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In this paper we review ongoing work on operators having norm-preserving

extensions to every overspace. We call them Hahn–Banach operators.
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1. INTRODUCTION

Let V and W be a pair of Banach spaces. Let LðV;W Þ be the space of all
linear bounded operators from V into W.

Definition 1.1. An operator T 2 LðV;W Þ is called a Hahn–Banach
operator if for every Banach space X containing V as a subspace there exists
an operator ~TT 2 L ðX;W Þ such that

ð1Þ k ~TT k ¼ kT k

ð2Þ ~TT� ¼ T�; 8� 2 V:

We use HBðV;W Þ to denote the set of Hahn–Banach operators.
The classical Hahn–Banach theorem states that every rank-1 operator

from V into W is a Hahn–Banach operator. It can also be restated in the
following way: if dimW ¼ 1, then HBðV;W Þ ¼ LðV;W Þ. Observe that the
two statements above are slightly different. In the first case we describe a
property of an operator T (being of rank 1) and conclude that, for every pair
V and W, such an operator is a Hahn–Banach operator. The second state-
ment starts with the description of the Banach space W (being one-dimen-
sional) and concludes that for every Banach space V and every operator
T 2 LðV;W Þ, T is a Hahn–Banach operator.
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Hence a generalization of the Hahn–Banach theorem involves these
players:

(1) an operator T (described in some way without referencing V and
W );

(2) the Banach space V;
(3) the Banach space W.

Keeping some of these variables fixed, we ask to determine the ‘‘values’’
of the remaining variables that would guarantee the Hahn–Banach prop-
erty. We will now describe some of these questions.

Questions:

1. For what spacesW (V ) is it true that HBðV;W Þ ¼ LðV;W Þ for all
V (W )?

2. Given V (W ), what are the spaces W (V ) such that HBðV;W Þ ¼

LðV;W Þ?
3. What are the pairs of spaces V and W such that HBðV;W Þ ¼

LðV;W Þ?
4. Given an n� n matrix A, what is a space V such that there exists an

(such that every) operator T 2 HBðV;V Þ having (has) A as matrix
representation?

5. Given a pair of spaces V and W, describe the class HBðV;W Þ.
In particular let LkðV;W Þ refer to the set of all operators of rank k
from V into W.

6. For what spaces V and W and for what integers k is it true that
LkðV;W Þ \HBðV;W Þ 6¼ ; ?, LkðV;W Þ � HBðV;W Þ ?

7. Let V and W be given. Let T 2 LkðV;W Þ \HBðV;W Þ and
kT k ¼ 1. Let BðV Þ and BðW Þ be the unit balls of V and W
respectively. Then TðBðV ÞÞ � BðW Þ. How large can a k-dimen-
sional volume of TðBðV ÞÞ be in terms of the properties of V andW ?

Question 1 seems to be the only question among those listed that has
been studied in detail. There exists a vast literature on it. We refer the reader
to the surveys of G. Buskes [1] and L. Nachbin [14]. The survey [1] contains
an extensive bibliography that we have not reproduced here.

In particular, the results on the generalizations of the Hahn–Banach
theorem obtained in the period 1940–1950 (G. P. Akilov, D. B. Goodner,
L. Nachbin and R. Phillips, see references in [1]) lead to understanding that
the following properties of a Banach space V are equivalent:

(a) The identity on V is a Hahn–Banach operator.
(b) LðV;W Þ ¼ HBðV;W Þ for every Banach space W.
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(c) LðW;V Þ ¼ HBðW;V Þ for every Banach space W.

This property of the Banach space V is called the extension property.

The following result of L. Nachbin [13] gives the complete answer to
Question 1 in the finite dimensional case.

Theorem 1.1. (L. Nachbin [13].) An n-dimensional Banach space has
the extension property if and only if it is isometric to l ðnÞ1 .

The complete answer to Question 1 in general case was obtained by
J. L. Kelley [9].

