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Geometric Aspects
of Minimal Projections onto Planes

BORIS SHEKHTMAN AND LESLAW SKRZYPEK

We give the explicit formula for minimal projection from the set of
continuous functions on quadrilateral onto affine functions. The most in-
teresting results show how this minimal projection depends on geometry
of a given quadrilateral (Theorem 3 relates it to areas, while Theorem 4
and Remark 2 relates it to diagonals). To prove that this projection is
minimal we employ Chalmers-Metcalf Theorem. We also give the explicit
formula for the Chalmers-Metcalf operator related to the considered min-
imal projections (equations (3)), the formula itself also involves geometry
of a given quadrilateral.

1. Introduction

Let S be a compact subset of the real line R, and let C(S) be the space
of continuous function on S, equipped with the uniform norm. Let E :=
span {1,z} C C(S). It is easy to see that there exists a linear projection P
from C(S) onto E with ||P|| = 1. It suffices to take the Lagrange interpolating
projection P that interpolates at two points sp = inf S and s; = sup S. Hence
the norm of a minimal projection onto E is 1, regardless of the domain S.
The situation changes drastically when we consider the bivariate version of
this result. That is, let S be a compact subset of R* and let E be a three-
dimensional subspace of C(S) consisting of affine functions, i.e.,

E :=span{l,z,y}

In this case the norm of a minimal projection onto E depends on the geom-
etry of S. For instance, if S is a non-degenerate triangle, then the Lagrange
interpolation at the vertices of S provides an example of a projection onto F
with norm 1, since every affine function f = a + bz + cy attains its norm at the
extreme points of S. On the other hand, if S is the unit disk, then the Fourier
projection on the unite circle is the minimal projection onto E and its norm is
greater than 1 (see Remark 1).
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In this note we investigate minimal projections from C(S) onto E, where
S is a quadrilateral. We give the explicit form of such projections (depending
on S) and evaluate their norms (Theorem 3, Theorem 4 and Remark 2). We
show that the norm is maximal (= ) if and only if S is a parallelogram. As
a by-product, we obtain an alternative (geometric) proof of the results in [10],
regarding the projection constants of three-dimensional subspaces of 2.

Here are some notations:

A projection Py € P(X,V) is called minimal if

[Poll = A(V, X) = inf{||P|| : P €P(X,V)}.

The constant A(V, X) is called the relative projection constant.
Absolute projection constant (or simply projection constant) is defined as

AV) :=sup{A\(V',X) : V' C X},

where V' denotes isometric copy of V in X.

For more information about the above notions see the papers [1], [5], [6], [7],
[10], [12]. One of the main tools to study minimal projections is the so-called
Chalmers-Metcalf operator. We can define it as follows.

Below we assume that X is a normed space and V is its finite-dimensional
subspace.

Definition 1. A pair (z,y) € S(X**) x S(X*) will be called an extremal
pair for P € P(X,V) iff y(P**z) = ||P||, where P** : X** — V is the second
adjoint extension of P to X** (S(X) denotes here a unit sphere of X). Let
E(P) be the set of all extremal pairs for P.

To each (z,y) € £(P) we associate the rank-one operator y ® z from X to
X** given by (y ® )(z) = y(2) - z for z € X.

Theorem 1 (Chalmers-Metcalf [3]). A projection P € P(X,V) has a
minimal norm if and only if the closed convez hull of {y ® z}(»,y)ce(p) contains
an operator Ep for which V is an invariant subspace.

The operator Ep is called Chalmers-Metcalf operator and is given by the
formula

Ep = /y®:cd/.t(:c,y):X—)X**,
&(p)

where p is a probabilistic Borel measure on E(P).

If X is finite dimensional then X** = X and P** = P.

Even though this theorem seems very theoretical it has been successfully
applied to finding minimal projections in many cases, see [2], [3], [8], [9], [13],
[14].
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2. Results

Observe that if X and Y are isometric under the isometry I, then for any
subspace V of X we have A\(V, X) = A(I(V),Y). Additionally P: X — V is
a minimal projection if and only if @ = ToPoI~!:Y — I(V) is a minimal
projection. This simple observation will help us to solve the posted problem if
S is a unit circle, the corresponding minimal projection is Fourier projection.

Remark 1. Let S = T be a unit disk. Then the following projection
P :S — E is minimal

P(f)(z,y) =/Tf(u,v)dudv+(/T u-f(u,v)dudv)x+(/

v- f(u,v) dud'v) y.
T

In other words, P is the orthogonal projection onto F,ie., P=1Q 1+ ®
z+y®y.

Proof. Consider the following isometry
I:C(T)> f(z,y) — f(cost,sint) € C|0, 2x].

