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ABSTRACT 

It is shown that the (absolute) extension constant e(T) of an operator T such that 
TG, = h,v,, k = 1,2, for some unconditional basis (ol, r;,> of a two-dimensional real 
normed space is less than or equal to (1~~1 + IA,1 + 2 AT - IA,h,J + Ai )/3. In fact, 
it is demonstrated that e(T) is attained by exactly one unconditional two-dimensional 
space (up to an isometry). 

1. INTRODUCTION AND PRELIMINARIES 

Let V be an unconditional n-dimensional Banach space, and let T be an 
operator on V such that Tv, = h,v,, k = 1,. . . , n, for a fixed unconditional 
basis (v,, . . . , v,,) of v w;=,qvJ = IIC;=lla,IV~ll). 

NOTATION. For any Banach space X, with V c X, set e(T, X) = infllfll, 
where ? runs through all operators from X into V agreeing with T on V. 
Then e(T, X) is called the extension constant of T relative to X. The number 

LINEAR ALGEBRA AND ITS APPLICATIONS 240:173-182 (1996) 

0 Elsevier Science Inc., 1996 0024.3795/96/$15.00 
655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(94)00196-K 



174 R. L,. CLLAIMERS AND B. SHEKHTMAN 

e(T) = sup, e(T, X) is called the (nhsolzrte) extension constant of T. Any X 
for which P(T, X) = P(T) ‘. *’ 11 1 IS ccl ec a maximal ocerspace for T. 

It is well known [S] that in tlrc case T = 1 (A, = ... = A,, = l), we have 
e(T) < 6. It had been conjectured (see, e.g., [4, p. 4651 and [8, pp. 
273-2741) that if r~ = 2 and the field is [w, then r(T) < $. In [6] it was shown 
that this conjecture is true and, moreover, tliat + is attained by precisely 
one two-dimensional space (up to isometn;). In the present paper, we ex- 
tend (the unconditional part of1 this result to operators on unconditional 
two-dimensional subspaces. The procedure yields an operator T’ = 21, @ 
u, + zl. 8 u. in L’ (not in general minimal) of norm 
2 J_ 

G (IA,1 + IAsl + 
A; - ]A,& + A,)/% [F or u E L’ and II ??L”, (u 69 D)(X) := (x, u>v.] 

The function& 11~ are 3-piecewise constants in L”. The location of the 
breakpoints is determined by Lemma 2 of Section 2. Numerical solutions of 
Lemma 2 thus give a \.ery simple way of determining the operator explicitly 
(see, e.g., the Remark in Section 2). Also it should be noted that, by 
restricting attention to the case T = I, the procedure gives a different 
(elementary) proof of the “:” result of [i] in the case of unconditional spaces. 

THEOHEM A (e.g., [7, 91). Any two-clirrletlsiorial real normerl space is 
(isometric to) a subspace of L’[ - r/2, rr/~]. 

THEOREM B [l, 71. If dim V = 2, the f?eld is [w, and V C L’, then 
e(T, L’) = e(T). 

2. MAIN RESULT 

(In the following the linear span of w and 2 will be denoted by [w, z I.1 

THEOREM. If 17 i.r an unconditional tuxdinLensiona1 real Banach space 
that Tti, = A,c,, k = 1,2, then e(T) < (IA, I 

Al.so, if A, A, # 0, then [cl, u, 01, (0, u, 01 

c I:!, where u = rl - 1 + \lrl” - (1 + 1 , tl = I A,/A,l, gizjes the uniyue ,space 
(up to isometry) where equality is attained. 

For the proof of the theorem, we will need the following two lemmas. 
(Note that in the following Lemma 1, in the “projection” case T = I, (11) and 
(c) are vacuous.) 
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NOTATION. In the sequel the notation “ k A,” is used instead of “I A2 I” so 
that the sign configuration of T discussed in the proof of Lemma 1 will 
correspond. 

