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ABSTRACT. We show that a convex subset K of a linear space is a simplex if
and only if it is line compact and every nonempty intersection of two translates
of K is a homothet of K . This answers a problem posed by Rosenthal. The
proof uses a reformulation of this problem in terms of Archimedean ordered
spaces

INTRODUCTION

Let K be a convex subset of a linear space E. If K x {1} is the base for a
lattice cone in X x R, then K is called a simplex (see [7] for the definitions).
A remarkable result of Kendall [4] shows that K is a simplex if and only if
K is line-compact! and the nonempty intersection of two homothets? of K is
a homothet of K. Moreover, every simplex has the property that it is line
compact and every nonempty intersection of two translates of K is a homothet
of K. It is an open problem whether this last condition fully characterizes
simplices, but a result of Rosenthal [7] shows that this is the case at least for o-
convex subsets of topological vector spaces. Using Archimedean ordered spaces
and their known relation to simplices, Rosenthal [7] reformulated this open
problem as follows.

Let E be an ordered vector space. Given a positive function u: E — R,
we say that E has a u-lattice structure if u(u;) = u(u,) implies that u; V u,
exists in E .

Note that in an ordered vector space the existence of —u; V H — u, implies
that u; A u, exists and is equal to —(—u; V —u;). Hence in a p-lattice the
infimum wu; A u; exists whenever u(u;) = u(us).

Recall that a positive functional u is called strictly positive if # > 0 and
u(u) =0 implies that u=0.

Rosenthal has shown that an affirmative answer to the following question
leads to a positive solution of the open problem concerning simplices as stated
above.

Received by the editors December 4, 1990 and, in revised form, February 21, 1991.

1991 Mathematics Subject Classification. Primary 46A55, 46A40.

Key words and phrases. Simplices, Archimedean ordered spaces, sublattices of C(X).

1 K is line-compact if the intersection of every line with K is compact.
2A homothet of K is a set of the form a +r+ K , where r > 0 is a positive constant.
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Problem. Let E be an Archimedean ordered space. If £ has a u-lattice struc-
ture for a strictly positive linear functional u on E, is it necessarily a vector
lattice?

In this note we give an affirmative answer to this problem (Theorem 3.5).
For definitions and results concerning vector lattices and Banach lattices, see
[5, 3].

2. u-sUBLATTICES OF C(K)

In the following, let £ C C([0, 1]) be a subspace such that (i) 1, x € £ and
(ii) there is a positive measure x on [0, 1] such that O, 1 € supp(#) and such
that for all f, g € E with u(f) = u(g) we have sup(f, g) € E. We would
like to show that E contains all piecewise linear functions.

We need some notation. For a point a € [0, 1], define maps A,, p, €
C([0, 1]) by

a-x ifx<a,

Fa(x) = { 0 else

and .
x—a ifx>a,

Pa(x) = { 0 else.

Since A,(x) — pa(x) =a—x =a-1-x, we have 4, € E if and only if
pa € E. Also, since 4,(x) = sup{(a-1 - x), 0), condition (ii) implies that
there is a number gy with 0 < ap <1 such that A, , ps € €.

2.1. Proposition. Lez E C C([0, 1]) be a subspace such that

(i) 1, x€E;

(ii) there is a positive measure p on [0, 1] such that 0, 1 € supp(u) and
such that E is a u-lattice.

Then E contains all piecewise linear functions.

Proof. Every piecewise linear function is a linear combination of functions of
the forms A, and p,, 0 < b < 1. Hence, we have to show that 4,, p, € E
for all b with 0 < b < 1. Let ap be a number with 0 < gy < 1 such that 4, ,
Pa, € E,and let 0 < b < 1 be given. We shall assume that ay < b; the case
where b < qg is treated similarly.

Consider the function f given by f(x) = x —b and let r = [ f(x)du.
Then, since u is positive and 0 € supp(u), it follows that [ A, (x)du > 0,
and we can find a number s such that

r=s//1a0(x)d,u.

From our assumptions on FE it follows that
gr=sup(f,s+Ag) —S:Ag €EE.

We will consider two cases:
(i) —b/ap <s. In this case, p, = g1 € E.
(i) s < —b/ag. In this case, gy =r; +Aq + pp Where

rp=-(l+s) and a1=b1+—+s:0<
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Let
R:/pbdu, S=/la0du.

