
UNIQUENESS OF MINIMAL PROJECTIONS

ONTO TWO-DIMENSIONAL SUBSPACES

Boris Shekhtman and Les law Skrzypek†

Abstract. In this paper we prove that the minimal projections from Lp

(1 < p < ∞) onto any two-dimensional subspace is unique. This result
complements the theorems of W. Odyniec ([OL, Theorem I.1.3], [O3]) We
also investigate the minimal number of norming points for such projections.

0. Introduction

W. Odyniec ([OL, Theorem I.1.3], [O3]) proved that minimal projec-
tions of norm grater than one from a three-dimensional Banach space onto
any of its two-dimensional subspace are unique. This result cannot be gen-
eralized neither to the subspaces of codimension one nor to the subspaces
of dimension two, unless additional assumptions on the space are consid-
ered.

However, as proved by Odyniec ([OL, Theorem I.2.22], [O1, O2]) every
subspace of codimension one in Lp (1 < p < ∞) has unique minimal
projection.

In this paper we complete the picture by showing that every two-
dimensional subspace of Lp (1 < p < ∞) has a unique minimal projection.
Specifically we prove the following theorem:

Theorem 0.1. Let V be a two-dimensional subspace of a Lp(µ) (1 < p <
∞). Then the minimal projection from X onto V is unique.

We prove this theorem in Section 1. The proof of the above theorem
depends on the number of norming points (and functionals) for minimal
projections. In Section 2 we investigate one particular minimal projection
and its norming pairs.

We use the rest of this section for general remarks and necessary defi-
nitions.

It is well known (see [IS] and [CMO]) that for every finite dimensional
subspace V of a Banach space X there exists a minimal projection.

The problem of finding a minimal projection and related problems re-
ceived the attention of many mathematicians [see papers [BP, CF, CL,
CM1, CM2, CHM, CMO, CP, F, KTJ, R]] and it turned out to be easier
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in L1 spaces then in Lp spaces (mostly due to Theorem 1 in [CM2] which
can be effectively applied in L1).

The problem of uniqueness of minimal projection, however, is not well
understood yet. It is clear that subspaces of L1 usually lack uniqueness (see
[CM1]) though the classical Fourier projection onto trigonometric polyno-
mials is unique in L1 as well as in space of continuous functions (compare
[CHM, FMW]). For the necessary and sufficient conditions for the unique-
ness of minimal projection onto two-dimensional subspaces of `n

∞ see [L3]
As far as we know, for 1 < p < ∞ there is no example of subspaces

of Lp (finite dimensional or finite codimensional) for which the minimal
projection is not unique. Even the uniqueness of minimal projections onto
trygonometric polynomials is not known.

To the best of our knowledge the exhaustive list of results consists of
previously mentioned theorem of Odyniec and theorem of H.B. Cohen and
F.E. Sullivan which states that if the minimal projection in Lp (1 < p < ∞)
has norm one then it is unique (see [CS]). In particular all one-dimensional
subspaces of Lp (1 < p < ∞) have unique minimal projection. We hope
that Theorem 0.1 is a modest contribution to this list.

It is worth mentioning that the result of W. Odyniec has been recently
improved by G. Lewicki ([L3] Theorem 2.6.11) by showing that a minimal
projection of norm greater than one from a three-dimensional real Banach
space onto any two-dimensional subspace is in fact strongly unique.

Let us introduce some basic notions, definitions and facts used in this
paper. Let S(X) and B(X) denotes the unit sphere and unit ball of a
Banach space X.

A projection P from X onto V is called minimal if it has the smallest
possible norm, i.e.,

‖P‖ = λ(V,X) = inf{‖Q‖ : Q is a projection from X onto V }. (0.1)

The constant λ(V,X) is called the relative projection constant.

Definition 0.2. A functional f ∈ S(X∗) is a norming functional for a
projection P : X → V iff ‖f ◦P‖ = ‖P‖. It is well known that if V is finite
dimensional then P has norming functionals (see [OL, Lemma III.2.1]).

Definition 0.3. A point x ∈ S(X) is a norming point for a projection
P : X → V iff ‖P (x)‖ = ‖P‖. If X is a reflexive space and V is finite
dimensional then P has a norming functional f and since the functional
f ◦ P attains its norm, P has a norming point (this is not so in general
Banach spaces as Fourier projection does not have a norming point in the
space of continuous functions, see [OL, Lemma I.2.7]).

Definition 0.4. A pair (f, x) is called norming pair for a projection P iff
f(Px) = ‖P‖. A set of all norming pairs for a projection P is denoted by
E(P ).