LEMM 1. An arhitraq unconditional two-dimensional s&space of 1; i.s 
isometric to a space V = [ul, ti2] C l,!, with unconditional basis (G,, up) = 
((1,2a, l), (- 1, 0, l)), a 2 0, each cI; being unique up to a .scalar multiple. 
Let p = 2(1 + u + a’). If &A, > A, 2 0 and A, + a(A, T A,) > 0, or if 
A, 2 +A, 2 0 and +A,(a + 1) - A, 2 0, set 

A, + a( A, F A2) - pA,/2 

ah, k A, 0 

A, + a( A, T A2) PAZ/~ 

of +A, 2 A, a 0 and A, + a(A, f A,) < 0, set 

1f A, 2 f A, a 0 and f A,(a + 1) - A, < 0, set 

1 

= 2(a + 1) 
i 

A, -(a + l)A, 

A, 0 
A 

l (a+l>A, 

(a) 

(c) 

For II, = (c,, c2, c,> and u2 = (cl,, cl,, d$, the operator T = u, EJ yl + u7 
B up is an operatorfrom 1: into V, with TV, = Ali~k, k = 1,2, and lITI = (1 
+ a)(aA, + IA&/(1 (a),(b),(c), respectir;ely. Further, 
l/f/j < (A, + /A21 + 2 and if A, A, + 0, then equality 

OCCILTS if and only if a = d - 1 + I@-ZZ, d = IA,/A,l. 

Proof. First, by applyi g n a linear transformation, it is immediate that any 
two-dimensional subspace of 1: is isometric to a subspace with a basis of the 
form (w ,, w,), where w, = (1, a’, 0) and w2 = (0, b’, ??s), with I ??2 I = 1 and 
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0 < a’b’. Thus, for any real (Y and p, 

Ilaw + pw211 = Ial + lad + pb’l + I PI = IlaG, + pC211, 

where G, = (1, a, 0), G, = (0, b, l), a = la’l, b = Jb’l. That is, we can take 
V = [(l, a, O), (0, b, l)]. Further, V being unconditional implies, either as a 
consequence of the more general discussion prior to Lemma 2 [Equation (l)] 
or by a straightforward check, that either b = a and the unconditional basis is 
uniquely (up to a scalar multiple of each ui) (u,, ce) = ((1,2a, l), (- l,O, 1)) 
or that at least one of a or b is 0, whence V is isometric to [(l, 0, l), (- 1, 0, l)]. 
This establishes the isometry of Lemma 1. 

Secondly,_a simple direct check shows that T’ is an operator from ZA into 
V such that Tvk = Akvk, i.e., (vk, IL,> = $ &l. For the sequel, introduce the 
notation Eu’ = (oi, (Ye) E R”, and l”,t 2. p =+cr, p, + cre p2 denote the usual 
dot product. (The fact that G :/3 = IZl I PI cos -y, where y is the angle 
between the two vectors E; and p in R2, plays a vital role in motivating the 
geometric proof of the theorem, and for this reason we choose to emphasize 
the vector notation by an overhead arrow.) 

Finally, to calculate IlTll, denote (wlk, ZL’,~) by w’(k), and form the 
operator matrix T = (tij>:jx13 = (C(j) * C’C’(i)>,3x,: If fh, 2 A, > 0 and A, + 
a(A,Th,)~O,orifA,~ fA,&Oand+A,(a+l)-A,aO,then 

+l I A, + a( A, T A2) + PA,/2 ah, i A, A, + u( A, f A,) - pA,/2 

24 A, + u( A, + A,)] 2a(nA, k A,) 24 A, + u( A, + A,)] . 

’ A, + a(A, + AZ) - pA,/2 ah, + A, A, + u( A, f AZ) + pA,/2 I 

Note that A, + a(A, f Aa) f pAJ2 = -(a + l)[f A,(a + 1) - AI1 and A, 
+ a(A, T A,) f pA,/2 = (a + ])A, & A,(1 + a2). By noting that the sign 
configuration of F is 

it is straightforward to verify that all three absolute column sums (YZp= Jtiil, 
j = 1,2,3) are equal to (1 + a)(aA, + IA&/(1 + a + a”). But this latter 
quantity achieves its maximum [ = (A, + ] A,1 + 24”: - I A, A, I + At )/3] at 

a = d - 1 + dd2 - d + 1, d = (A,/A,J, as is easily seen by solving for the 
zero of the derivative with respect to a. [For this value of a yielding the 
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maximum, A, + a(A, T A,) = T(A~ T A, + r)/(k A,) 2 0 and k A,(u + 1) 

-A,=~>O,wherer=~hfTA~A~+A~.] 
If *A, > A, > 0 and A, + n(A, T A,) < 0, 

f=f 
A, A,/a - A, 
0 2A, 0 

-A, A,/a A, 

By noting that the sign configuration of T’ is 

it is immediate that IIT = 1 A,I. 

y= 
1 

I 

A, + (a + I)A, A, 

2(” + 1) 
2aA, 2aA, 

A, - (a + l)A, A, 

By noting that the sign configuration of f is 

it follows that all three absolute column sums CC;= iI tijI, j = 1,2,3) are equal 
to A,. 