Observe that I(E) = span{1,cost,sint}. Now since Fourier projection F =
1®1+sint®sint+cost®cost : C[0,27] — I(E) is minimal, then following the
reasoning made before this remark, we obtain that P =1 1+2z®@z+y®uy:
C(T) — E is also minimal. O

Now we will move to the case when S is quadrilateral. By d4 we denote
the point evaluation functional at A, ie., d4(f) = f(A). Now consider the
following operator

L: C(S) 3fr (6A1 (f)iJAz(f)’SAs(f)’6A4(f)) € eéo

Observe that
ILllc(s)y—ee. <1,

Additionally, if S = A;A3A3A, is a convex quadrilateral, then since affine
functions attain maximum at extreme points of S (points A, A2, A3, A4) we
see that L is also an isometry on E, i.e.,

Ifllecs) = IL(f)lles,, for any f € E.

Theorem 2. Assume that S = A1 As A3 A4 is a convex quadrilateral. Then
P: ¢! — L(E) is a minimal projection if and only if

Q=L 'oPoL:C(S)—>E

is a minimal projection.
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Proof. L in general is not invertible, although L is isometry between E
and L(E) therefore is invertible on E. As a result, the formula @ = L 1o PoL
makes sense and represents a projection.

We know that for any subspace V' the space L., is a maximal overspace.
Also, the norm of minimal projection onto V does not depend on the actual
position of V in L, i.e., if V and W are isometric, then A(V, L) = A(W, L)
(see [12]).

As a result,

A(B, C(S)) = M(L(E), £4,).

Therefore, it is enough to prove that ||@|| = || P||- Obviously, by the definition
of @ we have
QI < IL=HI - I1PI- ] < (1P]I-

On the other hand, let ¢ = (z1,z2,z3,24) be a norming point for P, take
f =104, + 2204, + 304, + T404,. Observe that ||z|[« = ||f|lc(s), and

IRUAN = IL~HPEAN = IL7H(P@)]l = |P(2)]| = ||P,
hence,
QI = I1P|| = AL(E), £2.) = A(E, C(S)) 0
Now we will compute a minimal projection from £%  onto L(E).
Theorem 3. Assume that S = A1 A A3 Ay is a convex quadrilateral. Put

Sl = Area(AA2A3A4), Sz = Area(AA1A3A4),
S3 = Area(AA; Ay Ay), Sy = Area(A A2 A3 Ay).

Then
L(E) = ker(S]_, —52, 53, —54)

and the following projection is a minimal projection from £, onto L(E):

1 1 1 1 1
P =1Id—- —(51,—S2,5s,—S — o — 1
M( 1, 2,93, 4)®(S3’ 54’51a SZ)’ ()
hereMzg—;+§—:‘l‘+g—:+g—:. Additionally,
2 3
P|l=1+—<=
IPl=1+ 2 <3,

with “=" if and only if Ay Ay A3A, is a parallelogram.

Proof. Let A; = (ai, b;), we have then

L(]‘) = (1’ 1) 1) 1)) L(ﬂf) = (alaa2)a31a4) and L(y) = (b11b21b3)b4)‘
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As a result L(E) is a kernel of some functional (z1, 22, 23, 24) which is perpen-

) i
L(z), L(y). Consider the determinants

dicular to L(1),
1 1 1 1 a; a2 agz3 Qa4 b1 bz b3 b4
1 1 1 1| |1 1 1 1| |1 1 1 1|_
a1 ay a3 a4l |a1 ax a3 a4 |a1 az az ag|

by by by bs by by by b4 bi by bs b4

If we expand each determinant with respect to first row, knowing that

1 1 1 1 1 1

1 1
Sl = 5 az Qag Q4 Sg = 5 a; a3 a4
by bs b4 bi by by
1 1 1 1 1 1

1 1
53 = 5 ay az Qa4 54 = 5 a; a2 ag
by by b4 by by b3

we obtain

S1—S2+S3—85,=0

a191 —a28s +a3zS3 —asSy =0

b1S1 — baSa + b3Sz — by Sy = 0,
which proves that L(E) is equal to ker(Sy, — Sz, S3, —S4).

Our next step is to find the norm of projection given by (1). Consider
functional e; o P, take =z = (z1, z2, z3,24) € S(£%,) and compute

|(e1 o P)(z1, T2, T3, Z4)| = %‘Mml _ Sz - 52“’25";53333 - 542134‘
_% (M g;)ml'Fg $2—$3+§—:m4‘
= | (24 2+ 2o+ Pa—as + S
_%[(g—j+§i+§:)+§—z+1+§:]

Hence, ||e; o P|| < 142 and the norming point for this functional is (1,1, —1,1).
We can carry on the same computations for every e; o P therefore,

2
1Pl =1+ -, (2)
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and the following pairs are norming pairs for this projection (we would like to
point it out that these pairs do not depend on numbers Si, ..., S4)

er ®(1,1,—1,1)
e; ®(1,1,1,-1)
es®(—1,1,1,1)
es ® (1,—1,1,1).

