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ON INTERPOLATION BY AND BANACH SPACES
OF POLYNOMIALS

B. SHEKHTMAN

In this paper, we review the relationships between interpolation properties of
polynomials and the geometric properties of the unit ball of the Banach spaces
of polynomials. We extend some classical results to polynomials with gaps and
address some open problems. In particular, problems raised by P. Erdés and
J. Szabados. .

1. CLassicAL RESULTS AND OPEN PROBLEMS

Let A C 7 be an ordered set consisting of n integers. 'We use H(A,) to
denote polynomials on the unit circle T with frequencies in Ay:

(1.1) H(An) :=span{z* : A € A,}.
In the case when A, is an arithmetic sequence we use H,, 1= H(A,).

Theorem 1.1 (Faber). There exists a constant Cy > 0 such that for every
projection P, : C(T) — Hy,

(1.2) | Pell 2 Cy logn.

In particular, let A, C T be a set of n points and let P(A) be the
Lagrange interpolating projection onto H,, then
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Theorem 1.2. For every A, C T
(13) | P(An)]] = C1logn.

This estimate is sharp.

Theorem 1.3. If A, consists of the n equidistributed points in T then
there exists a constant Coy independent of n such that

(1.4) | P(Aw)]| < Calogn.

These estimates can be improved if the degree of polynomials is greater
than the number of points.

Theorem 1.4 (Bernstein). Letn > am;a > 1. Then there exist a constant
Cla) > 0, a set A, C T and a mapping Ln(Ay,) : C(T) — H, such that

(L.5) (LalAm)f = f}] 5, =0
and
(1~6) ”Ln(Am)” < G(G)

The comparison of the theorems of Faber and Bernstein prompted

Problem 1.5. Let m = m(n) < n be such that n/m(n) - 1 ie., n —
- mf{n) = o(n). Let Ap C T be arbitrary, and let F,(A,) be arbitrary
mapping F,(Ap) : C(T) — H, satisfying (1.5). Is it true that

a) H Fro(Am)|| = 007 (P. Erdés)

b) || Fa(Am)|| 2 Clog (n/(n—m)}? (J. Szabados)
While the problem is still open, some partial results have been established:

Theorem 1.6 (Szabados {12]). Let Ay, be equidistributed points on T.
Then

(1.7) lim sup (” Fn(Am)” /log (n/(n — m))) > 0.

Theorem 1.7 (A. Privalov [6], B. Shekhtman [9]). Let A,, C T be ar-
- bitrary and Ln(Am) be arbitrary linear mappings L,(Ay,) @ C(T) — H,
satisfying (1.5) then

(1.8) liminf (|| Lo(Apm)| / log (r/(n — m))) > 0.
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Theorem 1.8 (cf. [7]). Let n—m = o(log?n). Let A,, C T be arbitrary
and F,(An) : C(T) = H,, be arbitrary mapping satisfying (1.5). Then

(1.9) “Fn(Am)” — 00
Let AC T and dgnote
(1.10) 171l =sup {|7 ()], te A},

An immediate consequence of the Faber theorem is

Corollary 1.9. Let A, be arbitrary n-point subset of T. Then
(1.11) sup { |Ipll/plla, * » € Ha; p# 0} > Cylogn.

An analog of the Bernstein theorem in this case is

Theorem 1.10 (H. Ehlich and K. Zeller [2]). Let m > an, ¢ > 1. Then
" there exist points A, C T and a constant K (a) such that

(1.12) sup { lpll/llplla,, : P € Ho; p# 0} < K{a).

Again it is natural to ask
Problem 1.11 (B. Shekhtman [11]). Let m —n = o(n). Is it true that for
every & C T

a) sup { pll/llpll s, : P € Hny p#0} = 007

b) sup {lipll/llpll 5, : » € Hn, p# 0} > Clog (n/(m~mn))?

In a particular case when m — n = oflog’n} we have an analog of
Theorem 1.8.

Theorem 1.12 (cf. [11]). Let m — n = o(log?n) and let A, C T be
arbitrary. Then

(1.13) sup { lIpll/Ilplla,, : P € Hn, p# 0} — o0.

Further results on the behavior of the quantity (1.11) for some specific
choices of points A, have been obtained with the aid of potential theory.