2 

note that, if A,A, # 0, then max{ A,, I A, I} < (A, + 1 A,1 + 
W 

Now, denote the pair (u,,u~) by u’, and let V = [i?] := [o,,c2] c 
L’[ - 7r/2,7r/&]. First note that, via an isometry (replace o1 by loll and v2 by 
w2 sgnv, where oi f O), we can assume that 0 < v,. Secondly, by rearrang- 
ing the values of G according to the angle of inclination of the radius vectors, 
we can conclude that V is isometric to and can therefore be replaced by 
V = [v’], where 6((e) = (cos 8, sin 8)R( 0) on [ - 7r/2,7r/2], and R is a finite 
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measure on [ - 7r/2, rr/2]. But, before the rearrangement, we can arbitrarily 
closely approximate C in the norm to insure that, for the approximating 
space, R(8) is absolutely continuous with resprct to Lebesgue measure and 
positive, and therefore conclude that it suffices to consider V = [or, up] C 
L’[ - 7i-/2,7r/s], where C’(6) = (cos 8, sin e)r(e), - 7r/2 < 8 < 7r/2, and 
0 < r E L’[ - rr/2,lr/2]. 

Furthermore, V being an unconditional space implies that we can take 
for our fixed unconditional basis (u,, u,) = (cos 0, sin 0)r(0), where c, is 
even and u2 is odd on [ - r/S!, x7/2], which is seen as follows: 

/ 
T’2 lcos 8 + (Y sin elf-( 8) (10 = IT” (cos 0 - a sin elr( e) de 

-r/z -r/z 

Va > 0 

if and only if [define r,(e) := c’os 8 r(0)] 

/ 
T’z (I1 + ff tan 81 - II - (Y tan el) r* (e) de = 0 Va > 0 

-r/2 

if and only if 

/ 
T’e sgn 8 min{l, altan el)r*(e) de = 0 Va > 0 

-T/L? 

if and only if 

/ 
tall-‘(a-t) ’ sgn e 

min{ 1, a Itm e I} - min{ 1, (a - ??)ltan el} 
f-*(e) de 

-tac’(a--E)r E 

=o VO<ff>E>O. 

which implies (on letting E + 0) 
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which implies (on differentiating w.r.t. $1 

tan $ [r,(4) - r*(-+)I = 0 a.e.( 4). 

Thus, we can take 

Z(0) = (cos0,sinB)r(0), r(-e) =r(0), -7Tp < 0 < ?-r/2. 

(1) 

Hence o, is even and cg is odd on [ - rr/2, r/2], which is what we wanted to 
show. 

Now for arbitrary 8’ E [0, 7r/2), let (0,, 8,, 0,) = (- r/2, - 8’, V>, and 
let 

(Ui, bi) = /R”_ q f3) de, i = 1,2,3, 
I I 

where 8:, = 8,) + T = rr/2. Note that by symmetry u3 = a,, b, = -b,, and 
h, = 0. Let U be the linear transformation with matrix 

taking (a,, b,) into (1, - 1) and (u3, b3) into (l,l), and let n be given by 
(2a,O) = U(a,, b2), i.e., u = u,/2u,. 

Next, let 

i = 1,2,3, (2) 

where U* (with matrix B’ = B) is the adjoint of U, and ci = ~~(0’) and 
cl, = cl,( 0’>, i = 1,2,3, are given by Lemma 1. 