As usual, for g ∈ X∗ and y ∈ X, the symbol g ⊗ y denotes the one-
dimensional operator from X to X given by g ⊗ y(x) = g(x)y.

For the sake of completeness we will state Rudin Theorem which will
be used for proving minimality of a projection given in Section 2.
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Definition 0.5. Suppose that a Banach space X and a topological group
G are related in the following manner: to every s ∈ G corresponds a
continuous linear operator Ts : X → X such that

Te = I, Tst = TsTt (s ∈ G, t ∈ G).

Under these conditions, G is said to act as a group of linear operators on
X.

Definition 0.6. A map L : X → X commutes with G if TgLTg−1 = L
for every g ∈ G.

Theorem 0.7 (Rudin) [W, III.B.13]. Let X be a Banach space and V
a complemented subspace, i.e., P(X, V ) 6= ∅. Let G be a compact group
which acts as a group of linear operators on X such that

(1) Tg(x) is a continuous function of g, for every x ∈ X,
(2) Tg(V ) ⊂ V, for all g ∈ G.
(3) Tg are isometries, for all g ∈ G.

Furthermore, assume that there exists only one projection P : X → V
which commutes with G. Then this projection is minimal.

Once we know that there is only one projection P commuting with G
it can be easily found: fix any projection Q from X onto V, then this
projection P equals

P (x) =
∫

G

TgQTg−1(x)dg, for x ∈ X.

This theorem, however, does not imply that this projection is the unique
minimal projection as there could be projections which do not commute
with G but still have a minimal norm (see [S], [L1]).

1. Proof of Theorem 0.1

Lemma 1.1. Let V be a two dimensional subspace of a Banach space X.
Let x ∈ S(X) \ V. Then for any arbitrary α > 0 there exists a projection
Q from X onto V such that ‖Q(x)‖ = α.

Proof. We can assume that x /∈ V. Let v1, v2 ∈ S(V ) be a basis for V.
Since x, v1, v2 are linearly independent, using Hahn-Banach theorem we
can choose

f1 ∈ X∗ such that f1(v1) = 1 and f1/span{x, v2} = 0

and

f2 ∈ X∗ such that f2(v2) = 1 and f2/span{ 1
αx− v2, v1} = 0.

We have chosen f1 and f2 such that

f1(x) = 0 f1(v1) = 1 f1(v2) = 0

f2(x) = α f1(v1) = 0 f2(v2) = 1
(1.1)
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Now take
Q = f1 ⊗ v1 + f2 ⊗ v2 : X → V.

From (1.1) Q(v1) = v1 and Q(v2) = v2 so Q is a projection and from (1.1)

Q(x) = f1(x)v1 + f2(x)v2 = αv2,

hence ‖Q(x)‖ = α. ¤
Theorem 1.2. Let V be a two dimensional subspace of a uniformly convex
Banach space X. Let P be a minimal projection from X onto V. Then there
exists at least two linearly independent norming points for P.

Proof. Take P to be a minimal projection from X onto V. Since uniformly
convex spaces are reflexive and P is a compact operator and every compact
operator attains its norm in reflexive Banach space P has at least one
norming point. If ‖P‖ = 1 then the statement is obvious. Now, suppose
that ±x0 ∈ S(X) are the only norming points for P. From Lemma 1.1
there is a projection Q from X onto V such that

‖Q(±x0)‖ ≤ 1
2

and by continuity we can find ε > 0 such that

‖Q(x)‖ < 1, for any x ∈ B(x0, ε) ∪B(−x0, ε). (1.3)

We now claim that there exists η > 0 such that

‖P (x)‖ < ‖P‖ − η, for any x /∈ B(x0, ε) ∪B(−x0, ε) and x ∈ S(X).
(1.4)

Indeed if it is not so then for any 1/n we can find xn ∈ S(X) such that
xn /∈ B(x0, ε) ∪ B(−x0, ε) and ‖P (xn)‖ → ‖P‖. A sequence {P (xn)} is
contained in two-dimensional space V therefore, choosing a subsequence
if necessary, we can assume that P (xn) → y0, since ‖P (xn)‖ → ‖P‖ then
‖y0‖ = ‖P0‖. Since uniformly convex spaces have Banach-Saks property
(see Theorem III.7.1 [D]) and a sequence {xn} is bounded in norm we can
choose a subsequence {xnk

} which arithmetic means converges in norm,
i.e.,

yk :=
xn1 + ... + xnk

k
→ y.

