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Discrete Approximating Operators on Function Algebras

Boris Shekhtman

Abstract. We give a new presentation and various extensions of one theorem of
Somorjai. For any sequence of operators L,, given by L, f = Y 7., f(z, )., with
2, €T and I, , & A(T), there exists a function fe A(T) such that L,, f does not
converge to f.

1. Ietroduction

The main purpose of this paper is to give a new presentation, as well as some
extensions, of the result obtained in Somorjai’s paper [So].

Let T = {2z e C:|z| = 1} be the unit circle and let A(T) be the disk algebra. Linear
operators L,: A(T) ~» A(T) are called discrete if they are of the form

(L1) Lf=3 fGndh
k=1

where z,,€T; I, ,€ A(T). Somorjai [So] gave an elegant proof that for any
sequence {L,} of discrete operators, there exists a function f € A(T) such that L, f
does not converge to f in the topology of A(T). The proof uses the translation-
invariant property of A{T).

Our analysis traces this result to some Banach space properties of 4(T), hence
lends itself to extenstons of the theorem to more general domains and more general
function algebras. We consider (using the Rudin-Carleson theorem) L, as a
composition of two maps

A(T) moneemms A(T)

N\ /-

AS = {fdi el UG} = ki Lyl € ACT),
=1

where
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Thus L, has a natural factorization through I, space. An easy proposition shows
that if a sequence of operators L, on a Banach space X factors through /, and
serves as a nice approximation on X (i.e., L,x — x for all x € X), then X must inherit
certain properties of 1, namely X must be an %, space. The Somorjai result
follows from the fact that A(T} is not an %, space.

In the next section we observe some simple facts refated to approximation by
operators that factor through %, spaces. In Section 3 we consider approximation
on various subspaces X « C(K) for which some analogs of the F. and M. Riesz
theorem holds. On the one hand, this theorem implies the Rudin-Carleson
theorem (see [B2]} and hence gives us the factorization of operators. On the other
hand, it implies (see [P2], Corollary 5.1) that the space X is mot an .%,, space.

We use the rest of this section to state the theorem of Somorjai in full strength.

Definition 1. Let X be a subspace of C(K). Let L be a linear operator on X and
let H < K be a subset of K. We say that L is determined on H if Lf = Lg for all
f, g €X, such that f(k) = g{k) for all ke H (ie., f|H = g|H).

Theorem 1 (see [So]). Let H, be closed subsets of T of Lebesgue measure zero.
Let L,: A(T) ~ A(T) be linear operators that are determined on H,,. Then there exists
a function f € A(T) such that L, f does not converge to f.

2. %, Spaces

We use I, to denote C" equipped with the norm [(x))|,, = max|x;}. We define
the Banach—Mazur distance from an arbitrary n-dimensional Banach space E to
I, as

d(E, Iny = inf{§ T T~ *||: T is an isomorphism from E onto I7,}.
It is well known (see [LT]) that
2.1) diE, Py<n

for all E.
The next proposition is also well known (see {LT])

Proposition 1. Let E be an n-dimensional subspace of a Banach space X. Then
there exists a projection P from X onto E such that

2.2) 1P| = d(E, I5).
Definition 2. Let 1 < 1 < co. A Banach space X is said to be an &, ; space if

for every finite dimensional subspace E — X there exists a finite dimensional
subspace F < X such that E «— F and

diF, %)< A where m = dim F.

A Banach space X is an .%,, space if X is an .%,, ; space for some 4 < .
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Remark 1 (see [LR]). For every £ > 0 the spaces [, C(K), L (y) are &, (.,
spaces.

Remark 2 (see [LT], 1L3.1). Let X be a separable Banach space. Then X is an
&, space if and only if X = UE, where dim E,=n, E,<E,, ;<X and
d(E,, 1Ny < A

Theorem 2 (see [LR], Theorem 4.3). A Banach space X is an %, space if and
only if there exist constants A, K = 1, such that for every finite dimensional subspace
E = X there exists an Z,, , space Y and operators A1 E — Y, B: Y — X such that
14MIBl < K and BAe = e for all ec E.