In this paper we limit ourselves to the finite-dimensional spaces V and
W. We will review the partial results concerning Questions 2–7. Wherever
possible we try to illustrate the situation with simple, two-dimensional
examples, which provide (in our experience) an invaluable geometric insight
into the problem.

2. CHARACTERIZATIONS OF THE HAHN–BANACH OPERATORS

AND QUESTION 1

The following characterization is a version of Theorem 2 of [3], see also
[10] (Section 4(b)).

Theorem 2.1. Let V be a finite-dimensional subspace of a Banach space
X. Let T 2 L ðV;W Þ and let ~TT be an extension of T to X. ~TT has minimal
norm among all extensions if and only if there exists an operator E ~TT :
W ! X such that

ðaÞ trðE ~TT
~TT Þ ¼ k ~TT k�ðE ~TTÞ

ðbÞ RangeE ~TT � V;

where � denotes the nuclear norm on LðW;X Þ.

Proof. Let A ¼ fA 2 L ðX;W Þ : A� ¼ 0; 8� 2 Vg. Then ~TTþA 2

LðX; W Þ is an extension of T for all A 2 A. Hence ~TT has minimal norm
among all extensions if and only if 0 is the best approximation to ~TT from A.
Observe that the dual of LðX;W Þ under trace duality is LðW;X ��Þ with the
nuclear norm. (This statement can be proved using a minor modification of
similar results in [8]; see (1.8) and (1.11).) Hence there exists an operator
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E ~TT 2 LðW;X ��Þ such that

trðE ~TT
~TT Þ ¼ k ~TT k�ðE ~TTÞ

trðE ~TTAÞ ¼ 0; 8A 2 A:

Let w 2 W. Then

A :¼ x� � w 2 A for each x� 2 V ?:

Hence

0 ¼ trðE ~TTAÞ ¼ x�ðE ~TTwÞ

for all x� 2 V ?. Thus E ~TTw 2 V for all w 2 W and E ~TT 2 LðW;X Þ. It remains
to observe that by local reflexivity (see [8], (17.2)) the nuclear norm of E ~TT

considered as an operator from LðW;X Þ is the same as the nuclear norm of
E ~TT considered as an operator from LðW;X ��Þ. &

Theorem 2.2. (cf. [5].) An operator T 2 LðV;W Þ is a Hahn–Banach
operator if and only if there exists a pair ðw�; �Þ 2 W � � V such that the
operator defined by

E ¼ w� � �

satisfies the conclusion of Theorem 2.1.

Proof. Let w�2W � and � 2 V be such that

1 ¼ kw�k ¼ k�k and w�ðT�Þ ¼ kT k:

Then clearly E ¼ w� � � satisfies (a) and (b) from Theorem 2.1.
Conversely, if E ¼ w� � � satisfies Theorem 2.1, then

jjTjj jj�jj jjw�jj � w�ðT�Þ ¼ w�ð ~TT�Þ ¼ trðE ~TT Þ ¼ jj ~TTjj�ðEÞ ¼ jj ~TT jj jj�jj jjw�jj;

and hence k ~TT k ¼ kT k. &

In addition to this dual characterization of the Hahn–Banach opera-
tors, let us mention a characterization of HBðV;W Þ in terms of factoriza-
tions.

Definition 2.1. For every T 2 LðV;W Þ define

�1ðT Þ ¼ inf kAkkBk;

where the infimum is over all A 2 LðV; l ðNÞ
1 Þ; B 2 Lðl ðNÞ

1 ;W Þ such that

T ¼ BA:
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It is well known (see e.g. [19]) that

Theorem 2.3. T 2 LðV;W Þ is a Hahn–Banach operator if and only if

kT k ¼ �1ðT Þ:

In the study of Hahn–Banach operators that are linear isomorphisms it
turns out to be useful to exploit the following geometric language intro-
duced in [15] and [16].

Let V be a finite dimensional normed space.

