremal problems has been one of the major stimuli for progress in
complex analysis, starting with the Schwarz lemma in the late 19th century, fol-
lowed by work on coefficients of bounded analytic functions by C. Carathéodory
and L. Fejér, Landau, Szasz, and others. At the end of the First World War, F.
Riesz considered a best approximation problem in the Hardy space H1, and in
1926, Szasz associated this problem with a dual problem in H∞. This duality was
rediscovered by Geronimus and, in a more general framework, by Krein in 1938.
Extremal problems in multiply connected domains were studied by Grunsky (1940),
Heins (1940), Robinson (1943), Goluzin (1946), and Ahlfors (1947). Macintyre and
Rogosinski (1950) gave a detailed survey of results related to extremal problems
involving coefficients of functions in all Hardy classes. Systematic use of duality
in linear extremal problems for analytic functions started with S. Ya. Khavinson
(1949) and independently Rogosinski and Shapiro (1953). Further studies were
undertaken by Bonsall, Royden, Read, Adamyan, Arov, Krein, Walsh, among oth-
ers. For a full account of the history of the development of extremal problems and
references, see [18, pp. 51–57].

Work on Bergman spaces began with Ryabych in the early 1960s, who started
the investigation of the existence and regularity of solutions ([21, 22]). In 1991,
Osipenko and Stessin ([19]) solved an explicit optimization problem in Bergman
spaces involving linear combinations of the value of a function and its derivative
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2 C. BÉNÉTEAU AND D. KHAVINSON

at a particular point in the disk. The theory of contractive divisors in Bergman
spaces, initiated by Hedenmalm ([7]), followed by Duren, D. Khavinson, Shapiro
and Sundberg ([2, 3]), prompted a burst of activity in Bergman spaces which
gave insight into the structure of the z-invariant subspaces of Bergman spaces.
These developments are recorded in two books on Bergman spaces ([4, 8]). In
1997, D. Khavinson and Stessin made a deeper study of linear extremal problems
in Bergman spaces ([9]). Ferguson gave a simpler proof of Ryabych’s regularity
results and generalized them in 2009 and 2010 ([5]). The paper [26] contains a nice
discussion of results on extremal problems in Bergman spaces.

The purpose of this survey is to recall the major benchmarks of the theory in
Hardy spaces and to outline the current status of developments in Bergman spaces
as well as the obstacles that still remain there. The plan of the paper is as follows:
we begin in Section 2 by defining Bergman spaces, state a model extremal problem,
and investigate the existence and uniqueness of extremals. In Section 3, we give
examples and known solutions of that extremal problem in special cases. Section
4 discusses the Duality Theorem, and in Section 5, we apply duality to see how
to get the solutions in Hardy spaces. In Section 6, we tackle the Bergman space
case, discuss the difficulties and examine the connection with partial differential
equations. In Section 7, we give a proof of a new result that the Blaschke product
of the extremal solution for Bergman spaces Ap for p close to 2 is finite.

2. A Model Extremal Problem in Bergman Spaces

Let us begin by examining a model extremal problem in the Bergman space.

Definition 2.1. For 0 < p <∞, define the Bergman space as

Ap =

{
f analytic in D :

(∫
D
|f(z)|pdA(z)

) 1
p

=: ‖f‖Ap <∞

}
,

where dA(z) = 1
πdxdy denotes normalized area measure in the unit disk D, z =

x+ iy.

Consider the following model extremal problem: Fix 1 ≤ p < ∞. Given a
non-zero polynomial

ω(z) =

N∑
k=0

akz
k,

describe the extremal solutions of the problem:

(2.1) λp := sup

{
Re

(∫
D
f(z)ω(z) dA(z)

)
: ‖f‖Ap ≤ 1

}
or, equivalently,

(2.2) sup

{
Re

(
N∑
0

ckf
(k)(0)

)
, ck =

ak
(k + 1)!

, ‖f‖Ap ≤ 1

}
.

