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A TWO-DIMENSIONAL HAHN-BANACH THEOREM
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(Communicated by Dale Alspach)

Abstract. Let T̃ =
∑n
i=1 ũi⊗ vi : V → V = [v1, ..., vn] ⊂ X, where ũi ∈ V ∗

and X is a Banach space. Let T =
∑n
i=1 ui ⊗ vi : X → V be an extension of

T̃ to all of X (i.e., ui ∈ X∗) such that T has minimal (operator) norm. In this
paper we show in particular that, in the case n = 2 and the field is R, there
exists a rank-n T̃ such that ‖T‖ = ‖T̃‖ for all X if and only if the unit ball of V
is either not smooth or not strictly convex. In this case we show, furthermore,
that, for some ‖T‖ = ‖T̃‖, there exists a choice of basis v = v1, v2 such that
‖ui‖ = ‖ũi‖, i = 1, 2; i.e., each ui is a Hahn-Banach extension of ũi.

1. Introduction

Let X be a Banach space and V be a subspace of X . If T is an operator from
X into V , then T|V is the restriction of T onto V . Let T̃ : V → V .

Define

e(T̃ ; X) = inf
T
{‖T ‖ : T|V = T̃}

and

e(T̃ ) = sup
X
{e(T̃ : X) : X ⊃ V }.

The classical Hahn-Banach Theorem states that, for every rank-one operator T̃ ,

e(T̃ ) = ‖T̃‖.

The Nachbin Theorem shows that, if V is n-dimensional and, for every T̃ : V → V ,

e(T̃ ) = ‖T̃‖,

then V ∼= `
(n)
∞ .

Definition 1.1. An operator T̃ : V → V is called a Hahn-Banach operator if
e(T̃ ) = ‖T̃‖.

In this paper we are concerned with the existence of non-trivial Hahn-Banach
operators on a Banach space V . In particular we show (Theorem 2.2) that the
two-dimensional real Banach space V possesses a rank-two Hahn-Banach operator
if and only if V is either non-smooth or not strictly convex.

For the proof of the theorem we will need a number of definitions.
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Let X be a Banach space and V be a finite-dimensional subspace. Let T be a
bounded linear operator from X into V and let T̃ be the restriction of T onto V .
(T̃ = T|V .)

Definition 1.2. T is a minimal norm extension of T̃ means

‖T ‖ = inf{‖S‖ : S : X → V : S|V = T̃}.
Definition 1.3. The extremal set of T : X → V is

E(T ) = {(x∗, x∗∗) ∈ B(X∗)×B(X∗∗) : x∗(T ∗∗x∗∗) = ‖T ‖},
where B denotes the unit ball and T ∗∗ denotes the second adjoint extension of T
(T ∗∗x∗∗ =

∑n
i=1〈ui, x∗∗〉vi and ‖T ∗∗‖ = ‖T ‖).

Note 1.1. In the following we will designate by x∗⊗x∗∗ : X → X∗∗ the usual dyad
operator given by x∗ ⊗ x∗∗(x) = 〈x, x∗〉x∗∗.
Theorem 1.1 ([2]). T is a minimal norm extension of T̃ if and only if there exists
a probability measure µ on E(T ) such that the operator

ET =
∫
x∗ ⊗ x∗∗ dµ

maps V into V .

Definition 1.4. An n-dimensional subspace V ⊂ L1[T , ν] is said to be smooth if
no non-zero element v of V vanishes on a set of positive ν-measure.

Note 1.2. It is well known that the n-dimensional real space V is smooth if and
only if the unit sphere S(V ) is differentiable (has a unique (n − 1)-dimensional
tangent plane) at every point. This fact follows immediately from ‖~a‖ := ‖~a · ~v‖
and the formula (see e.g. [1])

∂

∂ai
‖~a‖ =

∫
T

vi(s) sgn[~a · ~v(s)] dν(s) for ~a 6= 0

and the Implicit Function Theorem. A point where S(V ) is non-differentiable is
called a point of non-smoothness.

Theorem 1.2 ([1]). Let V = [~v] be a smooth real subspace of L1[T , ν]. Then
T =

∑n
i=1 ui⊗vi is a minimal extension of T̃ (to L1[T , ν]) implies that, for almost

all t,

~u(t) = ‖T ‖ ~z(t)
with ~z(t) being a point of intersection of S(V ) and its tangent plane perpendicular
to M~v(t), where M is the n × n matrix M of (ET )|V with respect to the basis ~v.
(See Figure 1.)

Corollary 1.1. Let V = [~v] be a smooth real subspace of L1[T , ν]. Then without
loss T can be enlarged so that there exists T =

∑n
i=1 ui ⊗ vi which is a minimal

extension of T̃ and the operator T ∗ is an extension of T̃ ∗ : V ∗ → V ∗.