We will prove that P is a minimal projection by constructing appropriate
Chalmers-Metcalf operator (see Theorem 1). Consider the following operator

S1 S
EP:_ 61®(11 1,1)+—2'62®(1,1,1,—1)
Ss Sa

S3 S
+ 63®( 1)1’1)1)+ 4 'e4®(1’_1’1)1)' (3)
Sl Sl

We have already proved that L(E) = ker(Si, —S2,S3,—S4). By Chalmers-
Metcalf Theorem (Theorem 1) it is enough to show that

Ep(L(E)) C L(E). (4)

Let w = (1,1,1,1), obviously w € L(E). We will rearrange the operator given
by (3),

Ep = Sl ce1 ® (w —263)+§-e2®(w—2e4)
Ss S4

S

51

(S1 P LY )®

53 e S4 €2 Sl (£ Sg €4 w

S
e3 ® (w —261)+S—4-e4®(w—2ez)
1

(S—e®e+s—e®e+s e®e+S—e®e)
531 35 2 45 3 1514 2.

To show (4) take any = € L(E) = ker(Sy, —Sa, S5, —S4), i.e.,
511131 —S2£B2+53£E3 —541134 =0.
By the above computations

54:13 5123 éa: )
Sl S 4)53 1154 2

Now, (something) ® w is always in L(E) (since w € L(E)). We need to take
care of the second part of Ep. Observe that

Ep(z) = (something) ® w — 2( (5)

z3,

S3 S¢S S

< (Sla _SZ’ S3a _54)) (S_1m3’ 5_2:1:4) 5_3
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that is, whenever (z1, 2, 3, z4) € L(E), also (g—jxg, g—:m, g—;xl, g—imz) € L(E).
This with (5) gives (4).
As to the inequality || P|| < % by (2), it is enough to observe that by t+% >2

we have g g g g
M5ty S S S,
S3+51+S4+52 -
Therefore, 1 + % <1+ % = % and “=" holds only when S; = S35 and S = S4.
That implies that A; Ay A3 A4 has to be a parallelogram. O

Now we will go back to minimal projection from C(S) onto E by Theorem 2.

Theorem 4. Assume that S = A1 A2 A3A, is a convex quadrilateral. Also
assume that its diagonals A1 A3z and Az A4 are perpendicular and intersect at
origin. Let Ay = (—a1,0), A2 = (0,a2), A3 = (as3,0), and Ay = (0, —ay4). We
have

ai =OA1, b:OAz, C:OAg, d=0A4.

Then the following projection Q is a minimal projection from C(S) onto E

Q=u®l+v®z+wRuy,

where:
as az a4 aq a1 as
a1+a3(a4 + az) . SA + a2+a4(a3 + al) . SA
a1 a3 a2 24 1 a1 a3 az a4 2
a3+a1+a4+a2 a3+a1+a4+a2
_a1 (a2 24 _a2 (a1 as
a1+a3(a4 az) 5 az+a4(a + al) 5 6
+ﬂ+u+u+u'f‘3+ﬂ+ﬂ+ﬂ+u"“4’ (6)
ag a1 a4 a2 ag al ag a2
ai1+as as a4 a4 1 1
1 ermp 4 (a7 — o)
3 ag a2 a2tag\ay ag
v=— -84, — -84
a1 | a3 | az | as 17 ax | a3 | az | as 2
a]' + a3 asg + a1 + Qaq + a2 ag + a1 + Qaq + a2
aitas 4 az 4 as az (1 _ 1
1 a1 + as + a2 | JA _ a2+a4(a1 a3) X (5A (7)
a1 | a3 | az | as 8 a1 | a3 | a» | as 4
a]' + a3 asg + a1 + Qaq + a2 ag + a1 + Qaq + a2
ag (1 _ 1 aztas 4 az 4 a4
w = a1+a3(a2 a4) 8a, + 1 a4 +a4+a2 84
a1 a3 a2 a4 1 a1 as az a4 2
as Tar T o T o az taq ot tor o,
e (1 _ L aztas 4 az 4 a4
a1+a3(a2 tl4) 5 1 az + aq + az 5 8
+ ‘043 — *O0A,- ( )

Brnemes M mranenien

Proof. We will give a sketch of a proof. Once you know the formulas
(6)—(8) you can make direct computations (extremely tedious). Alternatively,
you can argue as below. Using notations from Theorem 3 in this situation we
have

ay asg az Q4
M=—+—+—=+—
ag ai a4 a2
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and
1
Sl = 5(13((12 =+ a4),