Solving Problem (2.1) is equivalent to solving the following problem:

(2.3) inf

{
‖F‖Ap :

∫
D
FωdA = 1

}
,

since it is easily checked that F ∗ is a solution to (2.3) if and only if f∗ is a solution
to (2.1), where F ∗ = f∗/λp. Let us examine questions of existence and uniqueness.
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For 1 ≤ p <∞, if {Fn} is a sequence of Ap functions approaching the infimum
in (2.3), then their Ap norms are bounded, and thus, thinking of these functions as
linear functionals on Aq for 1/p + 1/q = 1, by the weak* compactness of bounded
sets in Ap, there exists a function F ∗ ∈ Ap and a subsequence Fnk

of Fn such that
Fnk

approaches F ∗ weak*. In particular,

1 =

∫
D
Fnk

ωdA→
∫
D
F ∗ωdA,

and therefore ∫
D
F ∗ωdA = 1,

and of course, Fnk
→ F ∗ pointwise. Finally, by Fatou’s theorem, ‖F ∗‖Ap ≤

lim inf ‖Fnk
‖Ap , and therefore

‖F ∗‖Ap = inf

{
‖F‖Ap :

∫
D
FωdA = 1

}
,

as desired.
If p = 1, the argument is similar but slightly more delicate, since to use weak*

compactness, we must think of A1 as a subset of the set of complex measures on
D. In this case, for a sequence {Fn} of A1 functions approaching the infimum in
(2.3), the measures FndA form a bounded sequence of measures on the disk, and
therefore, by weak* compactness of bounded measures on D, there exists a measure
dµ∗ such that some subsequence Fnk

dA approaches dµ∗ weak*, that is∫
D
Fnk

fdA→
∫
D
fdµ,

for every f continuous in D. We now appeal to a version of the F&M Riesz theorem
for A1 proved by H. Shapiro ([23, 24]), which can be stated as follows.

Theorem 2.2. Let Ω be any bounded open set with smooth boundary, and
let M(Ω) be the Banach space of bounded complex measures on Ω, and suppose
fn ∈ A1(Ω) is a sequence of functions such that fndA → dµ weak*, for some
µ ∈M(Ω). Then there exists f ∈ A1(Ω) such that dµ = fdA.

Here, A1(Ω) is naturally defined as the space of integrable analytic functions
in the domain Ω. Note that in the original statement of this theorem, the domain
Ω is allowed to have non-smooth boundary points, and then the limit measure is
of the form fdµ+ dν, where ν a singular measure supported on these non smooth
boundary points. See pp. 75 – 76 of [24] for details.

Now, getting back to the proof of existence, we see that by Theorem 2.2 applied
to D, the measure µ∗ in question is absolutely continuous, and therefore, there exists
a function F ∗ such that the measures Fnk

dA approach F ∗dA weak*. The rest of
the argument is the same as for p > 1, since ω is continuous.

Finally, the Bergman spaces Ap are strictly convex for all 1 ≤ p < ∞, (see,
for example, [4, pp. 28–29]), which implies that there can only be one element
of minimal norm satisfying

∫
D FωdA = 1. Therefore the solution to Problem 2.3

and therefore to Problem 2.1 is unique. Note that for 1 < p < ∞, the argument
showing existence and uniqueness of an extremal for the model problem considered
here immediately extends to ω ∈ Aq, for 1/p+ 1/q = 1.

The main thrust of this work is to study the smoothness properties of the
extremal functions. It is always expected that the solution of a “nice” extremal
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problem is much better than the generic function in the space. In particular, for ω
a polynomial as in the above Model Problem (2.1), it turns out that the extremal
solution f∗ is a bounded analytic function, continuous in the closed disk. However,
obtaining this regularity already involves significant technical difficulty and requires
the use of deep results from nonlinear partial differential equations ([22, 5, 9]).

Let us now turn to some examples of known solutions to the Model Problem
for particular cases.

3. Examples of known solutions

For some particular polynomials or for p = 2, the solutions to Model Problem
2.1 are known explicitly and are discussed briefly here.

Example 3.1. The simplest example is that of A2. In that case, by the Cauchy-
Schwarz inequality, the supremum

sup

{
Re

(∫
D
f(z)ω(z) dA(z)

)
: ‖f‖Ap ≤ 1

}
is attained by the function f∗ = ω/‖ω‖A2 , for any polynomial ω, and in fact, for
any ω ∈ A2. Henceforth, we will assume that p 6= 2.

Example 3.2. If ω = zN , then Ryabych showed ([21]) that the extremal
function for

sup
{
Re f (N)(0) : ‖f‖Ap ≤ 1

}
is f∗(z) =

{
Np+1

2

}1/p

zN .