Since p, < g1, we have [ g du > R. Again, we can find a number s; so that

sl//laodu=/g1du,

and it follows that s; > R/S. It follows that ag - R/S < s1-dg = 51+ Ag,(0) .
Define
& =sup(gi, s '}-ao) -8 'lao-
Then g, € E, and either g, = p, € E (in the case where s;-ag > r| - a;) or
& =12+ Aq + pp Where a; < a; < ag and
rpray=ri-a;—S1-ag<r-ar—(R/S) ap.
We continue in this way with r, and a, in the place of r; and a, until we
finally find an index »n such that s,-a9 > r,-a,, and therefore g, = p, € E .
Note that this procedure has to terminate after finitely many steps since
Tn+@pn <ty_1+ap_1—(R/S):ap and s,>R/S. O

In the following result, we generalize the domain of the functions slightly.
Before we do this, let us make some remarks concerning positive measures. Let
K and K’ be compact Hausdorff spaces, and let ¢: K — K’ be a continuous
map. If v is a measure on K, then define a measure v’ on K’ by

/ddy’:/(fqu)du.
Then v' = T3(v), where T is the adjoint to the operator
Ty: C(K') — C(K),
frfod.
The supports of v and v’ are related by the equation
supp(v’) = ¢(supp(v)).
2.2. Proposition. Let E C C([a, b]) be a subspace such that

(i) 1,xekE;
(ii) there is a positive measure u on [0, 1] such that a, b € supp(u) and
such that E is a u-lattice.

Then E contains all piecewise linear functions.
Proof. Define a map

¢:[0, 1] - [a, b], x—a+(b—-a)-x.
Then the map
Ty: C([a, b]) = C([0, 1]),  fr fog

is a (norm-preserving) linear bijection that respects the lattice structure of
C([a, b]) and that also sends the space of all piecewise linear functions on
C([a, b]) onto the space of all piecewise linear functions on C([0, 1]). More-
over, 4 is a positive measure on C([0, 1]) if and only if it is of the form
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# = T;(v), where v is a positive measure on [a, b]. Furthermore, since

supp(u) = ¢(supp(v)) , we have 0, 1 € supp(u) if and only if a, b € supp(v).
Hence Proposition 2.2 follows from 2.1. O

2.3. Theorem. Let K be a compact Hausdor(f space, let E C C(K) be a linear
subspace containing a strictly positive function e, and let u be a strictly positive
measure on K such that E is a p-lattice. Then E is a sublattice of C(K).

Proof. First, consider the map
T,..: C(K) - C(K), frel. f.

This map is linear, bijective, and preserves the lattice structure. Hence, we may
replace E by T,-.(E), e by 1,and u by e-u in the statement of the theorem.
It follows that we may assume w.l.o.g. that 1 € E.

Now let ¢ € E be arbitrary. We have to show that |¢| € E . Let

a= min X b = max ¢(x).
Ogmax§1¢( ) OSXS1¢( )

Consider the linear operator

Ty: C(la, b]) — C(K)

frfod.

Again, this operator is linear and a lattice homomorphism (in the sense that
T4(|f]) = |Ty(f)| for all continuous f € C([a, b])). Let F = T¢‘1(E) and
let ' = T;(n). Then F is a linear subspace of C([a, b]) with 1 € F (since
T4(1) =1o0¢ = 1), and we have x € F; indeed, x € F means that i € F,
where i(x) = x. But i € F is equivalent to T,(i) =io¢ = ¢ € E, and the last
statement is true by our assumptions. Moreover, u' is positive; if f € C[a, b]
is positive, then f o ¢ is positive, and we obtain u'(f) = u(f o ¢) > 0. Since
u is strictly positive, supp(u) = K, hence supp(u’) = ¢(K). It follows that a,
b € supp(y') . Lastly, assume that f, g € F and that u'(f) = u'(g). Then
W(Ty(f)) = u(Ty(g)) and T4(f), T4(g) € E. Hence, by our assumptions on
E , we conclude that Ty(sup(f, g)) = sup(T4(f), Ty(g)) € E, and therefore
sup(f, g) € F. It follows from Proposition 2.2 that F contains all piecewise
linear functions. In particular, |i| € F (where |i|(x) = |x| forall a <x <b).
By the definition of F, we conclude that |@| = |Ty(i)| = Ty(|li|) e E. O

2.4. Proposition. Let E C C(K) be a subspace such that 1 € E. Assume
that E separates the points of K. Further, let ¢: E — R be a strictly positive
functional on E such that E is a ¢-lattice. Then ¢ can be extended to a strictly
positive linear functional ¢': C(K) —» R.
Proof. Firstly, we may assume that ¢(1) = 1. By the vector lattice version
of the Hahn-Banach Theorem (see Proposition I1.4.4 of [3] with U = {f €
C(K): —=1< f<1}),wecanextend ¢ to a positive functional ¢': C(K) — R,
and it suffices to show that each such extension is strictly positive. Actually,
there is only one such extension, since it will follow later that E is dense in
C(K), and the density of £ in C(K) implies that this extension has to be
strictly positive, but we cannot use the density of E at this point.

