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ABSTRACT. Let T = Yo Ui ®u: V=V =[v,...,un] C X, where 4; € V*
and X is a Banach space. Let T =" ; u; ® v; : X — V be an extension of
T to all of X (i.e., u; € X*) such that T has minimal (operator) norm. In this
paper we show in particular that, in the case n = 2 and the field is R, there
exists a rank-n T such that ||T|| = ||T|| for all X if and only if the unit ball of V
is either not smooth or not strictly convex. In this case we show, furthermore,
that, for some ||T|| = ||T||, there exists a choice of basis v = v1, v such that
[lui || = l|@:ll, ¢ =1,2; i.e., each u; is a Hahn-Banach extension of @;.

1. INTRODUCTION

Let X be a Banach space and V' be a subspace of X. If T is an operator from
X into V/, then T}, is the restriction of T onto V. Let T': V — V.
Define

(T X) = {7 : Tjy =T}
and
e(T) = sg(p{e(f: X): XDV}

The classical Hahn-Banach Theorem states that, for every rank-one operator 7',
e(T) = ||

The Nachbin Theorem shows that, if V is n-dimensional and, for every T: V — V,
e(T) = ||T1l,

then V =2 &(Q).

Definition 1.1. An operator T : V — V is called a Hahn-Banach operator if
e(T) = |[T1].

In this paper we are concerned with the existence of non-trivial Hahn-Banach
operators on a Banach space V. In particular we show (Theorem B2) that the
two-dimensional real Banach space V' possesses a rank-two Hahn-Banach operator
if and only if V is either non-smooth or not strictly convex.

For the proof of the theorem we will need a number of definitions.
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Let X be a Banach space and V' be a finite-dimensional subspace. Let T" be a
bounded linear operator from X into V' and let T' be the restriction of 7" onto V.
(T'=1,.)

Definition 1.2. T is a minimal norm extension of 7' means
IT]| =inf{||S]|: S: X =V : S|y = T}

Definition 1.3. The extremal set of T': X — V' is

E(T) ={(=",2™) € B(X") x B(X™) : «"(T""=™) = T},
where B denotes the unit ball and T** denotes the second adjoint extension of T’
(T2 =300 (ui, @™ )v; and [|T| = || T)).
Note 1.1. In the following we will designate by z* @ z** : X — X** the usual dyad
operator given by z* ® **(z) = (z, z*)z**.

Theorem 1.1 ([2]). T is a minimal norm extension of T if and only if there exists
a probability measure p on E(T) such that the operator

ET:/x*®x**du

maps V into V.

Definition 1.4. An n-dimensional subspace V' C L1[7T, v] is said to be smooth if
no non-zero element v of V' vanishes on a set of positive v-measure.

Note 1.2. Tt is well known that the n-dimensional real space V is smooth if and
only if the unit sphere S(V) is differentiable (has a unique (n — 1)-dimensional
tangent plane) at every point. This fact follows immediately from ||@|| := ||a@ - ¥]|
and the formula (see e.g. [I])

%Hd'” :/Tvi(s)sgn[d'.@'(s)] dv(s) for @ # 0

and the Implicit Function Theorem. A point where S(V) is non-differentiable is
called a point of non-smoothness.
Theorem 1.2 ([I]). Let V = [4] be a smooth real subspace of Li[T, v]. Then
T =" u;®v; is a minimal extension of T (to L1[T, v]) implies that, for almost
all t,

u(t) = [T =()

with Z(t) being a point of intersection of S(V') and its tangent plane perpendicular
to M(t), where M is the n x n matrix M of (Er)),, with respect to the basis U.
(See Figure 1.)

lv

Corollary 1.1. Let V = [0] be a smooth real subspace of L1[T, v]. Then without
loss T can be enlarged so that there exists T = Y7 u; ® v; which is a minimal
extension of T' and the operator T* is an extension of T* : V* — V*.

Proof. Let T = Z?:l u;®v; be a minimal extension of T'. Theorem [A provides that
@/||T|| lies on S(V') a.e.[v]. Next replace T by 7 U AT, where AT = S(V)—range
(@/||T|]), enlarge v and ¢ to be zero on AT, and enlarge @/||T|| to be the coor-
dinate functions on A7. Then let T and T be replaced by their corresponding
enlargements, recall that V* is isometric to the space of coordinate functions of
S(V) regarded as a subspace of Lo (S(V)), and note that T, = T O
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FIGURE 1.