52 = 5(14((11 =+ a3),

1
53 = 5(11(0/2 =+ a4),

1
Sy = Eaz(al + CL3).

Take any z = (21, 22, 23, 24) and put V = Syz; — Ssza+Ssz3 — Ssz4. Comparing
Pz = (f1, fa2, fs, f4) (from (1)) and Qz =u®1+v® z + w ® y we obtain

u—av = fi, (9)
U+ a2w = fo, (10)
u + agv = f3, (11)
U — agw = fy. (12)
The first and third equation give agu + a1u = asf1 + a1 f3 and
asg ay
u = + )
a +a3f1 a +a3f3
while the second and fourth give aqu + asu = a4fs + a2 f4 and
Q4 az
u = + .
az + aa f2 az + a4 fa
As a result,
as a4 a a2
2u = + + + . 13
a +a3f1 a2+a4f2 a1 +¢13f3 a2+a4f4 (13)
From (1) we know that
14 14 14
f1—231—M—53, f2—232+M—S4, fs—ms—M—Sl, f4—w4+MS2-
Plugging these in (13) gives
as a4 a a2
2u = + + +
a +agf1 a2+a4f2 a +agJc3 as + a4 4
14 as a4 a az
+— ( - S5 + Sy — Si+ s )
M a1 +as ° " ay+as ! a1 +as ' as+as !

The term in brackets at % after substitution for Sy, S2, S3, S4 equals

asg ay Qa4 az ay asg az Q4

+ +
a1 +agzaz+a4 az2+aga1+a3 ai+tazaztas a2+aga;tag

az a4 a; asg 1
(22~ (2 2) ,
as a2 a3 a1/l (a1 +a3)(az + a4)
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therefore,

as Q4 ai a2

2u = + + +
a1+a3f1 a2+a4f2 a1+a3f3 as + aq4

vV
+ul @+ - G eram ey

Let us compute coefficient u; at z; on the right side. It equals

fa

Q4 a2

N T Cac m—
! a1 +ag M ag ai (CL1 + a3)(a2 + CL4)

asg ag /a2 a4 a; asg 1
(A RC e

a1 +a3 Ml\asy a» as ai/l(a1 +a3)
a 1 a
ol (22 (22
ar +ag M as a2 ag ai

1
ar +ag M as ai

Similarly we can compute coefficients at z1,z2 and z4. Hence, we obtain the
formula for functional u. We can find v using (9) and (11) as follows

(ar1taz)v=fs—fi== :L’+K(i i)—m a:+1(l i) 1
PTEE BT T NS T S T T T T M \ay a3/ as +ad’

after that, straightforward computation, leads to the formula for v. Similarly,
considering (10) and (12) leads to

(a2t+as)v=fa—fa == :z:+£(i i)—a: :z:+1(l l) 1
2taa)v=Rmfa =ttt (g mg ) Sttt (o )

and the formula for w. O

Remark 2. Using Theorem 4 we can compute minimal projection from
C(S) onto E for any convex quadrilateral S as follows. Let S = A; 424344
and let D be a point of intersection of A; A3 and A3 A4, then we can translate
and rotate S to get quadrilateral S’ = B; B> B3 B,y such that B; B3 and B>By
intersects at the origin O and B;Bj; lies on the z-axis. Now there is a linear
transformation which transforms triangle BoOBj3 to right triangle C5OC35, and
such that B,O = C>0 and B3O = C30. If C1,C, are respectively images of
B, B4 in this transformation then since any linear transformation preserves
ratios at parallel lines, we obtain a convex quadrilateral S = C;C3C3C} such
that

1. C;C3 lies on z-axis;

2. C3C4 lies on y-axis;

3. C1C5 and C2C, intersects at the origin;

4. C10 =A,D, C:0 = A;D, C30 = A3D, C,0 = A4D.
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Now let L be this linear transformation from S to S”. It will also generate
an isometry between C(S) and C(S’) by I(f) = f o L. Additionally, isometry
I does not change the subspace E. Following the reasoning at the beginning
of this section we know that minimal projection from C(S) onto E can be
computed as L™ o0 Q o L, where @Q is a minimal projection from C(S"”) onto E.
Looking at the formula of @ in Theorem 4 we see that u,v,w depends only on
diagonals. Hence, the minimal projection from C(S) onto E is given by

R=u®1l+v®L(z)+w® L(y),

where u,v,w are given by (6)—(8) with a; = A1 D, ay = A2D, a3 = A3D,
ag = A4D

Remark 3. If S is not convex quadrilateral, then the smallest convex set
containing S is a triangle. Now the Lagrange interpolation projection with
nods in vertices of this triangle has norm one and as a result is also minimal.
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