Example 3.3. If we would like to consider Example 2 in a more general setting
by estimating values of a function at a point β instead of at the origin, we can
allow ω to be a simple rational function, namely, ω(z) = (1 − βz)−2, for |β| < 1,
the Bergman kernel at β. In that case, Problem (2.1) becomes

sup{Re f(β) : ‖f‖Ap ≤ 1}.
This problem was studied by Ryabych in [21] and also by Vukotić in [25], and the
extremal solution has the form

f∗(z) = (1− |β|2)2/p(1− βz)−4/p.

Example 3.4. In 1991, Osipenko and Stessin ([19]) considered the case of a
simple linear polynomial, ω(z) = a0 + a1z. Problem (2.1) then becomes

sup {Re(c0f(0) + c1f
′(0)) : ‖f‖Ap ≤ 1} .

They showed that

f∗(z) = C
z − β
1− βz

(1− αz)2/p

where |β| ≤ 1, |α| ≤ 1, and C is a constant. They also wrote down equations
relating c0 and c1 to β and α. In addition, they considered the case when 0 is
replaced by an arbitrary point ζ ∈ D, i.e., when ω is a linear combination of the
Bergman kernel and its derivative. Their results were already technically quite
difficult, and there doesn’t seem to be much hope of generalizing their approach,
which was based on “guessing” the exact form of the extremal, to higher degree
polynomials.
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Example 3.5. Problems of the type considered in Examples 1 through 4 are
connected to what are often called Carathéodory-Fejér type problems. An impor-
tant example is the problem of finding, for given |βj | < 1 for j = 1, . . . ,m:

(3.1)
inf{‖f‖Ap : f (N)(0) = 1, f(0) = · · · = f (N−1)(0) = f(β1) = · · ·

= f (km)(βm) = 0}.

This problem is equivalent to the problem of finding, for given |βj | < 1 for j =
1, . . . ,m:

(3.2)
sup{Re f (N)(0) : ‖f‖Ap ≤ 1, f(0) = · · · = f (N−1)(0) = f(β1) = · · ·

= f (km)(βm) = 0},
whose extremal solution is by definition a “contractive divisor” in Ap. Contrac-
tive divisors in Bergman spaces were discovered and studied in the 1990s, first by
Hedenmalm ([7]) for p = 2, and then by Duren, Khavinson, Shapiro, and Sundberg
([2, 3]) for all p, and later by MacGregor and Stessin ([12]). Contractive divisors
turned out to be intimately connected to the theory of z invariant subspaces in
Bergman spaces. For more on this subject, see [4, 8].

The extremal functions are

f∗(z) = CzN
m∏
1

{
z − βj
1− βjz

}kj
R(z)2/p,

where R is a rational function with poles at ∞ and at {1/β̄j}mj=1 of degree less

than or equal to 2N +
∑m
j=1 kj . The problem is equivalent to problem (2.1) with

ω being a specific linear combination of the Bergman kernel (1− ζz)−2 and its ∂
∂ζ

derivatives at the βj .

All of these particular examples hint at a more general theory and a simple
form of the extremal solutions. Let us now examine this question and turn to the
tools that helped establish the qualitative form of the solutions in spaces simpler
than the Bergman spaces.

4. Duality

In the late 1940s and early 1950s, the systematic use of duality to solve extremal
problems in complex function theory became prevalent. The simplest form of a
duality statement is the following.

Theorem 4.1 (see, e.g., [18] p. 2). Let X be a normed linear space, and let
X∗ be the space of bounded linear functionals on X. Suppose E ⊂ X is a subspace
of X and l0 is a given linear functional in X∗. Then

sup {|l0(f)| : f ∈ E, ‖f‖ ≤ 1} = inf
{
‖l0 − l‖ : l ∈ E⊥

}
= ‖l0 − l∗‖

for some l∗ ∈ E⊥, where E⊥ is the annihilator of E in X∗, defined to be the set
{l ∈ X∗ : l(f) = 0 ∀f ∈ E} .