Definition 2.2. A symmetric with respect to 0, bounded, closed convex
body A � V is called a sufficient enlargement of (the unit ball) BðV Þ (or for
V ) if for arbitrary isometric embedding V � X there exists a projection
P : X ! V such that PðBðX ÞÞ � A.

With this definition we have the following obvious statement: a linear
isomorphism T between finite dimensional normed spaces V and W is a
Hahn–Banach operator if and only if kT kT �1ðBðW ÞÞ is a sufficient en-
largement of BðV Þ.

3. QUESTIONS 2 AND 3

Questions 2 and 3 are essentially the same question. Based on purely
aesthetic considerations it would be nice if the following conjecture was true.

Conjecture 3.1. A pair of finite-dimensional Banach spaces ðV;W Þ

satisfies

HBðV;W Þ ¼ LðV;W Þ

if and only if one of the spaces V or W is isometric to an l ðnÞ1 .

Only the following result is known to us:

Theorem 3.1. Let V be a strictly convex or a smooth n-dimensional
normed space and let W be n-dimensional. Then

HBðV;W Þ ¼ LðV;W Þ

if and only if W is isometric to l ðnÞ1 .
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Proof. Let us consider an operator T : V ! W such that jjT jj ¼ 1 and
such that TðBðV ÞÞ has the maximal possible volume among all operators of
norm 1. From now on we identify V and W using T and consider the
obtained space with two norms jj � jjV and jj � jjW. If T is a Hahn–Banach
operator, then BðW Þ is a sufficient enlargement of BðV Þ.

Using a result due to D. R. Lewis and V. D. Milman (see Theorem 1.3
in [11] and Theorem 14.5 in [19]) and the Binet–Cauchy theorem, we can
find n linearly independent points x1; . . . ; xn and n linearly independent
functionals f1; . . . ; fn such that

jj fijjV ¼ jj fijjW ¼ jjxijjV ¼ jjxijjW ¼ fiðxiÞ ¼ 1:

It implies that BðW Þ is contained in the parallelepiped

P ¼ fx : j fiðxÞj � 1 for every ig:

In order to finish the proof it is enough to show that P ¼ BðW Þ. By a
result of [16] (see Corollary on p. 317) it suffices to show that there is no
f 2 BðV �Þ such that j f ðxiÞj ¼ j f ðxjÞj ¼ 1 for i 6¼ j.

In the strictly convex case it immediately follows from the definition.
In the smooth case it follows from the fact that fi is the only functional

in BðV � Þ such that fiðxiÞ ¼ 1 and the condition that f fi g
n
i¼1 are linearly

independent, and, hence, are different. &

4. QUESTION 4

This question was addressed in the papers [6], [7], and [17].

Theorem 4.1. (cf. [6], [17].) Let A be an n� n matrix different from a
scalar multiple of the identity. Then there exists a Banach space V and a
Hahn–Banach operatorT 2 LðV;V Þ such thatA is a matrix representation of
the operator T with respect to some basis in V, and V is not isometric to l ðnÞ1 .

Instead of giving the proof for this theorem we will illustrate it by two
examples.

Example 4.1.

Let A ¼
1

0

0

d

� �
where jd j < 1:

We show there exists a two-dimensional Banach space V ¼ Vðd Þ such that
Vðd Þ is not isometric to l ð2Þ1 and �ðVðd ÞÞ ¼ 1: Indeed let Vðd Þ be the space
with unit ball BðVðd ÞÞ given in R2 by

kða1; a2Þk :¼ maxðja1j; jð1� d Þa1 þ a2j; jð1� d Þa1 � a2jÞ � 1:
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I.e., BðVðd ÞÞ is the (convex hull of the) hexagon with vertices �ð0; 1Þ;
�ð1; d Þ;�ð1;�d Þ. The coordinate functionals �i 2 Vðd Þ� defined by

�iða1; a2Þ ¼ ai; i ¼ 1; 2; ð1Þ

have norms equal to 1 (since BðVðd ÞÞ is inside the unit square). It follows
from (1) that, for the operator T defined on Vðd Þ by