2. MAIN THEOREM

Lemma 2.1. Let T be an extension of T. Then ||T|| = ||T|| if and only if there
exists a pair

(x*,v) € &), veV.
Hence the dyad operator ET = x* @ v satisfies the conclusion of Theorem [1.1l
Proof. If (z*, v) € £(T), then
1T = 2*(Tv) = [|T]|.
Thus T attains its norm on V' and
IT|| = Tl = | Tv]| < |7

Conversely, if | T|| = ||T||, let v € V' be such that |Tv| = ||Tv| = |T|| = ||T||. Let
x* € X* be such that 2*(Tv) = ||Tv||. Then (z*, v) € E(T). O

The following theorem shows that, if n > 1 and the field is R, a smooth, strictly
convex, n-dimensional L;-subspace V' possesses no rank-n Hahn-Banach operator.
In fact it shows more, namely, that V possesses no rank-k operator which extends
to Ly of the same norm, k > 1.

Theorem 2.1. Let V' be a smooth, strictly convex, n-dimensional real subspace of
L'[=1,1]. Let T : V — V be such that there exists an extension T : L'[~1,1] =V
with ||| = ||T||. Then T is a rank-one operator.

Proof. By Lemma 2] corresponding to 7' = Y7, u; ® v;, there exists a rank-one
operator Ep satisfying the conclusion of the lemma. Hence the matrix M defined
as the matrix of (Er)|,,, with respect to the basis ¥, has rank one.

Since V is smooth there exists a minimal extension 7' of T satisfying the condi-
tions of Theorem [L2] But M has rank one, whence the vectors M@ (¢) lie on the
same one-dimensional subspace of R" for almost all ¢ € [—1, 1].

Since V is strictly convex, the vectors @(t) also lie in the same one-dimensional
subspace of R™ for almost all ¢ € [—1, 1]. Hence the operator T given by Theorem

has rank one and thus so does T O

Corollary 2.1. n-dimensional Hilbert space (één)) possesses no Hahn-Banach op-
erator with rank > 1.
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Proof. It is well known (see [5]) that Kén) can be realized as a subspace of L;. [

Theorem 2.2. Let V be a two-dimensional real Banach space. Then the following
are equivalent:

(1) V is smooth and strictly conver.

(2) For every rank-two operator

T:V =V, eT)>|T].

Proof. (1) implies (2) by Theorem [Z1] since every two-dimensional space V' can be
isometrically imbedded into Li[—1, 1] (see e.g. [6]).

We now show (2) implies (1).

Suppose that V with unit sphere S(V) C R? is not strictly convex. Then (via
a linear transformation) we can assume that S(V') lies inside the unit square C,
touches C' on all four sides, and has a flat spot running from (1, d) to (1, —d) (and
of course a corresponding flat spot running from (—1,—d) to (—1,d)), where “flat
spot” is defined in the usual obvious way. Let P be the rectangle with corners
(£1, +d), whence P lies inside S(V). (See Figure A.)

FIGURE A.

Now consider the linear transformation T'(a1, ag) := (a1, dag) taking C' into P.
Thus T(S(V)) lies inside P, which lies inside S(V), and, since T(1,0) = (1,0) €
S(VYNT(S(V)), we see that T : V — V has norm one. Note that we can also write
T in the form

T=d1®(1,0) + ddz ® (0,1),
where ¢; are the norm-1 coordinate functionals on V defined by
bi(ar,az) = a;, i =1,2.
Next let ¢; be a Hahn-Banach extension to X of the functional qu onV,i=1,2.
Then the extension operator T : X — V has the form
T =¢1®(1,0) + do2 @ (0,1).

Finally, since T(S(X)) € T(coC) = @P C @S(V) = B(V), we see that ||T| < 1
and hence, since ||T|| > ||T|| = 1, it follows that |T|| = ||T|.