Duality thus pairs a linear extremal problem with a problem of best approxi-
mation. This pairing allows one to gain a deeper understanding of each one in turn,
as we shall see. The short proof follows immediately from the Hahn-Banach theo-
rem and is included to emphasize how the best approximation in the dual problem
appears.
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Proof. First note that for any l ∈ E⊥ and for any f ∈ E with ‖f‖ ≤ 1, we
have

|l0(f)| = |(l0 − l)(f)| ≤ ‖l0 − l‖.
Therefore,

‖l0‖E = sup {|l0(f)| : f ∈ E, ‖f‖ ≤ 1} ≤ inf
{
‖l0 − l‖ : l ∈ E⊥

}
.

Now by the Hahn-Banach theorem, there exists a linear functional L on X such
that L|E = l0 and ‖L‖X = ‖l0‖E . Therefore (l0 − L) ∈ E⊥, and

‖l0‖E ≤ inf
{
‖l0 − l‖ : l ∈ E⊥

}
≤ ‖l0 − (l0 − L)‖X = ‖L‖X ,

and therefore the chain of inequalities is actually a chain of equalities. Putting
l∗ = l0 − L gives the desired result. �

One immediate interesting note is that the best approximation l∗ therefore
always exists, even in this general setting. Whether the supremum is actually
achieved and gives rise to an extremal f∗ ∈ E is not always the case and depends
on the spaces and linear functionals being considered. Finally, in order to be able to
use the duality theorem, we need to have information about the annihilator spaces.
To see how this works, let us, in the following section, apply duality to our model
problem, but in Hardy spaces. (See, for example, [17, 1] for details.)

5. Duality applied to Hp-theory

Although Bergman spaces are defined in a natural way, the functions in those
spaces are quite complicated, and their structure is not entirely understood. For
example, Bergman space functions need not have any radial limits on the unit circle.
On the other hand, the Hardy spaces are classical spaces whose structure is quite
well understood, although their definition is in some sense less natural. We begin
this section by defining the Hardy spaces.

Definition 5.1. For 0 < p <∞, define the Hardy space as

Hp :=

{
f analytic in D : sup

0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ =: ‖f‖pHp <∞
}
.

The Hardy space of bounded analytic functions is defined by

H∞ =

{
fanalytic in D : ‖f‖∞ := sup

z∈D
|f(z)| <∞

}
.

It is well-known that Hardy space functions f have radial limits limr→1− f(reiθ) =:
f(eiθ) for almost every θ ∈ T, and that ‖f‖Hp = ‖f(eiθ)‖Lp , where Lp is the usual

space of measurable and p integrable functions on the circle. For ω(z) =
∑N
k=0 akz

k,
let us now consider our model problem in the Hardy space, for 1 ≤ p <∞, of finding

(5.1) λ := sup

{
Re

∫ 2π

0

f(eiθ)ω(eiθ)
dθ

2π
, ‖f‖Hp ≤ 1

}
.

In order to apply the Duality Theorem 4.1 to this setting, we will consider the
space E = Hp as a subspace of the space X = Lp(T). Then the dual space X∗ is
Lq, where 1/p+ 1/q = 1, and the annihilator space E⊥ is the set of Lq functions g
such that ∫ 2π

0

f(eiθ)g(eiθ)dθ = 0
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for every f ∈ Hp. In particular,∫ 2π

0

einθg(eiθ)dθ = 0

for every integer n ≥ 0, and therefore, by the classical F & M Riesz theorem, (see,
for example, [1, p. 41]), g ∈ Hq and vanishes at the origin. (We will write the
space of such functions as Hq

0 .) Therefore, Problem (5.1) above can be written, in
its dual form, as:

λ = min
{
‖ω − φ∗‖Lq(T), φ

∗ ∈ Hq
0

}
.

By the general duality theorem, we know the best approximation φ∗ exists, and one
can also show that φ∗ is unique whenever f∗ exists. It turns out that the extremal
f∗ for the supremum problem exists and is unique for p > 1, but for p = 1 in
general this is not the case: in fact, the existence of f∗ here for p = 1 follows from
the continuity of ω (as in the A1 case discussed in Section 2). See [18], Sections 4
and 6, for more details on questions of existence and uniqueness in the Hardy space
case.

