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Abstract. We discuss several problems in classical complex analysis that
might appeal to graduate students and young researchers. Among them are
possible extensions to multiply connected domains of the Neuwirth-Newman
theorem regarding analytic functions with positive boundary values, character-
izing domains by properties of best approximations of z by analytic functions
in various metrics, and sharpening the celebrated Putnam inequality in the
context of Toeplitz operators on Bergman spaces and the related isoperimetric
inequalities, aka “ isoperimetric sandwiches”.

1. Introduction: Spaces of Analytic Functions

This paper is a selective survey of a few problems that are at the interface
of complex analysis and geometry. We will be dealing with various classes of
analytic functions in arbitrary domains, such as Hardy, Bergman, and Smirnov
spaces. Let us begin by defining these spaces (see [8, 9, 16]).

Definition 1.1. For 0 < p <∞, define the Bergman space of the disk to be

Ap(D) =

{
f analytic in D :

(∫
D
|f(z)|pdA(z)

) 1
p

=: ‖f‖p <∞

}
,

where dA = 1
π
dxdy denotes normalized area measure in the unit disk D. The

Bergman spaces Ap(G) for an arbitrary domain G are defined in a similar way.

If instead of area measure, we consider line integrals on concentric circles, we get
the Hardy spaces.

Definition 1.2. For 0 < p <∞, define the Hardy space of the disk as

Hp(D) :=

{
f analytic in D : sup

0<r<1

1

2π

∫ 2π

0

|f(reit)|pdt =: ‖f‖pHp <∞
}
.

When p =∞, we define

H∞(D) = {f analytic in D : sup {|f(z)|, z ∈ D} =: ‖f‖∞ <∞} .

For arbitrary domains G, we define the Hardy spaces as follows (see [11]).
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2 C. BÉNÉTEAU AND D. KHAVINSON

Definition 1.3. An analytic function f(z) in G belongs to the Hardy class Hp(G)
for 0 < p <∞ if the subharmonic function |f |p has a harmonic majorant in G.

Note that Hardy classes are conformally equivalent, i.e., if ϕ : K → G is the
conformal mapping of an n-connected circular domain K onto G, then f ∈ Hp(G)
if and only if f ◦ ϕ ∈ Hp(K). On the other hand, if one defines a space in a
way analogous to that of Definition 1.2 for an arbitrary domain G, one gets
a potentially different class of functions called Smirnov classes ([8, 14]). More
specifically, let G be an n-connected domain in the complex plane bounded by
Jordan rectifiable curves γ1,...,γn and let Γ =

⋃n
i=1 γi.

Definition 1.4. Let 0 < p <∞. An analytic function f(z) in G is said to belong
to the Smirnov class Ep(G) if there exists a sequence of rectifiable curves {Γi}
in G converging to Γ such that

lim sup
i→∞

∫
Γi

|f(z)|p|dz| =: ‖f‖pEp <∞.

Notice that the critical difference between Smirnov classes and Hardy classes is
that the former are not conformally equivalent. In addition, for p ≥ 1, Hardy
functions are represented by Poisson integrals of their boundary values, while
Smirnov functions are represented by Cauchy integrals, i.e., in the former case
the kernel is positive, in the latter, complex. This difference will allow for some
interesting phenomena related to boundary values, which we discuss in the next
section. In Section 3, we examine the concept of analytic content, which is
the best approximation of the simplest anti-analytic function, namely z̄, in an
appropriate context. We will see that analytic content is tightly connected to the
geometry of a domain. In Section 4, we discuss Putnam’s inequality for Toeplitz
operators on Bergman spaces. In each section, we state conjectures and mention
some open problems.