T ða1; a2Þ ¼ ða1; da2Þ or T ¼ �1 � e1 þ d�2 � e2;

we have

kT k ¼ kTð1; 0Þk ¼ 1:

Let X � Vðd Þ. Let ~�i�i be the Hahn–Banach extension of the functionals �i in
(2.2). Define an operator ~TT : X ! Vðd Þ by

~TT ¼ ~��1 � e1 þ d ~��2 � e2; i:e:; ~TTx ¼ ð ~��1ðxÞ; d ~��2ðxÞÞ:

If kxk ¼ 1 then j ~��1ðxÞj � 1; j ~��2ðxÞj � 1 and since ð1; d Þ 2 BðVðd ÞÞ we have

~TTx 2 BðVðd ÞÞ:

Hence k ~TT k � 1:
Finally, observe that, since BðVðd ÞÞ is a hexagon, Vðd Þ is not isometric

to l ð2Þ1 (whose unit ball is the square).
The next example deals specifically with the one remaining diagonal

case d ¼ �1.

Example 4.2.

Let A ¼
1

0

0
�1

� �
:

Let V be the space with unit ball BðV Þ given in R2 by

kða1; a2Þk :¼ maxðja1j; ja2j; ja1 � a2jÞ � 1:

I.e., BðV Þ is the (convex hull of the) hexagon with vertices �ð1; 1Þ; �ð1; 0Þ;
�ð0; 1Þ.

Again, as in Example 4.1, the coordinate functionals �i; i ¼ 1; 2, in V �

have norms equal to 1 (since BðV Þ is inside the unit square). Consider the
operator T defined on V by

Tða1; a2Þ ¼ ða1;�a2Þ or T ¼ �1 � e1 � �2 � e2:

Let X � V and define an operator ~TT : X ! V by

~TT ¼ ~��1 � e1 � ~��2 � e2; i:e:; ~TTx ¼ ð ~��1ðxÞ;� ~��2ðxÞÞ;
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where, as in Example 4.1, ~�i�i is a Hahn–Banach extension of the functional
�i, i ¼ 1; 2. Since kð1; 1Þk ¼ 1 and kT ð1; 1Þk ¼ 2, we have kT k � 2. On the
other hand, clearly kT k � k�1k þ k�2k ¼ 2 and, similarly, k ~TT k � 2.

As in Example 4.1, the unit ball of V is an hexagon and thus V is not
isometric to l ð2Þ1 .

In general the following is shown in [6] and [17]:

Theorem 4.2. For every 2� 2 matrix A, different from a scalar multiple
of the identity, there exists a two-dimensional Banach space V with an
hexagonal unit ball and a Hahn–Banach operator T 2 LðV;V Þ that
corresponds to the matrix A.

The case of a multiple of the identity is excluded for a reason. Indeed, if
�I 2 LðV;V Þ is a Hahn–Banach operator, then I is also a Hahn–Banach
operator and by Theorem 1.1 V is isometric to l ðnÞ1 .

Finally, observe that the operator of Example 4.2 has norm 2 and
spectral radius 1. That these quantities are not equal, turns out to be a
necessity, as the following theorem shows.

Theorem 4.3. (cf. [7].) Let A be an n� nmatrix with the spectrum in the
unit circle. Suppose that there exists a Hahn–Banach operator T 2 LðV;V Þ

such that kT k ¼ 1 and T is represented by A. Then V is isometric to l ðnÞ1 .

5. QUESTIONS 5 AND 6

In this section we will concern ourselves primarily with the existence of
an operator T 2 LkðV;W Þ \HBðV;W Þ. In other words we focus on the
description of finite-dimensional spaces V and W for which there exists a
Hahn–Banach operator of rank k. These questions have been dealt with in
[5] and [18]. We will need a few definitions. Let X be a Banach space, let
BðX Þ be its unit ball and SðX Þ be its unit sphere. Let x 2 SðX Þ and letH be a
supporting hyperplane to BðX Þ containing x. Let Fx;H ¼ SðX Þ \H. The set
Fx;H we call a ‘‘flat spot.’’ The space X is strictly convex if dimFx;H ¼ 0 for
every x andH. The space X is called smooth if for each x 2 SðX Þ there exists
only one supporting hyperplane of BðX Þ containing x. In finite dimensional
case X is smooth if and only if X � is strictly convex.