Now given these extremals f∗ and φ∗, notice that we have the following chain
of inequalities, which must actually be equalities:

λ = Re

∫ 2π

0

f∗(eiθ)ω(eiθ)
dθ

2π
= Re

∫ 2π

0

f∗(eiθ) (ω(eiθ)− φ∗(eiθ)) dθ
2π

≤
∫ 2π

0

|f∗(eiθ)||ω(eiθ)− φ∗(eiθ)| dθ
2π

≤ ‖f‖Hp‖ω − φ∗‖Lq

≤ ‖ω − φ∗‖Lq

= λ.

Therefore, because we have equality in Hölder’s inequality above, we must have
that

λq|f∗(eiθ)|p = |ω(eiθ)− φ∗(eiθ)|q

almost everywhere on the circle. Taking q-th roots gives that

λ|f∗(eiθ)|p/q = λ|f∗(eiθ)|p−1 = |ω(eiθ)− φ∗(eiθ)|
almost everywhere on T. In addition, for equality above, we must have that ‖f‖Hp =
1 and

f∗(eiθ)(ω(eiθ)− φ∗(eiθ)) ≥ 0

a.e. on the circle. Putting these together gives an equivalent characterization of
extremality of f∗, φ∗ as:

(5.2) λ
|f∗(eiθ)|p

f∗(eiθ)
= ω(eiθ)− φ∗(eiθ) a.e. on T.

Equivalently, the function λ |f
∗|p
f∗ − ω annihilates Hp.

Now notice that the function f∗(z)(ω(z) − φ∗(z)) is well-behaved inside the
disk, in a neighborhood of the unit circle, since f∗ ∈ Hp and φ∗ ∈ Hq, and for

|z| = 1, ω(z) = a0 +
∑N
k=1

ak
zk
. Therefore the product f∗(ω − φ∗) can be thought

of as a function that is in the Hardy class H1 in an annulus inside the unit disk.
Moreover, this function is positive (hence real) on the circle. Thus, one can apply
the Schwarz reflection principle (see, for example, [16, pp. 183-185]) to extend the



8 C. BÉNÉTEAU AND D. KHAVINSON

product to C\{0}. Moreover, at z = 0, the singularity is given by the behavior of ω,
and hence is a pole of order N, and therefore by reflection a similar behavior occurs
at∞. Hence f∗(ω−φ∗) is a rational function on the Riemann sphere with two poles,
each of order N at 0 and ∞. Moreover, since f∗(ω − φ∗) is positive on the unit
circle, by the argument principle, the increment of the argument of the product is 0
on the circle, and hence the product has 2N zeros, which by the symmetry required
by the reflection principle, must be divided equally and symmetrically inside and
outside the disk. (Zeros on the circle come with even multiplicity.) Hence,

f∗(z)(ω(z)− φ∗(z)) = Cz−N
N∏
j=1

(z − αj)(1− αjz), |αj | ≤ 1

for some constant C. In particular, f∗ has no singular part, and the zeros of f∗ are
among the αj such that |αj | < 1, and therefore the Blaschke factor of f∗ is

k∏
j=1

z − αj
1− αjz

,

where k ≤ N. Finally, the outer part of f∗ is determined by the equation on the
boundary that requires

λ|f∗(z)|p = f∗(z)(ω(z)− φ∗(z))

= Cz−N
N∏
1

(z − αj)(1− αjz)

= C

N∏
1

[
z − αj
z

]
(1− αjz)

= C

N∏
1

(1− αjz)(1− αjz)

= C

N∏
1

|1− αjz|2.

Therefore the extremal f∗ is of the form

(5.3) f∗(z) = C

k∏
1

z − αj
1− αjz

N∏
1

(1− αjz)2/p, k ≤ N,

giving a qualitative solution to the extremal problem.
Let us now turn to a discussion of this problem in Bergman spaces.

6. Extremal problems in Bergman spaces

Recall the problem of finding and describing the extremal solutions of

(6.1) λp := sup

{
Re

(∫
D
f(z)ω(z) dA(z)

)
: ‖f‖Ap ≤ 1

}
,

where ω is a polynomial of degree N. As seen in Section 3, for each 1 < p < ∞,
the solution f∗ exists and is unique. For p = 2, the solution is f∗ = ω/‖ω‖ by
the Cauchy-Schwarz inequality. For 1 ≤ p < ∞, and even for any ω ∈ Hq, q :
1/p+ 1/q = 1, Ryabych proved ([22]) that the solution is in Hp, and, in particular,
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has boundary values at almost every point of the unit circle T. T. Ferguson ([5])
recently refined that proof.