We will show that y is a norming point for P (of course y 6= x0 and
y 6= −x0, hence contrary). First observe that since ‖xn‖ ≤ 1 then ‖yk‖ ≤ 1
which implies ‖y‖ ≤ 1. Now

P (yk) :=
P (xn1) + ... + P (xnk

)
k

→ P (y),

but the sequence P (xnk
) → y0, hence also its arithmetic means P (yk) →

y0. Therefore ‖y0‖ = ‖P‖ implies ‖P (y)‖ = ‖P‖ hence y is a norming
point for P different from ±x0, contrary to the assumption that ±x0 are
the only norming points for P.
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Now for every t ∈ (0, 1) consider a projection

Rt = tQ + (1− t)P : X → V.

If x ∈ B(x0, ε) ∪B(−x0, ε) and x ∈ S(X) then by (1.3)

‖Rt(x)‖ = ‖tQ(x) + (1− t)P (x)‖
≤ t‖Q(x)‖+ (1− t)‖P (x)‖
< t‖P‖+ (1− t)‖P‖ = ‖P‖.

(1.5)

If x /∈ B(x0, ε) ∪B(−x0, ε) and x ∈ S(X) then by (1.4)

‖Rt(x)‖ = ‖tQ(x) + (1− t)P (x)‖ ≤ t‖Q(x)‖+ (1− t)‖P (x)‖
< t‖Q‖+ (1− t)(‖P‖ − η) = t(‖Q− ‖P‖+ η) + (‖P‖ − η),

(1.6)
the last term tends to ‖P‖−η if t tends to zero. Therefore for t0 sufficiently
small using (1.5) and (1.6)

‖Rt0‖ < ‖P‖,

which contradicts minimality of P. ¤
Theorem 1.3. Let V be a two-dimensional subspace of a smooth and
uniformly convex space X. Then the minimal projection from X onto V
is unique.

Proof. Assume that there are two different minimal projections, say P1

and P2. Then Q = (P1 + P2)/2 is also a minimal projection (since ‖Q‖ ≤
‖(P1 +P2)/2‖ ≤ (‖P1‖+‖P2‖)/2 ≤ λ(V, X)). Now take any (f, x) ∈ E(Q)
(see Definition 0.3) and compute

λ(V, X) = f(Qx) = 1
2f(P1x)+ 1

2f(P2x) ≤ 1
2λ(V, X)+ 1

2λ(V, X) = λ(V, X),

therefore, since f(Pix) ≤ ‖Pi‖ = λ(V, X),

f(P1x) = λ(V,X) = ‖Pi‖ and f(P2x) = λ(V,X) = ‖Pi‖.

As a consequence we have

E(Q) ⊂ E(P1) and E(Q) ⊂ E(P2),
i.e., any norming pair for Q is also a norming pair for P1 and P2.

(1.7)

Since Q is a minimal projection, by Theorem 1.2, there are x1 and x2 two
linearly independent norming points for Q. Let (f1, x1) and (f2, x2) be
corresponding norming pairs for Q. Observe that

f1/V ∗ , f2/V ∗ are linearly independent. (1.8)

Indeed, if not then f1 = ±f2 and f1(Qx1) = f1(Q(±x2)) = ‖Q‖. Hence

f1(Q(x1+(±x2)
2 ) = ‖Q‖
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so ‖x1+(±x2)
2 ‖ = 1 which is not possible if X is strictly convex.

From (1.7)

fi(P1xi) = ‖P1‖ and fi(P2xi) = ‖P2‖.

Therefore

(P ∗1 fi)(xi) = ‖P1‖ = λ(V, X) and (P ∗2 fi)(xi) = ‖P2‖ = λ(V, X).

It follows now that (P ∗1 fi)/‖P1‖ and (P ∗2 fi)/‖P2‖ are two norming func-
tionals for xi. Since X is smooth they have to be equal. Hence

P ∗1 fi = P ∗2 fi,

and since fi/V ∗ span V ∗ ((1.8)) we have

P ∗1 = P ∗2 .

Hence P1 = P2. ¤

Corollary 1.4. Let V be a two-dimensional subspace of Lp(µ) with 1 <
p < ∞. Then the minimal projection from Lp(µ) onto V is unique (this
covers both classical cases Lp[0, 1] and `p).

2. Norming pairs

It was seen in the previous section that there are at least two linearly
independent norming points for a minimal projection onto two-dimensional
subspace. In this section we show that there are at least six norming points,
all together, for such a projection. We show, by means of the example,
that number six cannot be increased.

Theorem 2.1. A minimal projection from Lp(µ) (with 1 < p < ∞) onto
two-dimensional subspace has at least six different norming functionals
±f1,±f2,±f3. Moreover a set of restrictions to V ∗ of these functionals
±f1/V ∗ , ±f2/V ∗ , ±f3/V ∗ contains six different elements.