2. Analytic Functions with Positive Boundary Values

For p ≥ 1, it is well-known that functions in Hp(D) cannot have real boundary
values on the circle unless they are constants. This is because Hardy space
functions (p ≥ 1) can be represented as Poisson integrals of their boundary
values, and therefore if they are real on the boundary, they are real in the whole
domain, and thus must be constant. However, for 0 < p < 1, there are many
such functions, for example, f(z) = i1+z

1−z . A beautiful theorem of J. Neuwirth
and D. J. Newman ([24]) shows that if we require the boundary values to be
positive, we can go a little further:

Theorem 2.1. ([24]) Let f ∈ H1/2(D) be such that f(ζ) ≥ 0 for almost every ζ
on the unit circle T. Then f is constant.

Neuwirth and Newman pointed out that the value 1/2 in the theorem is sharp,
since the function z

(1+z)2 is inHp(D) for all 0 < p < 1/2 and has positive boundary

values. If we consider arbitrary domains G that might have “bad boundaries”,
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we can replace non-tangential boundary values with asymptotic boundary values
(see [19]), and interpret “almost everywhere” as being understood with respect
to harmonic measure, and then the theorem extends to Hp(G).

An interesting question is, what happens for the Smirnov classes Ep(G) when
p ≥ 1? The answer depends on the geometric character of the boundary. Recall
that a finitely connected domain G is called Smirnov if the derivative of the
conformal map from a circular domain onto G is an outer function (see [8]).
It turns out that if the domain G is non-Smirnov, then the theorem is false,
and indeed in such a domain, for every 0 < p < ∞, there exist non-constant
f ∈ Ep(G) such that 0 ≤ f(ζ) ≤ 1 for almost every ζ on the boundary of the
domain (see [18]). In the other extreme, if the domain G has smooth boundary
Γ, then the classes Hp(G) and Ep(G) are equal (as sets), and therefore the
situation in Ep(G) is exactly the same as that of Hp(G). However, if the domain
is Smirnov and has singularities, these singularities allow for the construction of
functions in Ep with real boundary values, for certain values of p. In fact, the
values of p that allow for the construction of such functions are tightly connected
in general to the geometric characteristic of the singularity. For more detail on
the construction of such functions with real boundary values, see [6, 7] and the
references therein.

In the case that there do exist non-trivial functions in Ep with real boundary val-
ues, if G is a simply connected Smirnov domain, L. DeCastro and D. Khavinson
noted that the analogue of the Neuwirth-Newman theorem holds:

Theorem 2.2. ([7]) Let G be a simply connected Smirnov domain with rectifiable
boundary Γ. Let p0 ≥ 1 be defined as the smallest p ≥ 1 such that f ∈ Ep(G)
and f has real boundary values a.e. on Γ imply that f is a constant. Then all
f ∈ Ep0/2 such that f ≥ 0 a.e. on Γ are constants.

The proof of this theorem is along the same lines as that of the original Neuwirth-
Newman result, and is sketched here.

Proof. Write f(z) = B(z)S(z)F 2(z), where B(z) is a generalized Blaschke prod-
uct, S(z) is a bounded singular inner function, and F (z) ∈ Ep0 is an outer
function. On Γ, since f ≥ 0, we have that B(z)S(z)F 2(z) = |f(z)|. On the other

hand, |f(z)| = |F (z)|2 = F (z)F (z) a.e., and therefore F (z) = B(z)S(z)F (z) ∈
Ep0(G). This implies that F (z) +F (z) ∈ Ep0(G) and is real-valued, hence a con-
stant. Thus, f(z) = const · B(z)S(z) is a bounded function with non-negative
boundary values, hence a constant as well. �

In multiply connected domains, it is not clear whether the Neuwirth-Newman
theorem holds. We can still write f = QBSF 2, where B is the generalized
Blaschke product, S is a singular inner function, F 2 is an outer factor, F ∈ Ep0 ,
Q is an invertible bounded analytic function, and |Q| is a local constant on Γ (see
[19]). The problem is that |B| and |S| are local constants a.e. on the boundary of
G. Hence, f ≥ 0 a.e. on Γ only yields on Γ that f = QBSF 2 = |QBS|FF , i.e.,
F coincides with different analytic functions on different boundary components.
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However, L. DeCastro and D. Khavinson showed (see [7]) that in an n - connected
domain G of “cardioid type” (as pictured below) with m interior cusps on ∂G,
all E1-functions with positive boundary values are constants. (For such domains,
p0 = 2.)