Moreover, deeper and more technical results in [9] imply that for 1 < p < ∞,
the solution f∗ of (2.1), with ω a polynomial, is continuous in the closed disk, in
fact is Lip (γ,D) for some γ that depends on p ([9]). These results support the
philosophy that extremal functions are much better than the generic functions of
the space where the problem is set. The most that is known regarding the extremal
solution to date is the following theorem of D. Khavinson and M. Stessin ([9]):

Theorem 6.1. Let ω be a polynomial of degree N and let 1 < p < ∞. The
extremal solution f∗ to

(6.2) λp := sup

{
Re

(∫
D
f(z)ω(z) dA(z)

)
: ‖f‖Ap ≤ 1

}
,

is in Lip(γ,D) and has the form

f∗(z) = C

∞∏
j=1

βj − z
1− βjz

|βj |
βj

N∏
j=1

(1− αjz)2/p
,

where C, |βj | < 1, and |αj | ≤ 1 are constants, and the βj can only accumulate to
those values of αl that lie on the circle.

One of the missing pieces of the theory of extremal problems in Bergman spaces
versus that in Hardy spaces is information about the Blaschke product. We thus
state the following:

Conjecture 6.1. The Blaschke product of the extremal solution has at most
N factors.

In the next section, we will show some progress in this direction, but the full
conjecture is still open.

Let us now examine some key steps in the proof of Theorem 6.1 and see how
the theory of PDEs comes into play. We will discuss here only the case p > 1,
since for p = 1, these methods break down. The validity of Theorem 6.1 for p = 1
remains unknown.

Recall that we have already shown that there exists a unique solution f∗ to
Problem (6.1). In order to apply duality, we consider Ap as a subspace of Lp(D),
and identify the annihilator of Ap by appealing to Khavin’s lemma (see [24, Lemma
4.2 p. 26] and [6]).

Lemma 6.2. The annihilator of Ap(D) inside Lp(D) can be described by

(Ap)
⊥ ∼=

{
∂v

∂z̄
: v ∈W 1,q

0 (D)

}
,

where W 1,q
0 (D) is the Sobolev space of functions vanishing on T and with gradients

in Lq(D), with 1/p+ 1/q = 1 and ∂v
∂z̄ = 1

2 ( ∂
∂x + i ∂∂y ).

By following the same reasoning as in Section 5, and setting, for the sake of
brevity, λ := λp, we then obtain that

(6.3) λ
|f∗|p

f∗
− ω =

∂u∗

∂z
a. e. in D,
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where u∗ ∈W 1,q
0 . Now set v(z) := u∗(z) + Ω(z), Ω(z) :=

∫ z
0
ω(ζ)dζ, so that

∂v

∂z̄
= λ
|f∗|p

f∗
.

Then v solves the nonlinear boundary value problem:

(6.4)

∂

∂z
(|vz|q−2vz) = 0 in D;

v = Ω onT.

By results of Ch. Morrey, O. Ladyzhenskaya, and N. Uraltseva (see the discussion
in [9] and [13, 14, 15, 10]), the unique solution v of (6.4) belongs to C1+β(D), β =
β(q). Since

f∗ = λq−1 |vz|q

vz
,

we get that f∗ ∈ Lip(γ,D), γ = γ(p). (See [9] for details.)

Remark 6.3. For values of p in any compact subset of (1,∞), the corresponding
extremals f∗ can all be taken to be Lip(γ,D) for the same γ. This will turn out
to be key later (see Section 7) when estimating the number of zeros of extremal
functions.

Note that Conjecture 6.1 is equivalent to the following:

Conjecture 6.2. The solution of the BVP (6.4)

(6.5)

∂

∂z
(|vz|q−2vz) = 0 in D;

v = Ω onT.

has at most N critical points in D, that is, points where ∂v
∂z = 0.