Proof. By Theorem III.2.8 and Remark III.2.9 [OL], every set C such that

C ∪ −C = { the set of norming functionals of P restricted to V ∗}

and
C ∩ −C = ∅

is linearly dependent over V ∗. But by Theorem 1.2 and reasoning in proof
of Theorem 1.3 (see (1.8)) we have at least two norming functionals for P
which are linearly independent over V ∗. Hence C has to contain at least
three elements. ¤
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Theorem 2.2. A minimal projection from Lp(µ) (with 1 < p < ∞)
onto two-dimensional subspace has at least six different norming points
±x1,±x2,±x3.

Proof. By previous theorem there are three norming functionals for P such
that

f1 /V ∗ , f2/V ∗ , f3/V ∗ are three different functionals. (2.1)

To these functionals there corresponds three norming points x1, x2, x3. Let

gi =
fi ◦ P

‖P‖ .

By (2.1) g1, g2, g3 are three different functionals on X∗ of norm one. Also

gi(xi) = 1.

Now if xi = xj (for some i 6= j ∈ {1, 2, 3}) then gi and gj are norming
functionals for the same point x = xi = xj . Since the Lp(µ) is smooth that
would imply gi = gj , contrary. Hence x1, x2, x3 are all diferent. ¤
Theorem 2.3. Let P be a minimal projection from `3p onto two-dimen-
sional subspace V . Let W = {x ∈ `n

p : (x1, x2, x3) ∈ V and x4 = ... =
xn = 0}. Take a projection Q from `n

p onto W defined by

Q(x1, x2, x3, x4, ..., xn) = (P (x1), P (x2), P (x3), 0, ..., 0).

Then Q is also a minimal projection having the same number of norming
points and norming functionals as projection P.

Proof. By the very construction of Q, if x = (x1, ..., xn) is a norming point
for Q then x4 = ... = xn = 0. If f = (f1, ..., fn) is a norming functional
for Q then by the form of norming functionals (i.e., fi = sgn(ai) · |ai|p/q)
and the form of Q we get f4 = ... = fn = 0. Hence ‖Q‖ = ‖P‖, moreover

x = (x1, ..., xn) is a norming point for Q

m
x = (x1, x2, x3) is a norming point for P

and
f = (f1, ..., fn) is a norming functional for Q

m
f = (f1, f2, f3) is a norming functional for P .

Since L : `n
p → `3p given by L(x1, ..., xn) = (x1, x2, x3, 0, ..., 0) is norm one

projection then by Proposition I.3.1 [OL] projection Q is also minimal
projection. ¤

Now we will compute the norm, all norming points and all norming
functionals for a particular minimal projection



8 BORIS SHEKHTMAN AND LESÃLAW SKRZYPEK†

Theorem 2.4. Let f = (1, 1, 1) ∈ `3q be a representation of a functional.
Then P : `3p → kerf given by

P = Id− 1
3 (1, 1, 1)⊗ (1, 1, 1) (2.2)

is a minimal projection for any 1 ≤ p ≤ ∞.

Proof. First we will prove that P given by (2.2) is indeed a minimal pro-
jection. We will use Rudin Theorem. Observe that the following operators

Lσ(x1, x2, x3) := (xσ(1), xσ(2), xσ(3)), (2.3)

(where σ is any permutation of a set {1, 2, 3}) are isometries in `3p. Fur-
thermore

Lσ(ker(1, 1, 1)) ⊂ ker(1, 1, 1). (2.4)

Now according to Theorem 0.7 it is enough to prove that P is the only
projection which commutes with Lσ.

Any projection Q : `3p → ker(1, 1, 1) is given by

Qx = x− (1, 1, 1)⊗ (v1, v2, v3), where v1 + v2 + v3 = 1. (2.5)

Assume that Q commutes with Lσ, then

((1, 1, 1)⊗ (v1, v2, v3)) ◦ Lσ = Lσ((1, 1, 1)⊗ (v1, v2, v3)).

Taking a value at x = (x1, x2, x3) at both sides of the above equality
results in

(
3∑
1

xi,

3∑
1

xi,

3∑
1

xi) · (v1, v2, v3) =

= (
3∑
1

xi,
3∑
1

xi,
3∑
1

xi) · (vσ(1), vσ(2), vσ(3)),

for any σ ∈ S3 and for any x = (x1, x2, x3). Therefore v1 = v2 = v3 and
since v1 + v2 + v3 = 1 we have

v1 = v2 = v3 =
1
3
.

