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1. Introduction
In this note we summarize some results about the norms of the projections onto
subspaces that are natural in Approximation Theory. We are mostly concerned with the
subspaces in C(K) spaces although most of the results are also valid for L1(K) spaces.
We use the usual notations: A(X) for the projectional constant of X and d(X,Y)

for the Banach-Magzur distance.

II. Preliminary Results

In this section we collect some technical results that we list as propositions.

Proposition 1 (Olevskii). Let {K,p) be a probability space and (p;)52.; be an or-
thonormal system in La{p). Suppose in addition ||¢;]leo = O(1). Then for the projection
F,. given by

Fuf = Ef% fdu)e

y=1

acting from L.o() — Loo(pt), we have lim sup UFall

og

Proposition 2. Let (p;)7-; be a sequence of functions from Loo(ps) where p is a
probability measure. Let (1,)" 7 _1 be a sequence of positive rumbers and let f be a norm
one positive functional on Lo (@) such that f(| 2 ¢je5]) = Elnjlc,-] for any set of real
numbers (¢;). Consider an operator A : Loo{(p) — Loo{t) given by A, = ) p; ® p;
where p; € [Loo(p)]". Then [[An]l 2 22 n5]les]l.
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Proof: Let o be a probability measure corresponding to f. Let v = S [151/27. Then

there are functions g; € L1(v) so that

anz= [(Cai(o)es)ele)iv

and

1Aul = 1= esssup [ 13 0i(s)es(O]dv(s)
> [ [ 1 sstees(@lavio)aote
= [ 1T sstedesldo(lants
> [(S st
=Y ;e

Proposition 3. Let G be a compact connected group. Let (;)7=1 be an increasing
(with respect to an order on @) sequence of contimuous characters on G. Then there

exists a universal constant C such that
. 43 n .1
f 1S ejpsldn> €Y =lesl
j=1 j=1 J

for ary sequence {¢;).
Proof: The proof is the same as in the case G =T. It consists of the construction of

the function F € C(G) so that || Fllee < 1, [ Fodp = 0 for ¢ >, and Rele;- [ Fo;dp) 2

C lf;i As in [1] we represent (p;) = U{p;);2%, so that ngyy — ng = 4% and construct
et . ¥ : :

Fo=2 2 v djwhered; = 1—2—’-? Let h; be a harmonic conjugate (with respect to the
. 2

=k

linear order in é) to the function éle[.- We define G = Fy, Gjp1 = G_,-e'"“hf+1 + Fjpy
and I = G,,. The proof that the function F has the desired properties is identical with
the one in [1].

II1. Projections Onto Translation-invariant Subspaces



In this section we give some immediate corollaries from Propositions 1-3.

Theorem 1. Let G be a compact connected group and (¢;)7=, be a set of continuous

characters on . Then there exists a constant C so that
Mp;li=1) = C -logn.
Proof: The combination of Propositions 2 and 3 is the proof.

Remark 1. Tt follows immediately from this theorem that
Mlesli=1) £ dl[e;]; 1)y < Mlwsl),

Now consider G to be the unit circle and p; = 2/, where ();) is a sequence of integers.
It is well known that if ; = 7, then A(Jp;]%,) ~ logn. ¥ (};) is a lacunary sequence
then A([p;]%=;) ~ /7. In the latter case, d([p;], e&;‘)) ~ /1 also. A similar estimate can

be done for A; = 7.

Theorem 2. d{[7]2_, £52)) ~ A([27]2,) ~ logn.

=1
Proof: We only have to prove that d([z-f],lg‘)) < C-logn. Let P, = } 6, ® p;

be an interpolating projection onto [27] that interpolates on the roots of unity. Then for

any sequence of numbers a;, we have
max |a;| = max 16,3 aje )l < 11D aze5l
On the other hand let f be a function of norm max |a;| so that f{z;) = a;, then
1D ajeill = 1P fll < || Pl maxayl,

but the norm of || P, || is known to grow as logn.

We now turn our attention to the more general groups.

o n
Theorem 3. Let G be a compact group. Let (p;)T € G. Let F, = 3} 0; ® p;.
1
Ther [|[Fall = [ 12 esldp = Mlp;]7=1)-



Proof: Following the standard argument, let P, be an arbitrary projection from C (IG’ )
onto [p,]. For every s € G define T, : C(G) — C(@Q) by (T,z)(t) = z(t -3), Vi € G.
Then it is easy to check that

(Fud)O) = [ @i PuT 1),

and hence [|P.|| > [[Fr]-

Theorem 4. Let G be a compact group such that the identity component of G has

finite index m. Then there exists a constant C,, depending on m only, such that
Mlpiltzy) 2 Cr - logn.

Proof: It follows that the dual group has exactly m elements of finite order. Now

factoring it out and using Proposition 3, we get
n
/lZgojidp.ZCm-logn (n>m).
=1

If (¥ bas an infinite torsion subgroup, then Theorem 4 does not hold.

Theorem 5. Let I' C G be a finite subgroup of the dual of an arbitrary compact

group . Then
Mlplper) = d([e], €47) = 1.

Proof: For every o € T' we have Y, 9 = ¢+ >, ©. Hence for every point £t € G

pel peED
we have either > @(t) = 0 or ¢(t) = 1 for all ¢ € I'. One way or the other, } ¢ >0
pEl’ el
and using Theorem 3, we get A([@]) = [{ 3 p)dp = 1.
el

This situation comes up when considering the Walsh functions or more generally,
any periodic multiplicative system. Let ()%, be such a system. Then (p;) can be
modeled as the set of characters on some compact group. The group generated by (p;)

has infinite torsion subgroups since go? = ;. By Theorem 3 and Proposition 1 we



conclude that lim sup A([;]%.;) — oco; yet, Theorem § shows that the “lim sup” in this

statement cannot be replaced by “lim.”