J. Lewis ([11]) has proved a real-valued version of this result for q-Laplacians.
Now let us examine the outer part F of the extremal. We would like to show

that |F |p = |f∗|p on T is a positive trigonometric polynomial of degree less than
or equal to N . First notice that the Hardy-Littlewood theorem ([1, Theorem 5.1])
implies that since f∗ ∈ Lip(γ,D), (f∗)′ ∈ Ap1 , for some p1 > 1. By duality, we get
the so-called orthogonality relationships∫

D

{
λ
|f∗|p

f∗
− ω

}
gdA = 0

for all g ∈ A1. Note that, since ω is of degree N,
∫
D ωz

N+kgdA = 0 for any integer

k ≥ 1 and any g ∈ A1. Now, Green’s formula gives for every integer k ≥ 1:

(6.6)

∫
T
|f∗|pzN+kdθ = i

∫
T
|f∗|pzN+k+1dz = p

∫
D

|f∗|p

f∗
(f∗)′zN+k+1dA

+2

∫
D

|f∗|p

f∗
(N + k + 1)zN+kf∗dA.

Each of these last two terms is 0, by the orthogonality relationships, and therefore,
for each k ≥ 1, ∫

T
|f∗|pzN+kdθ = 0,

showing that the outer part of f∗ is the 2/p-th root of a polynomial of degree at
most N. We therefore get the desired form of the extremal f∗ as in Theorem 6.1.
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The problem of showing that the Blaschke factor has at most N terms, or,
even, indeed, is finite, still remains. We will discuss this more in the next section.
Notice, though, that instead of Problem (6.1), we can consider the problem with
ω a rational function, to get point evaluations at points other than the origin.

More specifically, given ω(z) :=
∑N
k=1

ak
(1−wkz)2

, |wk| < 1, a linear combination of

Bergman reproducing kernels, our problem becomes that of finding the extremal
solutions to

(6.7) sup

{
Re

(
N∑
1

akf(wk)

)
, |wk| < 1, ‖f‖Ap ≤ 1

}
.

Then the results of Khavinson and Stessin ([9]), analogous to Theorem 6.1, imply
that

f∗(z) = CB(z)

2N−2∏
j=1

(1− αjz)2/p
N∏
1

(1− wjz)−4/p
,

where C is a constant, |αj | ≤ 1, j = 1, · · · , 2N − 2, are constants and the zeros of
the Blaschke product B may only accumulate to those αj that lie on T.

We now turn to a discussion of what more can be said about the Blaschke
factor, at least for values of p close to 2.

7. A continuity approach

In an attempt to shed some light on Conjecture 6.1, we begin with the following
lemma.

Lemma 7.1. For 1 ≤ p <∞, λ(p) := λp is a decreasing function of p.

Proof. First note that one can easily use Jensen’s inequality to show that the
norms ‖f‖p are increasing. Letting 1 ≤ p < q <∞, let f∗p be the extremal solution
to Problem 2.1 for p and f∗q for q. Then ‖f∗q ‖p ≤ ‖f∗q ‖q = 1, and therefore f∗q is a
competitor for the extremal problem 2.1 for p. Therefore

Re

(∫
D
f∗q (z)ω(z) dA(z)

)
≤ Re

(∫
D
f∗p (z)ω(z) dA(z)

)
= λ(p),

or λ(q) ≤ λ(p), as desired. �

Lemma 7.2. Let 1 < p <∞, and suppose that pn → p and that f∗pn(z)→ f(z)

uniformly in D. Then f = f∗p , that is, f is the extremal function for the Problem
(2.1) for p.

Proof. Since f∗pn(z)→ f(z) uniformly in D, we have that∫
D
f∗pn(z)ω(z) dA(z)→

∫
D
f(z)ω(z) dA(z).

Note that since |f∗pn | → |f | and since pn → p, |f∗pn |
pn → |f |p, and therefore by

Fatou’s lemma and since ‖f∗pn‖pn = 1, ‖f‖p ≤ 1. Therefore, f is a competitor for
the extremal problem (2.1) for p.

Now if f is not the solution to the extremal problem (2.1), then there exists
g = f∗p ∈ Ap such that ‖g‖p = 1, g is continuous in D (by Theorem 6.1), and, for
some ε > 0,

Re

(∫
D
gω dA

)
> Re

(∫
D
fω dA

)
+ ε.
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Therefore, there exists N such that for n ≥ N ,

(7.1) Re

(∫
D
gω dA

)
> Re

(∫
D
fnω dA

)
+ ε/2.