LEMMA 2. For convenience of notation let (cpl, d_ 1> = cc,, a,>, as- 
.surne A, # 0, and set CT = sgn A,. The system of equations 

/ 
~2 cos e. + ~1: sin 8, ’ 

0 
F( Bo, 611, 0,) = c?, cos 8, + dc’, sin 8, 

, (1 

= 0 (3) 
c,“’ cos 8, + di sin 8, 0 

has a solution (6,, 8,, 0,) = ( - r/2, - W, 13’) for some 8’ E [O, 7~/2). 
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Proof. Because of the symmetry, the system of equations (3) is equiva- 
lent to the following fixed-point problem: 

8’ = tan-’ (-cf;‘/q, 

where (cf, df) = (cF< e’), a:( 0’)). Since n, > 0 and b, < 0 and since C, > 0 
and cl, < 0, 

G( 13’) = tan~‘( -cb;/dF) = tan-‘(b,c,/a,d,) 

maps [O, 7r/2) continuously into [O, rr/2]. M oreover, it is easily checked that 
G extends continuously to [O, rr/2] so that G(7r/2) = 0. Thus G has a fixed 
point (not n/2) in [O, r/2]. and the equations (3) are solved. ??

Proof (If Theorem. Without loss, assume that A, > 0 and A, # 0 and 
that G is given by (l), m accordance with the above discussion describing any 
unconditional basis. Then, for any choice of 8’ in [0, rr/2),_let u’ be given by 
(2). It then follows immediately from Lemma I that if T = C:= ,uA @ vk, 
then Fu, = hkvk, k = 1,2. It also follows directly, by use of Lemmas I and 2, 
that, for (8,, 0,) 0,) given by a choice of 8’ determined in Lemma 2, cases 
(b) and (c) of Lemma 1 do not apply and the Lebesgue function of T, 

L(l)) = j--+=1<($) .a(e>ldre (-f < l+b< f) 

3 0 
= C I/ ’ (c,:‘, $Y) . (~0s 0, sin 0)r( 0) de 

i=l fL I 

= i~l~(c~;d:~)~(a,,iii)~ 

=I(cj,dj)‘(l, -l)l +I(cj>dj)*(2u*o)I +I(cj3dj)‘(1,1)I> 

j = 1,2, or 3 

for * E [ - 7r/2, - 0’)) [ - 8’, O’), or [ W, 7r/2), respectively, 

is constant and equals (1 + u)(ah, + IA,l)/(l + u + a’) from case (a) of 
Lemma 1. [Case (b) of Lemma 1 cannot apply, since 0 = <cf, a:> * (a,, b,) 
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implies (since cz = 0) that sin 8’ = 0, i.e., 8’ = 0, and hence a = 0, which 
contradicts A, + a( A, T h2) < 0. Case (c) of Lemma 1 cannot apply either, 
since 0 < cc:, d,U) * (a,, b3) . im pl ies that 8’ > tan- '(b,/a,), which is impos- 
sible, since (a,, b,) = /07/2(cos 8, sin e)r( 0) de.1 

Finally, the theory of [2] (Th eorem 2 and Lemma 4) shows that f is 
minimal if and only if, for some positive function 4, Z/4 is constant (a.e.) on 
[ 8, _ , , Oi) for each i = I, 2,3, and from this we get the uniqueness conclusion 
of the theorem by use of Lemma 1. ??

NOTE. If T # I, then the “extreme” ? [II?11 = (]A,1 + lAnl + 
2dA; - 1 A, A, 1 + A; )/3] is not an orthogonal (symmetric) matrix. Thus the 
results of this paper do not appear to be obtainable by extending the methods 
of [6]. 

REMARK. There are in general several essentially different solutions 
given by Lemma 2. For example, in the-case T y Z and r(0) = sin’ 0 there 
are two essentially different solutions T, and T, with llTlll = 1.329642.. . 
and l]T,l] = 1.327513.. . . In the (circle-projection) case T = Z and r(0) = 1, 
the unique solution f has norm +. 

CONJECTURE 1. We conjecture that the value Aa = (1 Ail + I A,1 + 
2 A: - I A, A, I + Ai )/3 of the theorem is the “action constant” (see [3]) for 
two-dimensional real spaces corresponding to the action matrix A = (ak1)2x2 
with real eigenvalues A,, A,. That is, for V arbitrary (not necessarily uncondi- 
tional) there exists T’ = C~=,u, @ zjk into V c X with (uk, 1~~) = akl such 
that 

and Ai is best possible. 

CONJECTURE 2. The results of this paper extend to unconditional two-di- 
mensional complex spaces. 
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