It turns out that the flat spots on the spheres of V � and W play the
fundamental role in constructing the Hahn–Banach operators. We need the
following parameter.
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�ðXÞ :¼ maxfdimFx;H : x 2 SðX Þ; H is a supporting hyperplane to
BðX Þ containing x}:

We will now indicate how we can construct Hahn–Banach operators
using flatness. Once again for simplicity we will use two-dimensional
examples.

Suppose that V is a two-dimensional space such that �ðV �Þ ¼ 1. That
means that there exist two functionals ��1 and ��2 2 SðV �Þ and an element
�0 2 SðV Þ such that

��1ð�0Þ ¼ ��2ð�0Þ ¼ 1:

We will now choose vectors w1; w2 2 W so that the operator

T ¼ ��1 � w1 þ ��2 � w2

is a Hahn–Banach operator. In order to do so, let w1 and w2 have the
property that

1 ¼ kw1 þ w2k � k�1w1 þ �2w2k; 8j�jj � 1: ð2Þ

We will establish the existence of such a basis below. For now let X � V. Let
x�1 and x�2 be the Hahn–Banach extensions of �

�
1 and ��2 . Then

~TT ¼ x�1 � w1 þ x�2 � w2:

For every x 2 SðX Þ

k ~TTðxÞk ¼ kx�1ðxÞw1 þ x�2ðxÞw2k � kw1 þ w2k ¼ kTð�0Þk � kT k:

Hence k ~TT k � kT k and T 2 HBðV;W Þ. To establish the existence of w1 and
w2 with property (2), let w0 2 SðW Þ � R2 be a point such that its Euclidean
distance to the origin is minimal among all the points of SðW Þ. Let ~ww1 and
~ww2 be an orthonormal basis in R2 with ~wwi 6¼ w0. By the symmetry of SðW Þ

we may assume ~ww1 ¼ ð1; 0Þ and ~ww2 ¼ ð0; 1Þ. Then w0 ¼ � ~ww1 þ 	 ~ww2. Denoting
w1 ¼ � ~ww1 and w2 ¼ 	 ~ww2, we have

1 ¼ kw0k ¼ kw1 þ w2k:

Then, by the definitions of w1 and w2, we have k�1w1 þ �2w2k2 � kw1 þ w2k2
for j�jj � 1, where k � k2 denotes the Euclidean norm. But, by definition of
w0 ¼ w1 þ w2, the Euclidean ball of radius kw1 þ w2k2 is contained in theW-
ball of radius 1. Therefore

1 ¼ kw1 þ w2k � k�1w1 þ �2w2k; 8j�jj � 1

and we are done.
We will now reproduce the two-dimensional construction in [5] of a

Hahn–Banach operator if �ðW Þ ¼ 1. (Note that in this construction
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W ¼ V.) Suppose that V with unit sphere SðV Þ � R2 is not strictly convex.
Then (via a linear transformation) we can assume that SðV Þ lies inside the
unit square C, touches C on all four sides, and has a flat spot running from
ð1; d Þ to ð1;�d Þ (and of course a corresponding flat spot running from
ð�1;�d Þ to ð�1; d Þ), where ‘‘flat spot’’ is defined in the usual obvious way.
Let P be the rectangle with corners ð�1;�d Þ, whence P lies inside SðV Þ. (See
Figure 1 below.)