The main tool in our investigation is the following:

Theorem 3. 4 Banach space X is an &, space if and only if there exists A z 1,
K = 1, a sequence of ¥, , spaces Y,, and a sequence of linear operators A,: X — ¥,
and U,: Y, — X such that

UA,x—x  forall xeX
and U, [[4.{ < K.

Proof. If X is an &, space we choose Y,:=X; 4, = U, = I. Conversely, let E
be a finite dimensional subspace of X with dim E = N. We use a standard
perturbation argument (see [LT], p. 198). By (2.2) there exists a basis ey, ...,ey€ E
so that

2.3) " max|A] < |3 Al < /N max|4]

NG

for all choices of 4,,..., Ay C. Let 1 > & > 0. Pick ¢ = §/{2N>? and choose n so
Jarge that for f;:= U, A,e; we have || f; — ¢;|| <& From

1
12 Al — el < m max| A} < I d;e))
it now follows that

1
2.4) m max|4;| < D) 4 fill <2/N maxii.
Let F = span{f;} = X. Define functionals fi, on F by flf) =4y, k=1,...,,N,
j=1,...,N. By (24)

@5) i < 2/N.
Let u, be Hahn-Banach extensions of fi; onto X. Define T: X — X by

(2.6) Tx = x + ¥, (e — fi)-
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Observe that Tf, = e, for all k= 1,..., N. It also follows from (2.6) that
§Tx) < (L + S}xf.

Hence the operators A:= A4, and B:== TU, satisfy the condition of Theorem 2
and X is an %, space. »

For convenience we introduce:

Definition 3. Let X be a subspace of a Banach space Y. We say that X is
near-complemented in Y if there exists a sequence of operators L,: ¥ — X such that
L, are uniformiy bounded and L,x — x for all xe X. We say that X is locally
complemented in Y if there exists a sequence of finite dimensional operators
L,: Y — X such that }L,| are uniformly bounded and L,x —x for every xe X.

Theorem 4. Let K be a compact metric space and let X be a subspace of C(K).
The following are equivalent:

(a) X is an ¥, space;,
(b} X is locally complemented in C(K);
(¢) X is near-complemented in C(K).

Proof. 1If X is an %, space, then since X is separable there exists a sequence of
spaces E, < E,,, < X @ C(K) such that UE, = X, d(E,, I%,) < A. By Proposition
1 we can find a sequence of projections P, from C(K) onto E, such that | P} < 4.
Clearly, P,x — x for all x e X. The implication (b) = (¢} is trivial. To prove {¢) = {a)
fet J: X — C(K) be a natural embedding. We now use Theorem 3 with 4, = J,
U, = L,, and ¥, = C{K). ]

Remark 3. If X is a complemented subspace of C(K) then (see [LR], Theorem
3.2) it is an %, space. The converse to that statement does not hold. Indeed we
can find (see [LT], Proposition 11.4.40) a subspace X < Cyg 5y which is an &,
space yet has no complement in Cyy ;- Hence the near-complemented subspaces
form a larger class of subspaces than the complemented subspaces.

The argument in [So] and the remarks after the proof seem to indicate that all
that was needed is the fact that 4(T) is not complemented in C(T). This in-
consistency with Theorem 4 can be explained by translation-invariant properties
of A(T). Indeed, for any compact abelian group G a translation invariant subspace
X @ C(G) is complemented if and only if X is near-complemented if and only if X
is an %, space if and only if X is spanned by the characters in the dual group G
from a coset ring in G (see [KP], pp. 311-312).

3, Extensions of Somorjai’s Theorem

In this section we will extend Theorem 1 in several directions, The idea is to check
that a given subspace X < C(K) is not an %, space on the one hand, and X verifies
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some analog of the Rudin-Carleson theorem on the other. Fortunately, there are
conditions that imply both statements. One such condition is an F. and M. Riesz
theorem. Here is a direct generalization of Theorem 1.