It seems likely that the proof of this result will hold for finitely connected domains
with finitely many corners, and thus, the authors of that paper conjectured that
the Neuwirth-Newman theorem holds in multiply connected domains:

Conjecture 2.1. ([7]) Let G be a finitely connected Smirnov domain. If p0 ≥ 1
is the smallest index for which all functions in Ep0 with real boundary values are
constants, then all Ep0/2 functions with positive boundary values are constants.

3. Analytic Content

Let us now turn to a discussion of the approximation of z̄ by analytic functions
from different classes in domains with analytic boundaries. The main focus will
be the concept of analytic content.

3.1. Bounded Functions. Let G be a finitely connected region in C with
boundary Γ consisting of n simple closed analytic curves γj, j = 1, . . . , n.

Definition 3.1. The analytic content of a domain G is

λ(G) := inf
φ∈H∞(G)

‖ z̄ − φ ‖L∞(Γ) .

We often call φ the best approximation of z̄ in H∞(G). The analytic content
turns out to have an interesting relationship with certain geometric features of
the domain, as can be seen by the following theorem.

Theorem 3.1. ([2, 21, 13]) Let G be a finitely connected region whose boundary
is analytic, and let A and P be the area and perimeter of G, respectively. Then

2A

P
≤ λ(G) ≤

√
A

π
.

Moreover, λ(G) =
√

A
π

if and only if G is a disk.

Note that by ignoring the analytic content in the inequality stated above, one re-
covers the classical isoperimetric inequality, namely that P 2 ≥ 4πA. In addition,
the theorem states that the upper bound is achieved if and only if G is a disk,
and therefore a natural question is, for which G does the equality 2A

P
= λ(G)

hold? The following theorem gives some equivalent forms for the achievement of
the lower bound.
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Theorem 3.2. ([21]) Let G be a finitely connected region whose boundary is
analytic, and let A and P be the area and perimeter of G. The following are
equivalent:

(i) λ = 2A
P

;

(ii)There is φ ∈ H∞(G) such that z̄(s) − iλdz̄
ds

= φ(z(s)) on Γ, where s is the
arc-length parameter;

(iii) 1
A

∫
G
fdA = 1

P

∫
Γ
fds for all f ∈ H∞(G).

Notice that (iii) holds for annuli G = {r < |z| < R}! Therefore, the lower bound
does indeed hold for regions other than disks. However, D. Khavinson proved in
[21] that if the domain is simply connected, then it is a disk. On the other hand,
if the domain is finitely connected, then (ii) implies that if Γ contains a circular
arc, G is a disk or an annulus. In [21], the author asked whether these are the
only two possibilities. It turns out that the answer is yes! This has been recently
proved in [1].

3.2. Smirnov Classes. If we consider the Smirnov classes Ep(G) instead of
bounded analytic functions in G, we can generalize the notion of analytic content.
In what follows, Lp(Γ) := Lp(Γ, ds), where s is the arc length parameter.

Definition 3.2. For p ≥ 1, the Smirnov analytic content of a domain G is

λEp(G) := inf
φ∈Ep(G)

‖ z̄ − φ ‖Lp(Γ) .

This extremal quantity turns out to be equal to another, often referred to as the
“dual extremal problem”:

sup
f∈Eq

1(G)

∣∣∣∣∫
Γ

z̄f(z)dz

∣∣∣∣ .
Here, Eq

1(G) refers to the unit ball in Eq(G), where 1/p + 1/q = 1. One might
ask if there are upper and lower bounds for the analytic content for the Smirnov
classes similar to those in Theorem 3.1, and indeed there are.