Now consider the linear transformation Tða1; a2Þ :¼ ða1; da2Þ taking C
into P. Thus TðSðV ÞÞ lies inside P, which lies inside SðV Þ, and, since
Tð1; 0Þ ¼ ð1; 0Þ 2 SðV Þ \ TðSðV ÞÞ, we see that T : V ! V has norm one.
Note that we can also write T in the form

¼ �1 � ð1; 0Þ þ d�2 � ð0; 1Þ;

where �i are the norm-1 coordinate functionals on V defined by

�iða1; a2Þ ¼ ai; i ¼ 1; 2:

Next let ~��i be a Hahn–Banach extension to X of the functional �i on V,
i ¼ 1; 2: Then the extension operator ~TT : X ! V has the form

~TT ¼ ~��1 � ð1; 0Þ þ d ~��2 � ð0; 1Þ:

Finally, since ~TTðSðXÞÞ � TðcoCÞ ¼ coP � coSðV Þ ¼ BðV Þ, we see that
k ~TT k � 1 and hence, since k ~TT k � kT k ¼ 1, it follows that k ~TT k ¼ kT k.

Observe that this construction is essentially the same as in Example 4.1.
Of course it is easy to generalize the second example above to W 6¼ V

and both examples to a k-dimensional situation (see [18] for details). What is
amazing is that these are (in a sense) the only possibilities (up to the choice
of basis).

Fig. 1
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Theorem 5.1. (cf. [5], [18].) Let V andW be a pair of finite-dimensional
Banach spaces. Let k be an integer such that minfdimV; dimWg � k. Then

LkðV;W Þ \HBðV;W Þ 6¼ ;

if and only if

�ðV �Þ þ �ðW Þ � k� 1:

For the following Example 5.1 we need the following two theorems and
will need to observe the proof of the second:

Theorem 5.2. ([2].) Let V ¼ ½ ~�� � be a smooth real subspace of L1½T ; ��.
Then ~TT ¼

P
n
i¼1 ui � �i is a minimal extension of T ðto L1½T ; ��Þ implies that,

for almost all t,

~uuðtÞ ¼ k ~TT k ~zzðtÞ

with ~zzðtÞ being a point of intersection of SðV Þ and its tangent plane per-
pendicular to M ~��ðtÞ, where M is the n� n matrix M of ðE ~TTÞjV (from
Theorem 2.1) with respect to the basis ~��. ðSee Fig. 2 below.Þ

Theorem 5.3. Let V be a smooth, strictly convex, n-dimensional real
subspace of L1½�1; 1�. Let T : V ! V be such that there exists an extension
~TT: L1½�1; 1� ! V with k ~TT k ¼ kT k. Then T is a rank-one operator.

Proof. By Theorem 2.2, corresponding to ~TT ¼
P

n
i¼1 ui � �i, there exists a

rank-one operator E satisfying the conclusion of the theorem. Hence the
matrixM defined as the matrix of E, with respect to the basis ~��, has rank one.

Fig. 2
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Since V is smooth there exists a minimal extension ~TT of T satisfying the
conditions of Theorem 5.2. But M has rank one, whence the vectors M ~��ðtÞ
lie on the same one-dimensional subspace of Rn for almost all t 2 ½�1; 1�.

Since V is strictly convex, the vectors ~uuðtÞ also lie in the same one-
dimensional subspace of Rn for almost all t 2 ½�1; 1�. Hence the operator ~TT
given by Theorem 5.2 has rank one and thus so does T. &

Example 5.1. We now turn to the description of HBðV;W Þ in the
specific case where

BðV Þ ¼ BðW Þ ¼ ða; bÞ 2 R2 :

ð1
�1

a

2
þ bt

��� ��� dt � 1
� �

:

In this case SðV Þ is comprised of the line segments ð�1; bÞ, � 1
2 � b � 1

2, and
the half ellipses given by ða2 þ 4b2Þ=4b ¼ 1, 12 � jbj � 1. It is easy to see that
SðV Þ is smooth (but not strictly convex, having flat spots given by the line
segments ð�1; bÞ, � 1

2 � b � 1
2, and thus from the proof of Theorem 5.3 we

see that ~TT must have the following form (without loss we can choose the
‘‘right-hand’’ flat spot; this corresponds to normalizing the ‘‘action matrix’’
A below so that A11 > 0):