Since every positive functional is bounded and hence given by a measure on
K, we find that ¢/(f) = [ fdu for some positive measure x on K. In order
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to show that ¢’ is strictly positive, we have to show that supp(u) = K. Assume
not, and let xo € K \ supp(K). We will construct a positive element fy € E
such that fy(xg) > 0 and fy(y) =0 for all y € supp(u). This will lead to the
contradiction 0 < ¢(fo) = ¢'(f) = [ fodu = [,y Sodu=0.

As a first step, we show that for every x € K there is an open neighborhood
U of x and a positive element f € E such that 0 # f and f(y) =0 for all
y € U. In order to construct f, pick any nonconstant function g € E and
consider the element g — ¢(g)- 1. There are two cases to consider.

L g(x) # #(g). If g(x) < ¢(g), then since #(g —#(g)-1) = 0, the
element f = (g —¢(g)- 1)+ = (g —#(g)-1) VO belongs to £ and is 0 on
a neighborhood of U. Moreover, since g is not constant, g — ¢(g)+1 # 0.
Since g — ¢(g) -1 < 0 would imply that ¢(g — ¢(g) - 1) < 0, we conclude
that g — ¢(g)-1 is not negative, hence there is at least one point x; for which
f(x1)=(g—¢(g)-1)(x1) >0. We conclude that 0 < f. If g(x) > ¢(g), then
we replace g by —g.

2. g(x) = ¢(g). In this case, the same construction as in case (1) delivers
a function f’ > 0 such that f’(x) = 0. We now replace g by f’, and for
this new g we have g(x) = 0 < ¢(g). Hence case (1) applies to the new
function g, and we also find a function f > 0 such that f(y) =0 for all y
in a neighborhood of x.

In the next step, we show that for every x € supp u there is a function f; € E
such that 0 < f;, fx(xp) > 0 and such that f, vanishes on a neighborhood Uy
of x. In order to construct f;, pick any function g such that g(xp) # g(x).
Such a function exists since E separates the points of K. After subtracting
a multiple of the constant function 1 and multiplying by —1, if necessary, we
may assume that g(xp) > 0 > g(x). Let r = ¢(go). If r > 0, then pick any
positive function 0 # & € E with h(xp) =0 and ¢(h) = 1. If r < 0, then
pick a negative function 0 # & € E that vanishes on a neighborhood of x and
satisfies ¢(#) = —1. In both cases, the function 4 exists by the previous step.
Now let g’ =g —|r|-h. Then ¢(g’) =0, g'(x) >0, and g’ is negative on
a neighborhood of x. Hence, by our assumptions on E, f, = g’'vV0 € E,
fx(x0) >0, and f, vanishes on a neighborhood U, of x.

Now we continue with a standard compactness argument. Finitely many
of the neighborhoods U, cover the compact set supp u, say suppu C Uy U
-+ U Uy, . Clearly, there are strictly positive constants r; and r, such that
u(r fy,) = u(r2fx,), which implies that r;fy, A rafy, € E. Continuing this
process inductively yields constants 7y, ..., r, >0 such that fo=rifx, A---A
rnfx, € E. This function f; vanishes on suppu and is strictly positive at
Xo. O
2.5. Corollary. Let K be a compact Hausdorff space, and let E C C(K) be a
linear subspace that separates the points of K. Assume that 1 € E. If there is
a strictly positive functional ¢: E — R such that E is a ¢-lattice, then E is a
sublattice of C(K).

3. ARCHIMEDEAN ORDERED VECTOR SPACES

In this section, we will show that every Archimedean ordered vector space
that is also a u-lattice for a certain strictly positive functional y is actually a
vector lattice.
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We will start our discussion with order unit spaces. This special case can
be reduced to 2.5. The arguments are to a large extend standard in the theory
of compact convex sets and boundary integrals, see also [1]. If (E,e) is an
Archimedean ordered vector space with an order unit e, let S(E) denote the
state space of E, thatis S = {¢: E — R|¢ is positive, and ¢(e) = 1}. When
equipped with the weak-*-topology, S is a compact convex set. The following
result is a consequence of Herve’s Theorem (see also Proposition 1.4.1 in [1]);
the proof is a variation of the proof of Theorem II.1.9 in [1].