Hence Q = P. On the other hand it is easy to see that P indeed commutes
with Lσ. Therefore P is minimal. ¤

Now we will restrict ourselves to p = 4.

Theorem 2.5. Let p = 4. Then the minimal projection from Theorem 2.4
(see (2.2)) has exactly six norming points

x0 =
1

(2 + 24/3)1/4
(21/3,−1,−1), x3 = −x0,

x1 =
1

(2 + 24/3)1/4
(−1, 21/3,−1), x4 = −x1,

x2 =
1

(2 + 24/3)1/4
(−1,−1, 21/3), x5 = −x2,

(2.6)
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and exactly six norming functionals

f0 =
1

(2 + 24)3/4
(23,−1,−1), f3 = −f0,

f1 =
1

(2 + 24)3/4
(−1, 23,−1), f4 = −f1,

f2 =
1

(2 + 24)3/4
(−1,−1, 23), f5 = −f3.

(2.7)

Additionally

‖P‖ = λ(ker(1, 1, 1), `3p) =
1
3
(1 + 23)1/4(1 + 21/3)3/4. (2.8)

Proof. Projection P from (2.2) is given by

P (x1, x2, x3) =
1
3
(2x1 − x2 − x3,−x1 + 2x2 − x3,−x1 − x2 + 2x3),

therefore the problem of finding its norm and all norming points is equiv-
alent to finding the maximum of the function

h(x1, x2, x3) =
(

2x1−x2−x3
3

)4
+

(−x1+2x2−x3
3

)4
+

(−x1−x2+2x3
3

)4

in the set: (x1)4 + (x2)4 + (x3)4 = 1,
(2.9)

and finding all points at which this maximum is attained.
Let

z1 = 2x1−x2−x3
3 , z2 = −x1+2x2−x3

3 ,

z3 = −x1−x2+2x3
3 , d = x1+x2+x3

3 .
(2.10)

Then (2.9) is equivalent to finding the maximum and all points at which
this maximum is attained of the following function

f(z1, z2, z3, d) = (z1)4 + (z2)4 + (z3)4

in the set: (z1 + d)4 + (z2 + d)4 + (z3 + d)4 = 1 and z1 + z2 + z3 = 0.

(2.11)
Using standard Lagrange multipliers argument we construct the function

ϕ(z1, z2, z3, d) =(z1)4 + (z2)4 + (z3)4

− λ1((z1 + d)4 + (z2 + d)4 + (z3 + d)4)

− λ2(z1 + z2 + z3)

and in particular we obtain that z1, z2, z3 has to fulfill the equations

g(z1) = g(z2) = g(z3) = 0, where g(x) = 4x3−4λ1(x+d)3−λ2. (2.12)

Now assume that z1, z2, z3 are distinct. Then by (2.12) z1, z2, z3 will be
three distinct zeros of g. That implies λ1 6= 0 (in that case g has only one
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zero), λ1 6= 1 (in that case g is polynomial of degree 2 hence has at most
two zeros) and

g(x) = (4− 4λ1)(x− z1)(x− z2)(x− z3). (2.13)

Now by comparing the coefficients of g in (2.12) and (2.13) gives

z1 + z2 + z3 =
3λ1d

1− λ1
.

On the other hand z1 + z2 + z3 = 0, hence d = 0. But clearly a four tuple
(z1, z2, z3, 0) is not a maximum of function f (2.11) since f(z1, z2, z3, 0) =
1. Therefore we proved that

z1 = z2 or z2 = z3 or z3 = z1

which is equivalent to

x1 = x2 or x2 = x3 or x3 = x1. (2.14)

By symmetry it is enough to let x2 = x3. Letting x2 = x3 from (2.9)
we have to find the maximum (and all points at which this maximum is
attained) of the function

h(x1, x2) =
2 + 24

34
(x1 − x2)4 in the set: x4

1 + 2x4
2 = 1.

This can be easily solved using Lagrange multipliers and with (2.14) it
leads to (2.6). Note that (2.7) follows immediately from (2.6). ¤

Using Theorem 2.3 and 2.5 we may observe

Corollary 2.6. For any `n
4 we can construct a two-dimensional subspace

V of `n
4 such that minimal projection P from `n

4 onto V has only six
norming functionals and six norming points.

Remark 2.7. Theorem 2.2 is not true if the word minimal is dropped -
as we can easily find a projection (not minimal of course) which has only
2 different norming points. For instance,

Q = Id− (1, 1, 1)⊗ (0, 0, 1)

has only 2 norming points ±( 1
21/p , 1

21/p , 0).
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