IV. Projections Onto Algebraic Polynomials

In this section we turn our attention to the subspaces of algebraic polynomials on

the real interval [a, b].

Theorem 6. Let (X;)7-, be an increasing sequence of integers. Then there exists a

constant C such that
MJcos A;8]7-,) > C -logn

M[sin A;0]7=;) = C -logn.
Proof: We would like to estimate the sum [~ |3 ajcos A;0|df. Using cosA;f

= (giA;B + e—-c".\,-ﬂ) /2 and Proposition 3, we easily get a constant O such that
fﬂ |2n:a~cos)\-9]d9 > C.Zn: la;] .
o=t J ’ B =1t

For an arbitrary projection P, = Y, p; ® cos A;f, we have pj(cos A;0) = 1 and hence
lu;ll = 1. Now by Proposition 2 we obtain the first inequality. The second one can be

obtained in the same way.

Corollary 1. Let T; and U; be Chebyshev polynomials of the first and second kind

on an arbitrary interval [a,b]. Let (A;)%_, be a sequence of integers. Then
M7, f=1) 2 C +logn
M[Ux,12-1) 2 C -logn.
Proof: It follows from the fact that the distances d([Th,]",[cos A;6]") and
d([Ux,]™, [sin A;8]™) are bounded uniformly in n and (3;).

Corollary 2. Consider [t/ [7=0 C Clap)- Then

MI#]00) ~ d{[t7]7mg, £271)) ~ log .



Proof: Since [t]7—p = [Tj]j=o we have M) = M{Ty]) = C - logn and hence
d([#7], £2™) > Clogn.

To prove the reverse inequality, we again consider the interpolating projection Pp
from Cigp] — [t/ ];?:0 that interpolates at the zeros of the Ty, . The norm of P, is known
to grow as logn. The rest of the argument is the same as in Theorem 2.

In view of Corollaries 1 and 2, one is tempted to ask:

Problem 1. Does Corollary 1 hold for other sequences of orthogonal polynomi-
als?

Problem 2. Does Corollary 2 hold if we replace [t7]%_ by [t%3]7._, for some
()7
In the rest of the section we will describe some results about Problem 2. Proposition

4 is a quick consequence of Corollary 2.

Proposition 4. Let A; <7+ o(log? 7). Then A([t*]%_,) — co as n — oo.

Proof: Let M = {tj]i-‘gl and P, be a projection from Cjg,1} onto [t*]7_,. Then
M= [P, @ N, where N = ker(P,|M);dim N < o(log?n). Then there exists a
projection @, from Cjg 1) onto N with the norm 1Qrll < ologn). It is easy to see that
P, + Q. — Q. Py, is a projection onto M, and by Corollary 2 we have

log A € |Pr+ Qn — QuPull € (1 + 1P IQn -

Hence 1+ ||Pal = lé’—-éf-ﬁ- — 0O as 1 — 0.

Next we consider one very special case.

Theorem: Let A; = j2. Then A([t*/]_,) 2 C -logn.
Proof: Without loss of generality we can assume t = cos §. Then any projection P,

from C[—g,«] onto [cos?s 6]7_y can be written as

F, = Z B ® cos™ 4.

[N



On the other hand, cosf = ee™t? 26..‘-9 . Hence
1 IG) H{k—2.
kg _ i(k—2,)0
cos“ § = e . 1
9k (3 (1)

Therefore the projection P, can be written as

An
P, = Z v; ® ¢FOn=2)7,
—

where v; are somec lincar combinations of p,;. By Propositions 2 and 3 we get 1Pl =

Ay
>, %.'HV-."“, and the proof boils down to estimating the norms IPAE
For sufficiently large n and m, let

2

m’ ?
2

. m m
<5< g
iS5t (2)

m
5 =
At this point we have to remark that for sufficiently large k, the coefficients in the
polynomial (1) are distributed almost normally and thus there are = vk coefficients that

are of size 71;: (we will call them essential) and the rest are negligible.

Now we estimate

,u,-(cos’"’g 0 — cost™ 1" 9).

Since P, is a projection, this is the j-th coefficient in the polynomial cos™” §—cos(™=1 g,
By (2) this coefficient is ~ ;}; since the corresponding coefficient in cos(™=1)" ¢ is negli-

gible. Thus _u,j(cosmz § — cos(m—1? §) = ;-;1;_- On the other hand,

I cos™ § — cos(™= 1" g|| ~ L
m
and [|p;]] = 1. Hence
(m?+m) /2
1 m+1 mol .2
S Al ~ a2 = a1 )]
(mi—m) /2 7 m -1 m 1
2 2 m=l. 2
mef%u+mw]2)mmwf



7
Thus [|P.[| > > <27 ~logn. -
m>N ,
Similarly to Proposition 4, we can obtain Proposition 5.

Proposition 5. Let |A; — 72| < o(log® 7). Then )\([t"f]"';zl) — 00 a8 1 — 0O.

In Section III we observed that the projectional constant of the complex polynomials
is the largest when (A;) is lacunary. The algebraic polynomials exhibit the opposite

behavior.

Proposition 6. Let {};) be lacunary; then
MM} = 1) < d([ 5=, £0)) < O(1).

Proof: Our proof follows from the results of [2], where it is proved that (£*7) spans

a copy of ¢y and forms a basis in 1ts span.
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