Now g is continuous in the closed unit disk, and therefore for pn → p, the
functions |g|pn are bounded above by some constant, and therefore (by the bounded
convergence theorem),

γpnn :=

∫
D
|g|pn dA→

∫
D
|g|p dA = 1.

Note that the functions g/γn have norm 1 in Apn .
Since γn → 1 and by (7.1), there exists M such that for m ≥M and for n ≥ N ,

1

γm
Re

(∫
D
gω dA

)
> Re

(∫
D
f∗nω dA

)
+ ε/4.

Choosing a large enough n = m satisfying this inequality leads to a contradiction
of the extremality of f∗n.

Therefore, we must indeed have that g = f∗p , as desired. �

Note that the hypothesis in Lemma 7.2 that the functions f∗pn converge uni-
formly to f in the closed disk is stronger than what is really necessary for the proof:
what is required is that the measures f∗pndA converge weakly to fdA.

Corollary 7.3. For 1 < p <∞, λ(p) is a continuous function of p.

Proof. If pn → p, then, by the remark after the statement of Lemma 6.2, the
functions f∗pn are all in Lip(γ,D) for the some γ, and therefore form a uniformly
bounded and equicontinuous family. Therefore, by the Arzela-Ascoli theorem, there
exists a subsequence f∗pnk

that converges uniformly in D to some function f . By

Lemma 7.2, f = f∗p . Therefore, by the bounded convergence theorem,∫
D
f∗pnk

ω dA(z)→
∫
D
f∗pω dA(z).

Taking real parts, we get that λ(pnk
)→ λ(p). But since the function λ is monotone,

λ(pn)→ λ(p). �

Theorem 7.4. If ω has no zeros on the boundary of the disk, then there exists
Delta > 0 such that if |p−2| < Delta, the extremal function f∗p has at most N zeros

in D.

Proof. If p = 2, then we know the solution is f∗2 = ω, and ω has at most N
zeros in the unit disk, because it is a polynomial of degree N .

First note that the extremal functions cannot have zeros that accumulate inside
the unit disk (otherwise they would be identically zero) and therefore the zeros of
the extremals can only accumulate to the boundary of the disk.

Let us first show that there exists Delta such that for p in a Delta neighborhood
of 2, f∗p has a finite number of zeros. Suppose not. Then there exists a sequence
pn → 2 such that f∗pn have infinitely many zeros in a compact neighborhood of the
boundary of the disk. These zeros must have an accumulation point, and by the
previous remark, this accumulation point must be on the boundary of the disk.

As in the proof of Corollary 7.3 and using Theorem 6.1, by passing to a subse-
quence if necessary, the f∗pn converge uniformly in D to ω by Lemma 7.2. But then
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ω must vanish at the accumulation point on the boundary of the disk, which is a
contradiction. Therefore there exists some neighborhood of p for which f∗p have
finitely many zeros. Moreover by Hurwitz’ theorem, there exists some neighbor-
hood of 2 such that for all p in that neighborhood, all the f∗p have the same number
of zeros as ω inside D, that is, at most N. �

Remark 7.5. This argument works for a more general ω, as long as we know
ω has no zeros on the boundary and has at most N zeros in the disk. In particular,
we have the following corollary.

Corollary 7.6. For p sufficiently close to 2, the extremal solution to

(7.2) sup

{
Re

(
N∑
k=1

akf(wk)

)
, |wk| < 1, ‖f‖Ap ≤ 1

}
has at most 2N − 2 zeros in the unit disk, provided that

∑N
k=1

ak
(1−w̄kz)2

has no

zeros on the unit circle.

The analogue to Conjecture 6.1 is thus that Corollary 7.6 holds for all p > 1.
The question remains how to deal with the case when ω has zeros on the circle.

It is then natural to consider a sequence of functions ωn without zeros on the circle
that converge to ω. In addition, for a fixed p, one can then easily show that the
extremals f∗p,ωn

converge to fp,ω. However, the challenge remains to obtain uniform
estimates on both p and n that would allow for a fixed neighborhood of p = 2 that
does not depend on n.
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25. D. Vukotić, A sharp estimate for Apα functions in Cn, Proc. Amer. Math. Soc. 117 (1993),

no. 3, 753–756.
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