Theorem 3.3. ([15]) Let A,P denote the area and perimeter of a finitely con-
nected domain G. For p ≥ 1, q = p

p−1
, we have

2A
q
√
P
≤ λEp ≤

√
A

π
P

1
p .

Again, one might ask, are disks and annuli the only extremal domains for all λEp ,
p ≥ 1? In addition, do the extremal functions for λEp characterize the domain
G? The following theorem gives some insight into the second question.

Theorem 3.4. ([15]) Let Γ := ∂G be real analytic and p ≥ 1. If the best
approximation to z̄ in Ep is a constant, then G is a disk.
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Sketch of the proof: Without loss of generality, let’s assume that the best
approximation is zero. Then one can show that 0 ∈ G and that the extremal
function f ∗ for the dual problem satisfies |f ∗| ≤ 1 in G and |f ∗| = 1 on the
boundary, and the duality relationship

f ∗z̄dz = const|z|pds on Γ

holds, where we can take the constant to be positive. Dividing by z yields

(3.1)
f ∗(z)

z
dz = const|z|p−2ds.

For p = 1, using regularity results for extremals (see [23]) in order to apply the
argument principle, if f ∗ is not constant, one can show that the left hand side
of (3.1) has a non-trivial increment of its argument, while the right hand side
doesn’t (because it’s positive), which is a contradiction. Therefore, we conclude
that f ∗ is a unimodular constant. Now again using regularity of the boundary and
parametrizing z = r(θ)eiθ, and using the duality relationship (3.1) gives, after
some simple calculus, that dr/dθ = 0, and hence Γ consists of circles centered
at the origin. Using the duality equation one last time shows that since dz/ds
must have the same sign on both circles, then there can only be one circle, and
hence, G is a disk. The case p > 1 is more complicated, and in particular, the
case that p ∈ N has to be treated separately. For details, see [15].

Note that this theorem proves that the domain is simply connected. If we assume
G to be simply connected to begin with, the regularity hypothesis (that is, the
analyticity of the boundary) can be relaxed significantly to assume merely that
G is a Smirnov domain, by appealing to the following theorem.

Theorem 3.5. ([10]) Let G be a Jordan domain in C containing 0 and with the
rectifiable boundary Γ satisfying the Smirnov condition. Suppose the harmonic
measure on Γ with respect to the origin equals c|z|αds for z ∈ Γ, where ds denotes
arclength measure on Γ, α ∈ R and c is a positive constant. Then

(i) For α = −2, the solutions are precisely all disks G containing 0.

(ii) For α = −3,−4,−5, ... there are solutions G which are not disks.

(iii) For all other values of α, the only solutions are disks centered at 0.

The conclusion of Theorem 3.4 then follows, because the left hand side of (3.1)
is a constant multiple of harmonic measure at the origin, and since in our case,
α = p− 2 with p > 1 so α > −1, part (iii) of Theorem 3.5 applies, giving that G
is a disk.

What happens in the finitely connected case is not known, and thus leads to the
following problem.

Problem 3.1. Extend Theorem 3.4 to finitely connected Smirnov domains. In
particular, do the hypotheses of that theorem imply that G is simply connected?

Notice that in the case 0 < p < 1, we can still define analytic content, but we
lose duality (since in that case Ep is not a Banach space), and so it is not clear
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whether you might get a type of “duality equation” on the boundary holding for
the extremal. Thus one might consider the following.

Problem 3.2. What can be said about analytic content in Ep spaces for 0 < p <
1? Are there estimates similar to those in Theorem 3.3?

In a similar manner as before, one might ask whether best approximations of z̄
characterize annuli. The following theorem gives the answer when p = 1.

Theorem 3.6. ([15]) Let Γ := ∂G be real analytic and p = 1. If the best
approximation to z̄ in E1 is a rational function g(z) = c

z−a , then G is an annulus
centered at a.

Conjecture 3.1. Theorem 3.6 holds for all p > 1 and all finitely connected
Smirnov domains.