In this review, we plan to
A) Interpret the above results in terms of the Banach Space Theory.
B) Extend these results to polynomials with gaps H{A,).

C) Use the Banach Space Theory to generalize these results and give
partial answers to the problems mentioned in this section.
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2. TooLs AND PHILOSOPHY OF BANACH SPACES

Let HP(A,) be a Banach space of polynomials H(A,) equipped with the
L,(T) norm. By considering it as an n-dimensional Banach space we are
restricting ourselves to an isomorphic characteristic of this space. In par-
ticular, we can compare these spaces to other (simpler) Banach spaces such
as £y. It is in this “jsomorphic” framework that we intend to interpret
and generalize the result mentioned in the previous section. We start with
some notations. Let X and Y be finite-dimensional Banach spaces with
dimX = dimY. We define the Banach-Mazur distance between X and ¥
as

(2.1)  d(X,Y):=inf {§T |77 : T isomorphism from X to Y}.

This allows us to compare the isomorphic characteristics of different Banach
spaces.

If X is a subspace of another Banach space IV, we define relative and
absolute projection constants as

(2.2)  MX,E):=inf {|P]| : P is a projection from B onto X }
(2.3) AMX) :=sup { MX,E) : X C E}.

We now list some well-known properties of these notions

(P.1) d(X,Y) = d(Y,X) =d(X*,Y*) 2 1

(P.2) dX,Y) < d(X,2)-d(Z,Y)

(P.3) A(X) < d(X,Y)A(Y)

(P.4) MX) <d(X,62); n=dimX

(P.5) MX, E) < min {VdimX; VeodimX +1}.

The converse to the inequality (P.4) is probably the most important
remaining unsolved problem in Banach space theory.
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Problem 2.1 (Py-problem). Does there exist a bounded function ¢ such
that

(2.4) | (X, 63)) <p(MX))?
For an operator T : X -+ Y we use

(2:5) v(T), (T} Yool T)

to denote the nuclear, absolutely summing and Lg-factorization norms of
the operator. The definition and properties of these ideal norms can be
found in [14].

If X is a subspace of a C(K) space, we define
(26)
MX) =inf{||P|| : P is an interpolating projection from C(K) onto X }.

There is an easy
Proposition 2.2. For every X C C(K); dim X = n:
(2.7) d(X,¢2) < A(X).

Proof. Let t,...,t, € K and let P be an interpolating projection given
by

(2.8) Pf=> ft;)z;
=1

where {z;} is a basis for X. Let & = (ey)j_; € £%. Then there exists a
function f € C(K} such that

2.9  flt)=a; Il =max{|asl j=1,...,n} =lal,

Then

(2.10) = | P7l < IPHIFN = I1P] .

On the other hand

(2.11) ZO‘J‘BJ = max

2 @] oo

(Zagaa)(tk)
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Combining these to inequality, we have

n
> oz
j=1

(2.12) &l <

< P&l oo

Let T be an operator from eé? onto X aeﬁned by

n
(2.13) Ta =Y aj; € X.
F=1

Then {2.12) implies

(2.14) ITh <Pl T M <1
and hence
(2.15) d(X, €0 < |ITIIT~ < 1Py n

Combining the Faber theorem and (P.4) we get
(2.16) d(HP, &) > Cylogn.

On the other hand, the combination of Theorem 1.3 and Proposition 2.2
yields

(2.17) d(Eg’g),Hﬁ’) < Cq logn.

Hence we have
Proposition 2.3. d(ﬂgﬁ),Hfj") ~ logn.

This proposition indicates how the knowledge of projections and inter-
polation projections onto the space give us information about the geome-
try of the space. Geometrically, Proposition 2.3 says that the Hausdorff
distance between the unit ball of HZ® and the n-dimensional unit cube is
asymptotically behaving as “logn”.

This and other geometric properties of polynomials had been investi-
gated in [8] and [3]. Despite the effort, even the asymptotics of d(Hg",E&n))
is not known. :

We will finish this section with one more powerful
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Theorem 2.4 ([Generalized Hardy inequality]). Let Ay =X) < Ap <--- <
A € Z. Then there exists a constant Cy such that

n
Z akez)\kﬂ
ke=1

w

(2.18) /

Corollary 2.5. Define an operator S, : H*(Ay) — £} by

n
dg > Gyt Z %
k=1

. 1
(2.19) S, 2 eN? }(5;;3-)2:1 © E(ln).