Theorem 5. Let K be the closure of a domain D < C whose boundary I" consists
of a finite number of nonintersecting analytic closed curves. Iet X be a subspace of
C(I) that consists of all functions in C(} that have analytic continuation in D. Let
H, < I be closed sets of Lebesgue measure zero, Finally, let L,: X — X be determined
on H,. Then there exists a function f € X such that L, f does not converge to f.

Proof. Let u be a regular Borel measure on X such that | f dp = 0 for all fe X.
Then (see [R1], Theorem 3) the measure y is absolutely continuous with respect
to Lebesgue measure. Now that implies (see [P2], Corollary 5.1) that X is not an
. space. On the other hand, the absolute continuity of ¢ also implies (see [B2])
that for any function ge C(H,) there exists a function f € X such that f{z) = g(1)
for all teH, (e, f|H,=g|H,) and | f| < ligl. (This is the Rudin-Carleson
theorem.) ,

Let L,: X - X be determined on H,. Then for each g & C(I') we can define L.y
to be L, f where f € X is such that g|H, = f|H,. (Since L, are determined on H,
the vatue L, f does not depend on the choice of f.) Hence | L[ = || L,}.

Suppose that L, f — f for all feX. Then |L,] are uniformly bounded. Then
the norms of L,: C{I') - X are also uniformly bounded. If L, f — f for all feX
then X is near-complemented and is hence an %, space. We have the desired
contradiction. ]

Remark 4. The cited result of Pelczynski actually states that X does not have
local unconditional structure. That clearly implies that X is not an %, space.

We now prove another generalization of Theorem 1 where the analyticity of
the boundary is not required. Let € denote the extended complex plane.

Theorem 6. Let K be a compact set in C with nonempty connected interior and
connected complement such that the boundary T" of K is accessible from the
complement G:= C\K through Jordan curves, i.e., every point z€T is the endpoint
of the Jordan curves contained in G u {z}. Let A(T) be the subalgebra of C(I') of
functions analytic in the interior of K. Then for every sequence of operators L, defined
by

(31) Lnf = Z f(zn,k)lu.k’ zn,k & T: In,k € A(r):
k=1
there exists a function f € A(T') such that L, f does not converge to f.

Proof. It follows from the Rudin—Carleson theorem and the Carathéodory
extension method {see [S-To], Proof of Lermma 1) that for any finite sequence of
points z,, ..., z, € I"and for any set of complex numbers ay, ..., &, € C with o, < 1,
there exists a function f e A(T') such that f(z) =«;for j=1,...,nand | f < L
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Since the operators L, are determined on the sets {z, ,,...,z,,} they can be
extended to operators [, on C(I") such that |[L || < ||L,§. Hence, if L, f — f for
all f e A(T), then A(T) is near-complemented in C(I') and thus is an %, space. On
the other hand, Bishop (see {B1], Theorem 3) proved an analog of the F. and M.
Riesz theorem for A{I"), and using the same result of Pelczynski (see [P2], Corollary
5.1) we learn that A(T')} is not an .%,, space. [}

QOur final result extends Theorem 1 to several variables.

Theorem 7. Let UY = {(z,,...,z,) e C":{z;] < 1}. Let A(U") be the algebra of all
functions which are holomorphic in the polydisk U" and continuous on its closure U".

Let H, < H} x H} x -+ x Hf where H} are closed subsets of T with Lebesgue
measure zero. Let operators L,: A(UY) —» A(UY) be determined on H,. Then there
exists a function f & A(UY) such that L, f do not converge to f.

Proof. An appropriate analog of the Rudin—-Carleson theorem can be found in
[R2], Example 6.3(8). The fact that A(U™) is not an %, space is proved in [P2],
Theorem 11.2. |

Remark 5. More exotic extensions of Theorem 1 can be obtained by combining
the “Main Theorem” and its corollaries in [P1] with the results of Sections 5, 10,
and 11 of [P2].

The extensions of Theorem 1 to certain translation-invariant subspaces on
general compact Abelian groups can be obtained using the results in [KP],
Section 2, in combination with the extensions of the F. and M. Riesz theorem (see
[DLGY) as well as with Corollaries 1 and 2 of [P1].
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