The following problem is completely unknown territory, and it is easy to see that
the study of such domains leads to a larger class than the well-known quadrature
domains.

Problem 3.3. Study domains where best approximations of z̄ inEp are, say,
rational functions.

3.3. Bergman Spaces. Let us now discuss analytic content in the context of
Bergman spaces.

Definition 3.3. For p ≥ 1, the Bergman space analytic content of a domain G
is

λAp(G) := inf
φ∈Ap(G)

‖ z̄ − φ ‖Ap(G) .

Theorem 3.7. ([15]) Let G be a Smirnov domain and let p ≥ 1. Then

(i) If the best approximation of z̄ in Ap is a constant, then G is a disk.

(ii) If the best approximation of z̄ in Ap is g(z) = c
z−a , then G is an annulus

centered at a.

Sketch of proof. For (i), assume for the sake of brevity that p > 1 and that
the best approximation of z̄ is 0. Recall that Khavin’s lemma (see [27]) states
that the annihilator (Ap)⊥ of Ap inside Lq(G, dA) is given by the z̄ derivatives
of functions in the standard Sobolev space W 1,q

0 , where p and q are conjugate
indices. Therefore, the dual problem in this context states that

inf
φ∈Ap(G)

‖ z̄ − φ ‖Ap(G)= sup
u∈W 1,q

0 ,‖uz̄‖q≤1

∣∣∣∣∫
G

z̄
∂u

∂z̄
dA(z)

∣∣∣∣ .
The duality relationship then yields that for z ∈ G,

∂u

∂z̄
= const

|z|p

z̄
, u ∈ W 1,q

0
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where u is a solution of the dual problem. Integrating with respect to z̄ gives (in
G):

u = const|z|p + h, whereh ∈ H∞(G).

Since u = 0 on Γ, we get that h|Γ is real-valued and therefore constant on Γ, and
therefore |z| is constant on Γ, hence Γ is a disk. For the proof of (ii), see [15].

Note that this proof is easier in the context of Bergman spaces, because the
duality relationship holds in the whole domain G.

Problem 3.4. What are the isoperimetric “sandwich” estimates for λAp?

Nothing is known about the following problem.

Problem 3.5. What can be said about domains with other rational best approxi-
mations of z̄ in Ap? For example, if the best approximation is a rational function
of degree 2, what is the corresponding domain?

4. Putnam’s Inequality for Toeplitz Operators in Bergman Spaces

Let us now turn to a discussion of isoperimetric inequalities in the context of
operator theory. Recall that if T is a bounded linear operator on a Hilbert
space, then T is called hyponormal if [T ∗, T ] := T ∗T − TT ∗ ≥ 0. Putnam’s
inequality (see [26]) applied to T then states that

‖[T ∗, T ]‖ ≤ Area(sp(T ))

π

where sp(T ) denotes the spectrum of T . In particular, if φ is analytic in a
neighborhood of the finitely connected domain G and T := Tφ : E2 → E2 is
defined by Tf = φf, (T is called an analytic Toeplitz operator), then Putnam’s
inequality in this context states that

‖[T ∗, T ]‖ ≤ Area(φ(G))

π
.

In [20], the author gave a lower bound:

4(Area(φ(G)))2

‖φ′‖2
E2(G) · P

≤ ‖[T ∗, T ]‖,

where ∂(φ(G)) =: Γ, and P := P (Γ) = perimeter ofφ(G). Putting the above two
inequalities together and taking φ(z) = z gives P 2 ≥ 4πA, the classical isoperi-
metric inequality. If φ(z) = z and G = φ(G) = D, then equality is achieved,
and thus, Putnam’s inequality in the E2 context is sharp in the sense that there
exists an operator on E2 for which Putnam’s inequality becomes equality.