Then §S,|| < Cs.
Using Theorem 2.4, it is easy to obtain (cf. [7]).

Proposition 2.6. Let A, be as above. Then
(2.20) Cslogn = A(H®(Ay)) < d(H®(An), €3).

In the next section, we will provide further generalizations of the Faber
theorem.

3. GENERALIZED FABER THEOREM

In the Banach space terminology, the Faber theorem states that

(3.1) AHE,C(T)) = Crlogn.

Since for a subspace X of a C(K) space we have

(3.2) MX,C(K)) = MX)

we conclude that

(3.3) X(Hy) 2 Crlogn.

And since (cf. (P.3)) the quantity A(HS°) is an isomorphic invariant, we
are seeking intrinsic isomorphic characteristics of the space H*(An) that

validate (3.3). In other words, neither the analytic characters of the polyno-
mials, nor its position with regard to other functions in C(T) is responsible
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for the theorem. Just the geometric shape of the unit ball of H3° should
matter with regard to the quantity A(X,C(K)). In fact, the P\-problem
aims at precisely that. If true, it would confirm that the spaces which admit
a well-bounded projection are spaces with cube-like unit bali.

As luck would have it, the unit ball of HS° is hard to get ahold of. In
fact, for years now I have been asking

Question 3.1. Provide a fair isomorphic description of the dual space
(H)*. Equivalently, it asks for n functionals on the space Hy° that provide
adequate asymptotic information on the norms of the polynomial. Aside
from some vague references to the B.M.O. spaces, I got nowhere. The main
theorem of this section explains the difficulty of this question.

Proposition 3.2. Let X be a finite dimensional subspace of a Banach
space E. Let P be a projection from E onto X. Then P* is a projection
from E* onto its finite-dimensional subspace U = P*E* and

(3.4) d(X*,U) = d(X*, P*E") < |P|| < MX, B).

Proof. The proof is trivial. It is obvious that U = P*E* is an n-
dimensional subspace of E*. Let f € U. Then f = P*f. Let us consider
the functional f on X defined as f | X. ‘Algebraically, f is exactly the same
as f. But the norm of f is

(3.5) (71 = sup { | F(=)| : llzll € 1; z € X},
while
(36) £ = sup { | £()] : llell < 1 e € B}

The latter porm “sups” over a larger set and hence it is concievable that

LA < FI-

Observe, however, that

(3.7) fe) = P*f(e) = f(Pe) = F(Pe) < | FILPI.
Hence .

(3.8) Il =sup { f(e) : e € Bs llefl <1} <IFIIPI
and

(3.9) S FES T
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Thus, the isomorphism T : U — X* defined by T'f = f satisfies

(3.10) 1Tz < 1P =

So, if there is a projection P : C(T) = H*(Ay) with a small norm, then
there exists a subspace U C (C(T)) " := M(T) that is close to (H®(An))"
in the sense of the Banach-Mazur distance.

Theorem 3.3 {[Generalized Faber theorem]). Let U ¢ (C(T))" be an
arbitrary n-dimensional space. Then

(3.11) d((H®(An)) ", U} 2 Ci logn.
Proof. Suppose that J is an embedding operator
(3.12) J: (H®A) 2 U= (CM) [T =1

considered as a mapping from (H®(An)* < (C(T))"). Then J* : Loo —
H*(A,) is a quotient mapping and (cf. [14}), there exist functions

(3.13) hi € Lo : J'hj =€ IRyl < 1.

Let IL : Heo(An) — Hi{A,) be a formal identity, and let e; be the

canonical vector basis in £”. We define an operator B : £ 5 f™ as
follows:

(3.14) B M A Lo Ly HO(A) 22 H(A,) S £

where S, is defined in Corollary 2.5 and A : EE“) — Lo is defined by
Aej = hj. Obviously, we have

(3.15) 4] < 1.