~TT ¼ 1� 1
2þ u2 � t; 0 � ju2ðtÞj �

1
2 ;

i.e., ðu1ðtÞ; u2ðtÞÞ must lie on the right-hand flat spot. Next let kxk ¼

kxkL1½�1;1� ¼ 1. Then it is immediate that k ~TTxk � 1, and so k ~TT k � 1. On the
other hand it is clear that ~TTð 12 Þ ¼ 1, and thus k ~TT k ¼ kT k ¼ 1, where
T ¼ ~TTjV

. Now, letting ðs; rÞ ¼
Ð 1
�1ð

1
2 ; Þu2ðÞ d, we conclude that

HBðV;V Þ ¼ fT : Tðaþ btÞ ¼ �ðaþ ðrbþ 2saÞtÞ; j�j > 0g;

where u2 ranges over all functions such that ku2k1 � 1
2 and r 6¼ 0. Note that

each T has the corresponding matrix A (with respect to ð 12 ; t Þ) given by

A ¼ �
1 s
0 r

	 

:

6. QUESTION 7

In this last section of the paper we offer a few remarks regarding the last
question: Let T 2 HBðV;W Þ \ LkðV;W Þ be such that kT k ¼ 1. How large
can the volume of TðBðV ÞÞ be ? If V ¼ W we can rephrase this question in
terms of the determinant of T.

Since the very existence of a k-dimensional Hahn–Banach operator
depends on the dimension of the flat spots of V � and W, we would expect
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that the size of the range TðBðV ÞÞ depends on the size of the flat spots ofW �

and V. Here are a few preliminary examples that indicate that this is in fact
the case.

In the following discussion we restrict ourselves to the case k ¼ 2. First
we recall that any real two-dimensional space V can be isometrically
imbedded in an L1-space (see e.g., [20]), which is in turn a maximal over-
space for V (i.e., supXfk ~TTk : X ! Vg is achieved for X equal to this L1-space
(see e.g., [12], [14])). We can thus conclude, from the construction preceeding
Fig. 1, that, by normalizing the BðV Þ as in Fig. 2, if SðV Þ has a flat spot of
half-length d, then there exists an Hahn–Banach operator on V taking the
unit square (corners ð�1;�1Þ) into itself and with determinant d.

Conversely, suppose that V is smooth and has a Hahn–Banach
operator T. Then, analogously as in Example 5.1, SðV Þmust have a flat spot
corresponding to T. Suppose furthermore that, after normalizing BðV Þ as in
Fig. 1, the maximum height of SðV Þ occurs at ð0; 1Þ (e.g., if SðV Þ is sym-
metric with respect to the vertical b-axis).

Then

V ¼ ða; bÞ 2 R2 :

ð1
�1

a

2
þ

b

2d
t

����
���� d�ðtÞ � 1

� �
;

for some positive measure �, where � is normalized by
Ð 1
�1

1
2 d�ðtÞ ¼ 1 and

d ¼
Ð 1
�1 jtj d�ðtÞ=2. Thus, generalizing Example 5.1, we see that the size of

the flat spot is given by d. We argue analogously as in Example 5.1 to
conclude that by letting ðs; rÞ ¼

Ð 1
�1ð

1
2 ; Þu2ðÞ d�ðÞ, we have

HBðV;V Þ � fT : Tðaþ btÞ ¼ �ðaþ ðrbþ 2saÞtÞ; j�j > 0g;

where u2 ranges over all functions such that ku2k1 � d and r 6¼ 0. Note that
each T has the corresponding matrix A (with respect to ð 12 ; t Þ) given by

A ¼ �
1 s
0 r

	 

:

As an illustrative subexample of the foregoing, note that the case V being
isometric to l ð2Þ1 (considered as a limit of spaces with the corners smooth)
corresponds to � ¼ ��1 þ �1, where then d ¼ 1.
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