One might then ask what happens in spaces other than E2. The authors in
[12] explore this question for Bergman spaces, following the paper [3]. Without
loss of generality, we can assume there exists a measure µ in C such that T
is unitarily equivalent to the operator Tz of multiplication by z on L2

a(µ), the
closure (in L2(µ)) of functions analytic in a neighborhood of the support of µ
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(see [3]). Letting K be the support of the measure µ and G the polynomial hull
of K, a standard Hilbert space calculation then shows that

‖[T ∗z , Tz]‖ = sup
‖g‖2=1

{
inf

f∈H∞(G)
‖z̄g − f‖2

2

}
.

Taking f = gh then gives this right hand side less than or equal to

inf
h∈H∞(G)

‖z̄ − h‖2
∞ =: λ2(G).

Here λ := λ(G) is the analytic content for bounded functions from Definition 3.1.
Thus, Theorem 3.1 and Putnam’s inequality give that ‖[T ∗z , Tz]‖ ≤ λ2 ≤ A(G)/π,
and therefore equality is attained in Putnam’s inequality only if the spectrum
sp(T ) is a disk and the spectral measure “sits” on the circumference. Thus it
is clear that in the context of Bergman spaces, for example, equality can never
be attained in Putnam’s inequality. A calculation (straightforward but tedious!)
reveals that in A2(D), ‖[T ∗z , Tz]‖ = 1/2, that is, the upper bound is two times
smaller than the one in the general Putnam inequality. One might ask, then,
should Putnam’s inequality in this context be corrected by a factor 1/2?

In exploring this question, the authors of [4] considered the torsional rigidity ρ
of a domain G, which measures the resilience of the beam of cross section G to
twisting. In terms of a “Rayleigh type” quotient,

ρ := sup
ψ∈C∞

0

(
2‖ψ‖1

‖∇ψ‖2

)2

.

They then proved the following.

Theorem 4.1. ([4])
ρ

Area(φ(G))
≤ ‖[T ∗φ , Tφ]‖.

Hence, taking φ = z and using the upper bound given by Putnam’s inequality
gives the “isoperimetric sandwich”

ρ ≤ (Area(G))2

π
.

The estimate in the above theorem ρ ≤ (Area(G))2

π
was missing by a factor of

2 the celebrated Saint-Venant inequality conjectured in 1856, which was first
proved by G. Polya in 1948. This prompted the following conjecture.

Conjecture 4.1. ([4]) For the Bergman space, ‖[T ∗z , Tz]‖ ≤
Area(G)

2π
.

For simply connected domains G, this conjecture is now a theorem! (See [25].)

Hence, this leads to a new proof of Saint-Venant’s Inequality that ρ ≤ (Area(G))2

2π
.

The proof in [25] is tour de force calculation with power series. This is why the
statement is restricted to simply connected domains. The authors of [12] noted
that refining Olsen and Reguera’s proof implies that the equality for the self-
commutator upper bound in simply connected domains holds only for disks.
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This yields an alternative proof that Saint-Venant’s inequality becomes equality
only for disks. We are thus left with a host of interesting problems to investigate.

Problem 4.1. Find the “book” proof of the Olsen - Reguera theorem in [25],
freeing it from the power series calculation and extending the result to arbitrary
domains.

Problem 4.2. Is the sharp upper bound for the A2-content equal to 1
2

√
Area(G)

π
?

Problem 4.3. What is the sharp lower bound for the A2-content expressed in
terms of geometric characteristics (e.g., area, perimeter, principal frequency) of
the domain?

Problem 4.4. Refine the “isoperimetric sandwich” inequalities for ‖[T ∗, T ]‖ to
include the connectivity of the domain.

This last problem is virtually unexplored territory. In his thesis in the 70s ([17]),
S. Jacobs refined Carleman’s celebrated inequality ([5]) bounding the A2 norm of
G in terms of the E1 norm of G for multiply connected domains. In [22], there is
a result connecting geometric characteristics of the domain G (area, perimeter,
connectivity, and analytic content) with the mapping properties of ϕ, the best
approximation of z̄, and the mapping properties of the extremal function in the
dual problem.
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