Now by the definition of Sy,

(3.16) Z% ctrB = tr(Sp- Ik - J* - A) = tr (A8, L - J¥).
J=1

By “trace-duality” {cf. [5])

(317) S < uasL LI
j=t

| et
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Since the range of A is an L, space and by the fact that m1(I%,) = [I50,
~ we have (cf. (5])

(3.18)  v(ASnTL) = mi{ASall) < HAIISklm (IE,) < G| = Cs.
" Combining with (3.17), we obtain

(3.19) logn < sl J*||

and hence [|7*]| = 7 = ||} 7] = C5 ' logn. w

By Proposition 3.2, this theorem implies the Faber theorem, yet it is
not a consequence of it. It is very easy to construct subspaces X, C C(K)
such that

(3.20) MXp) = oo;  3U, C CYK) & d(Un, Xp) =1

Regarding Question 3.1, the theorem shows that if one is to find “The
Riesz Representation” of (HS°)" it is not going to be among the measures
on T. Finally, it shows that one cannot find the basis ¢1,...,¢n in the
space H® and the weights (w;) such that the norm of a polynomial

mn e
ZCj(pj Nijlcj[.
i=1 =1

(3.21)

We conclude this section by mentioning an observation of J. Bourgain
and A. Pelezynski (cf. {15]) which is in sharp contrast with Theorem 3.3.
Let A(T) be the disk algebra.

Theorem 3.4. For every n > 1 there exists a subspace X C A(T) such
that

(3.22) d(Xn, HP®) <2 and M Xn, A(T)) <2.

Together with Proposition 3.2, this theorem implies that there exist
n-dimensional subspaces Uy C (A('ﬁ‘)) * such that

(3.23) d(Un, (H)) < 4

Thus, while the Faber theorem holds in A(T) just as well as in C(T), the
Generalized Faber theorem fails in A(T).
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4. THE SHARPNESS OF THE BERNSTEIN THEOREM

In the spirit of the last section, we are looking for the isomorphic interpre-
tation of the Erdés—Szabados Problem 1.5. In this section, we review some
results in this direction.

Let d; := &;; be the functional on C{T) defined as 8;(f) = f(t;), where
j=1,...,m. Let m < n. It is clear that

(4.1) 1Sa;d;] = Blej|
and hence
(4.2) d(span {éj],ﬂgm)) = 1.

Suppose that < is a constant such that for every function f € U (T) there
exists a polynomial p € H*(A,) such that pll < v and p(t;) = f(#;).
Equivalently,

(4.3) V(a;) € £3p € HP(An) : pltj) = o and |pll <7-

Let §; = d; | H®(An). Then 3; can be viewed as elements of (H®(An))"
and the condition (4.3) can be interpreted as

(4.4) S el 2 | S| 2 23 el
J=k je=t v J=1

or

(4.5) d(span[3;], ™) <.

Let 7 = span[d;]. Then {7 is a subspace of H*(A,) and d(ﬂ’, E&m)) <.
In order to show that for large m

n
. log —————-.
(4.6) T T 1

we need to show that the n-dimensional space (H®(An)) * does not contain

a subspace of a small codimension {7 which is close to ¢*. It seems apparent,
since from (P.1) and (3.11) we have

(4.7) d(H®(Aq)",67) 2 Clogn.
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So if the space (H*(A,))" is far removed from £, then any “large”

subspace U C (H®(A,))" should be far from ¢™ At present, we do
not know how to make this argument since the space (H*°(A,))” is not
easy to handle. The rub is that U, being a subspace of { H®(A,)}", does

not imply that (f7)" is similar to an n-dimensional subspace of H o (Ay).

Conjecture 4.1. There exists a constant Cyq such that if U is an m-
dimensional subspace of { H®(A,))" (m < n) then

4.8 d(U,£™) > ¢4 ( log —— | .
() (71)_40gn___m+1
If this conjecture is true, it would imply the Erdds—Szabados conjecture

(Problem 1.5). For now, the best we can do is to prove the following

Theorem 4.2. There exists a constant Cy > 0 such that if V,, is a subspace
of H*®(A,) with dimVy, =m <n. Then

&
3

m . n ,
(4.9) Vs 2) 2 G- (1og =2

The proof of this theorem is based on the combinatorial

Lemma 4.3. Let A and B bem X n and m x n matrices such that
a) A = (aij);z'= ,....m,j=1,...,n |a¢j| <1
b) g(n) =n —m
c) A- B =T an identity matrix on Cp,.

