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Abstract ‘We investigate the entries of idempotent matrices of large rank. In particular,
we construct an example of a sequence of such matrices so that all the entries in most of
the rows tend to zero. That answers a question previously raised by the author.

1. Motivation
Let P be a projection from Cf —, ) into itself such that the range of P is an n-dimensional
subspace of spanfe?®:?,...,e"m?] where A\, < X < ... < X, are arbitrary integers.

Throughout this note we will assume that
m 1= m{n) = n + g(n),
where g(n)/n -+ 0 as n ~ oo.

We wish to estimate the norm of P from below. The desired conclusion (cf. [2;5,4])

15| > clog a_(-’;_)

Each P can be written as

Pf= ™m ( fd .)ei.k,'f?

where p; — s are regular Borel measures on {--m, 7).

Using the Littlewood inequality (cf. [3]) we obtain

1B = e usll/s

=1

Hence further estimates depend on the bounds for the norms |-
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It is easy to observe that the m x m matrix P = (pi;)i k, = 1,...,m, with pg ; =
w:{e49) is an idempotent matrix of rank n.

The estimate {1.1) implies
~ =1
(1.2) 1Plze), % =2 |pw gl
k=]

Some time ago we conjectured (based on a very closely related Proposition 2 of [4]) that

many rows of P contain an element of large size.

CONJECTURE 1. Let m(n) = n + g(n); g{n)/n -+ 0. Then there exists a constant
cq > 0 such that for any m % m idempotent matrix P of tank n there exist n — g{n) rows

Bi,..vy ko gn) such that
max {|pg, sl 17 =1...,m} 2o .

In the next section we give a counterexamnple to this conjecture and its consequences.
In section three, we provide some positive resulis in this direction. First we need some
notation. '

Let 4 = {a;;) be an m x n matrix. We use || 4}j;,; to denote the norm of an operator

A: eS;"“) — e(qm’ induced by the matrix A. In particular
fAll1,00 = max{ay| ti=1,...,m, 3 =1,...,n}.

A p =g we use [[All, := |A]]5p.
We use v, 4(4) to denote the nuclear norm (cf. [1], section 6.3.1) of an operator

A: 25,“) — ﬂgm). Also vp{A4) 1= 1y (A4). In particular,

e n
vi{4) = Emgx lassl 5 vao(d) =) maxlagl .
j=1

D3

Further properties of the nuclear norm can be found in [1].

2. The Main Example
We will need the following:

PROPOSITION 1 (ef. [1], section 11.11.11). There exists an n x n matrix A such that
rank 4 = g(n) and
log{n + 1)] ¥

I - Al < 3 [




Vol. 4, 1991 IDEMPOTENT MATRICES 263

With the aid of this proposition we can prove:

PROPOSITION 2. There exists an idempotent ma X m matsix P with rank F = n such
that the first n rows in P have entries

log{n + 1)} ¥ _

tpei| < 3 [ o

PROOF. Let A be the matrix of the Proposition 1. Then there exist a g{n) x n matrix B

and an n % g{n) matrix C such that 4 = CB. For arbitrary € > 0 consider a block-matrix

po|, I-CB <C
= |iB(r-cB) BC|

It is easy to see that P is an m X m idempotent matrix with rank P = n. The first n rows
of this matrix consist of the entries of the matrices [ — OB and ¢C. By Proposition 1,
every entry of I — C'B satisfies the conclusion of the Proposition 2. Choosing e sufficiently

small we obtain the desired result. m

COROLLARY 3. The Conjecture § is false,

PROOF. It suffices to choose P as in Proposition 2 with ¢{n) = log®(n 4 1).

CORQLLARY 4. There exists a subspace E C E(o? ) such that codim B < 2q(n) and for
every projection @ on EE,’:”} with Range @ = E we have

Va(n)

el = CW .

PROOF. Let G C £ be a subspace of all vectors in 77 such that the last a{n)
coordinates of these vectors are zero. Then codim & == ¢g{n}. Let P be as in Proposition
2. Then

codimRange P7 < gin).

Hence,

codim({Range PT N ) < 2¢(n).

Define £ 1= & N Range PT and let @ be an arbitrary projection from ES,?} onto E.
Consider a matrix P! with the first » colarmns being the same as in PT and the last

g(n) columns being rero, Then for everye ¢ E

Ple=Ple=ce.
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Hence for every z € 2(@?}

PTQe=P'Qz==.

By trace-duality (cf. [1])
Voo P Qoo 2 12(P1Q) = txQ 2 m -~ 2q(n)-
Since the modulus of every element in P is less than 4+/ Tog(n + 1)/ +/¢{n} we obtain

veol PY) € 4my/Tog(n + D)/ v/a(n),

and from mfn — 1

1@l = Cv/2¢(m)/ V1og(m + 1),
for some absolute constant C.

Remark. It is known that for every E C £™ with codim E < 2¢(n) there exists a
projection @ onto E such that ||Qle < \/2¢(7) + 1. B would be interesting to know if
the factor 1/+/log{m + 1) can be removed in Cca\roliary 2.

3, Positive Results
While the Conjecture 1 does not hold, in general the situation changes if we restrict ourself

to the case of symmetric matrices.

PROPOSITION 5. Let P be a symmetric m x m idempotent matrix with rank P = n.
Then there exists n — g(n} rows of P : k1, ks, ... s Bng(n) such that

(8.1) max{pr, i =1,...,m} 2 5
for £=1,...,n—g(n).

PROOF. Let K = {k:1<k <mand maxips,;:j=1, vo.ym} = §}. Assume that
(3:2) s o= 4K < n— gfn),

and consider a new matrix P! = (p} ;} where

Ph.i if k QK andj gK,
Phm =

¢ otherwise.
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Using (3.1) we obtain lp} | < L for all k,j. In order to prove the proposition we will
contradict this inequality.
Observe that P is symmetric and idempotent, hence positive. Therefore, P? is also

positive. Let G = {z = (21,...,%m) € Cm :zp =0 forall k ¢ K}. By assumption (3.2)
codim@ = s < n -~ ¢(n),
while dimRange P = n. Hence for B == Range PN G
dimFE >n—s.

Since P is an identity on E so is P'. Hence P? has at least n — s eigenvalues equal to 1.

Since P! is positive, the rest of iis eigenvalues are positive and hence

n—s<trP! = Ep” < {n+g(n) — s)maxp”

=0
Thus by (3.2) .
mexpl2 o2 W
Let D = [1,},..., 2] be a diagonal m x m matrix. It is clear that the expression

{1.2) can be rewritten as
2]l 2 e« {DP).
While we cannot evaluate this last expression from below, we finish this note with the

follewing formally weaker inequality.

PROPOSITION 6. Let P be an m x m idempotent matrix with rank P = n. Then

n
VZ(DP) Z C'}.Og '&(;:)—,

for some absolute constant c.

PROOF. Let @ be an orthogonal projection from Cp, onto the Range P. Then FQ =@
and {|Q||z = 1. Using the ideal property of the nuclear norm we have

12(DQ) = 1 (DPQ) < w2 ( D)@

Thus by Proposition 3
ngm)

ki
=1 7

VQ(DP) > Vz(DQ -;-
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Since 1 < k; < n+ ¢{n) we obtain the result. [ ]
T wish to thank Professors L. Tzafrid and W. Johnson for useful discussions of the

Conjecture 1.
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