Furthermore, suppose that V is strictly convex but not smooth. Then, as is
well known, V* is smooth but not strictly convex, and the above argument shows
that V* possesses a rank-two Hahn-Banach operator. But then, by Corollary [[]]
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(1 = ||T*| = ||IT*| = |T)| = |IT|| and e(T) = e(T; Ls)), V also possesses a
rank-two Hahn-Banach operator. [l

Corollary 2.2. If the unit ball of the 2-dimensional real space V is either not
smooth or not strictly convex, then V possesses a basis vi, vo and a rank-2 Hahn-
Banach operator T = Z?Zl u; ® v; such that, for the extension T = E?Zl u; @ vj,
each ||uil| = ||aill, ¢ = 1,2, i.e., each u; is a Hahn-Banach extension of 4;. A
reasonable conjecture is that this phenomenon holds for every rank-2 Hahn-Banach
operator on V.

Note 2.1. In [3] it is shown in particular that, for each real non-singular 2 x 2
real matrix A not equal to a scalar multiple of the identity I, there exists a real
space V = [U] &(ﬁ,) which possesses a Hahn-Banach operator T such that T'7 = A#.
Theorem 22lexplains why any such space must be either non-smooth or non-strictly
convex. Indeed all the spaces provided in [3] are hexagonal spaces.

Note, furthermore, that the rectangle P in the proof of Theorem can be
replaced by any parallelogram (symmetric with respect to the origin) contained
inside S(V) and intersecting the flat sides of S(V). In this way we see that V
possesses an entire family of two-dimensional Hahn-Banach operators of norm-1
(Tp = p for some p € S(V)NT(S(V)) of the form

T = (ap1 + Bd2) @ (1,0) + (vd1 + d¢o) @ (0, 1),

all of which have two real eigenvalues (1 and e, where |e] < 1). In [4] we show that,
if the spectrum of T' # I lies on the unit circle, then the Hahn-Banach operator T'
has norm > 1.

Corollary 2.3. If the two-dimensional real Banach space V' possesses a rank-two
Hahn-Banach operator T # I whose spectrum lies on the unit circle, then V also
possesses a rank-two Hahn-Banach operator with eigenvalues 1, d, |d| < 1.

Corollary 2.4. The two-dimensional real Banach space V' possesses a rank-two
Hahn-Banach operator if and only if its dual space V* possesses a rank-two Hahn-
Banach operator.

Corollary 2.5. For every two-dimensional subspace V' of {1 or { there exists a
rank-two operator T : V — V such that e(T) = ||T).

For every two-dimensional subspace V' of £, (p € (1, 00)) and for every rank-two
operator T : 'V — V we have e(T) > | T||.

Example 2.1. Let V = [¢] C L'[-1,1], where (vi,v2) = (%,t) and let Tvy = vy
Then Theorem yields that the minimal extension
operator T' = Zle u; @v; : LY[~1,1] — V is given by

N[

and Tve = ave, a >

. (1,2mt) sgnt
U=~ + (0
[ 05
where £ = ||T||, m is a non-negative constant, and M = (}2). (In fact a =
1 2 1 . . .
(L4 sztL mdzttQ) /s 1+jtm2t2 .) Since V is smooth, Theorem provides that
|T|| = ||T|| = 1 precisely when m = 0. Note that then u; = 1 and up = 3sgnt

shows that u; € Loo[—1, 1] is the Hahn-Banach extension of 4;, i = 1,2. (See Figure
2.)
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(0,1)
S(V)
1,3)
(1,0) = 2M3(t)
& (17 ‘%)
FIGURE 2.

As a further example, following Corollary [[.I], note that the space V is also
realized as V = [,1] C L*[R, v], where v is Lebesgue measure on [—1, 1] and zero
off [~1,1]. Thus replacing [—1,1] by R in the above, we see that, for m > 0,
@/||T|| now covers all of S(V) and, for m = 0, let @(t)/||T|| = u(t), |t| > 1, be
any convenient parameterization of the curved portion of S(V). Thus for m = 0
the adjoint operator T* (with same-norm extension T7*) provides a Hahn-Banach
operator for the non-smooth, strictly convex space V* = [t,1 — t?] C Lo[—1,1]

with a “corner” at (1,0). (V* 2 [@/||T]|] C L[R].)
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