Then there are m — q(n) rows of the matrix B = (b;;), k1, ..., km—q(m) such
that

- 1
(4.10) - ;;'bk"’jl 25 for i=1,...,m~q(m).

The meaning of this lemma becomes clear by considering the case
" m =mn. Then A and B are square mafrices with AD = J. Hence, BA=1
and for every row in B we have

(4.11) 1 = ayibsi < (Tbsl) max|ay| < Bibj-

Hence, there are m — ¢(n} = m rows satisfying (4.10).
The same lemma, is the key to proving
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Theorem 4.4. Let P, be an interpolating projection from C(T) onto an
m-dimensional subspace of H®(Ay). Then,

Tt
4.12 Pl = C4 log w————.
(+12) 1Bl 2 G log ————

The proof of Theorems 4.2 and 4.4 are similar to the proof in [9]. We
will forego the details of these proofs.

Comparing the theorems, we arrive at

Conjecture 4.5. The estimate in Theorem 4.2 can be improved from

108 =t 0108 iy

If this conjecture is correct, then Theorem 4.4 is a simple corollary from
Theorem 4.2 and Proposition 2.2.

Privaloff [6] proved that every projection (and not just an interpolating
projection) from C(T) onto an m-dimensional subspace of HZ® satisfies
(4.12). Hence X

Conjecture 4.6. Every projection P from C(T) onto an m-dimensional
subspace of H®(A,) satisfies (4.12).

" The positive answer to this conjecture would affirm Conjecture 4.5 and
would follow from the validity of

Conjecture 4.7. Let V;, be an arbitrary m-dimensional subspace of
H*(A,) and let Un, be an arbitrary subspace of (C(T))". Then

n
. * > e
(4.13) d(Vys,Um) 2 Cilog —————

Geometrically, the questions and results of this section address the
following: Proposition 2.3 says that the unit ball of Hy(Ar) is at least
“log n” removed from an n-dimensional unit cube, We want to conclude that
every m-dimensional cross-section of the unit ball of H, oo(An) is “log pBtrs”
removed from the m-dimensional unit cube.
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5. EMBEDDINGS OF H®(Ap) INTO £

This short section is dedicated to the relationship between isomorphic em-
beddings of H*®(A,,) into £7 and Theorem 1.10 and Problem 1.11.

Let Ay, C T be a collection of m distinct points, m > n. Consider a
mapping

(5.1) J(Ap) © Hoo(An) — £
defined by
(5.2) J(Bm)f = (f | D).

The range of this map is an n-dimensional subspace
(5.3) V,, C .

Clearly, J(A,) is an isomorphism from H*(A,) onto V,, and

(5.4) | 7 (AR} =1.
Also
(5.5) ||[JHAm)|| =sup {MW; T €V CIs 0}

W e
p{HJ(Am)f“,fEH ( n)}

T/
= P{Hlea‘fEH “‘")}‘

Thus, the quantity discussed in Problem 1.11 relates to the Banach-Mazur
distance d{ Vi, H®(Ay))

(5.6) sup{n—l%l—'l: . f éH”(An)} = ||J7HA)|| = || 77N J(a)||

> d( Ve, H(Ag)).

In particular, Theorem 1.10 implies



On Interpolation by and Bapach Spaces of Polynomials 651

Corollary 5.1. Let a > 1 and m > an. Then there exists a constant K (a)
and a subspace V,, C ft{f.fl) such that

(5.7) d(HE,Vy) < K(a).
Conjecture 5.2. Let V}, be an arbitrary subspace of Eg”}. Then

oo K112
(5.8) d(H®(An), Va) 2 log ————.

The affirmative resolution of this conjecture would immediately answer
Problem 1.11.

The main reason for including this section in the paper is to demonstrate
the “duality” of these questions with the problems posed in the previous two
sections.

6. CONCLUSIONS

The result of Section 3 (Faber’s theorem)' demonstrate the relationship
between the n-dimensional cube and the unit ball of H*(Ay). The results
of Section 4 {Bernstein’s theorem) hint on the relationships between the m-
dimensional sections of the unit ball of H*(A,) and the m-dimensional
cube. The understanding of the relationship between the uniform and
discrete norms of a polynomial shed light on the connection between the
unit ball of H*(A,) and n-dimensional sections of the unit ball of £3.
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