3.1. Theorem. Let (E, e) be an Archimedean ordered vector space with order
unit e, and let p € OS(E) be an extreme point of S(E). If a, b € E and
aVb exists, then p(aV b) = max{p(a), p(b)}. Moreover, if ¢ belongs to the
weak-*-closure of 0S(E), then ¢(e) =1 and ¢ preserves all existing suprema.
Proof. The proof of the first half of the theorem is an exact copy of the corre-
sponding part of Theorem II.1.9 in [1]; one only has to remark that it is enough
to postulate the existence of a V b and that the full lattice structure is never
used. For the second half, let (p;);c; be a net of extreme points of S(E) that
converges to ¢ in the weak-*-topology. Then ¢(e) =limp;(e) =1lim1 =1 and
¢(aV b) =limp;(aV b) = limmax{p;(a), p;(b)} = max{limp;(a), limp;(b)} =
max{¢(a), ¢(b)} whenever aV b exists. O
3.2. Theorem. Let (E, e) be an Archimedean ordered vector space with order
unit e. Let K be the weak-*-closure of 0S(E). Then (E, e) is order isomorphic
to a subspace F of C(K) under an isomorphism ¥: E — F such that
(i) Y(e)=1.
(ii) If aVv b exists in E, then the pointwise supremum of ¥(u) and ¥(v)
belongs to F and Y(aV b) =¥(a)Vv¥Y(b).

(iii) F separates the points of K .

In addition, if E admits a strictly positive functional p such that E is a
u-lattice, then F is a uoW~!-lattice.
Proof. The proof of this result is an easy application of Kadison’s Theorem
(see also I1.1.8 in [1]) in connection with 3.1. O

We now can show the following

3.3. Corollary. Let (E, e) be an Archimedean ordered vector space with order
unit e . Ifthere is a strictly positive measure 1 on E such that E is a u-lattice,
then E is a vector lattice.
Proof. This statement follows from 2.5 and 3.2 and the observation that an
ordered vector space that is order isomorphic to a vector lattice is a vector
lattice in its own right. O

Before we prove our main result, we need one additional lemma.

3.4. Lemma. Let E be an ordered vector space, and assume that the positive
cone C = {x € E: 0 < x} contains at least one nonzero element. If there is a
strictly positive linear functional u: E — R such that E is a u-lattice, then the
positive cone is generating in the sense that E = C - C.

Proof. Let 0 # u € C, and let x € E be arbitrary. If u(x) > 0, then 0,
x <xV(u(x)/u(u)-ue E. It follows that

x = (u(x)/u(u) - u—((u(x)/uw)) - u-x)e C-C.
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If u(x) <0, then u(—x) >0, hence —x € C — C by the previous argument,
and thus x € C — C, since C — C is a linear subspace. 0O

We are now able to show

3.5. Theorem. Let E be an Archimedean ordered vector space, and assume that
the positive cone of E is generating. If there exists a strictly positive functional
i on E such that E is a u-lattice, then E is a vector lattice.

Proof. For each positive u € E let E, = {J,.o{x € E: nu < x < nu} be the
order ideal generated by u. Then (E,, u) is an Archimedean ordered vector
space with order unit . Moreover, the restriction of u to E, defines a strictly
positive functional on E, , and E, is a u-lattice with respect to this functional.
Hence each E, is a vector lattice by 3.3. Since E = J,., Eu, it can be expected
that E is also a vector lattice; we just have to show that the supremum of the
element x € E with 0 does not depend on the order ideal E, in which it is
computed. Let us denote the supremum of x and O in E, by x,. Let ¥ and
v be two positive elements such that x €e E,NE,. If u <wv, then E, CE,,
and hence it follows that x, < x, since x, € E, is an upper bound of x
and 0. Because E, is an order ideal, it follows that x, € E,, and since x,
is the least upper bound of x and 0 in E,, we conclude that x, < x,, i.e.,
Xy = Xy. If u and v are arbitrary positive elements such that x €¢ E, N E,,
then also x € E,,,, and we have just argued that x, = x,,, = x, . Therefore
the supremum of x and O exists in E, and FE is a vector lattice. O

In connection with Rosenthal’s result in [7] we now obtain

3.6. Corollary. Let K be a line-compact convex set such that the nonempty
intersection of two translates of K is a homothet of K. Then K is a simplex.
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