Proof. Let T =
∑n

i=1 ui⊗vi be a minimal extension of T̃ . Theorem 1.2 provides that
~u/‖T ‖ lies on S(V ) a.e.[ν]. Next replace T by T ∪∆T , where ∆T = S(V )−range
(~u/‖T ‖), enlarge ν and ~v to be zero on ∆T , and enlarge ~u/‖T ‖ to be the coor-
dinate functions on ∆T . Then let T and T̃ be replaced by their corresponding
enlargements, recall that V ∗ is isometric to the space of coordinate functions of
S(V ) regarded as a subspace of L∞(S(V )), and note that T ∗|V ∗ = T̃ ∗.
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Figure 1.

2. Main theorem

Lemma 2.1. Let T be an extension of T̃ . Then ‖T ‖ = ‖T̃‖ if and only if there
exists a pair

(x∗, v) ∈ E(T ), v ∈ V.
Hence the dyad operator ET = x∗ ⊗ v satisfies the conclusion of Theorem 1.1.

Proof. If (x∗, v) ∈ E(T ), then

‖T ‖ = x∗(Tv) = ‖Tv‖.
Thus T attains its norm on V and

‖T ‖ = ‖Tv‖ = ‖T̃ v‖ ≤ ‖T̃‖.

Conversely, if ‖T ‖ = ‖T̃‖, let v ∈ V be such that ‖T̃ v‖ = ‖Tv‖ = ‖T̃‖ = ‖T ‖. Let
x∗ ∈ X∗ be such that x∗(Tv) = ‖Tv‖. Then (x∗, v) ∈ E(T ).

The following theorem shows that, if n > 1 and the field is R, a smooth, strictly
convex, n-dimensional L1-subspace V possesses no rank-n Hahn-Banach operator.
In fact it shows more, namely, that V possesses no rank-k operator which extends
to L1 of the same norm, k > 1.

Theorem 2.1. Let V be a smooth, strictly convex, n-dimensional real subspace of
L1[−1, 1]. Let T̃ : V → V be such that there exists an extension T : L1[−1, 1]→ V

with ‖T ‖ = ‖T̃‖. Then T̃ is a rank-one operator.

Proof. By Lemma 2.1, corresponding to T =
∑n

i=1 ui ⊗ vi, there exists a rank-one
operator ET satisfying the conclusion of the lemma. Hence the matrix M defined
as the matrix of (ET )|V , with respect to the basis ~v, has rank one.

Since V is smooth there exists a minimal extension T of T̃ satisfying the condi-
tions of Theorem 1.2. But M has rank one, whence the vectors M~v(t) lie on the
same one-dimensional subspace of Rn for almost all t ∈ [−1, 1].

Since V is strictly convex, the vectors ~u(t) also lie in the same one-dimensional
subspace of Rn for almost all t ∈ [−1, 1]. Hence the operator T given by Theorem
1.2 has rank one and thus so does T̃ .

Corollary 2.1. n-dimensional Hilbert space (`(n)
2 ) possesses no Hahn-Banach op-

erator with rank > 1.
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Proof. It is well known (see [5]) that `(n)
2 can be realized as a subspace of L1.

Theorem 2.2. Let V be a two-dimensional real Banach space. Then the following
are equivalent:
(1) V is smooth and strictly convex.
(2) For every rank-two operator

T̃ : V → V, e(T̃ ) > ‖T̃‖.

Proof. (1) implies (2) by Theorem 2.1 since every two-dimensional space V can be
isometrically imbedded into L1[−1, 1] (see e.g. [6]).

We now show (2) implies (1).
Suppose that V with unit sphere S(V ) ⊂ R2 is not strictly convex. Then (via

a linear transformation) we can assume that S(V ) lies inside the unit square C,
touches C on all four sides, and has a flat spot running from (1, d) to (1,−d) (and
of course a corresponding flat spot running from (−1,−d) to (−1, d)), where “flat
spot” is defined in the usual obvious way. Let P be the rectangle with corners
(±1,±d), whence P lies inside S(V ). (See Figure A.)

Figure A.

Now consider the linear transformation T̃ (a1, a2) := (a1, da2) taking C into P .
Thus T̃ (S(V )) lies inside P , which lies inside S(V ), and, since T̃ (1, 0) = (1, 0) ∈
S(V )∩ T̃ (S(V )), we see that T̃ : V → V has norm one. Note that we can also write
T̃ in the form

T̃ = φ̃1 ⊗ (1, 0) + dφ̃2 ⊗ (0, 1),

where φ̃i are the norm-1 coordinate functionals on V defined by

φ̃i(a1, a2) = ai, i = 1, 2.

Next let φi be a Hahn-Banach extension to X of the functional φ̃i on V , i = 1, 2.
Then the extension operator T : X → V has the form

T = φ1 ⊗ (1, 0) + dφ2 ⊗ (0, 1).

Finally, since T (S(X)) ⊂ T̃ (coC) = coP ⊂ coS(V ) = B(V ), we see that ‖T ‖ ≤ 1
and hence, since ‖T ‖ ≥ ‖T̃‖ = 1, it follows that ‖T ‖ = ‖T̃‖.

Furthermore, suppose that V is strictly convex but not smooth. Then, as is
well known, V ∗ is smooth but not strictly convex, and the above argument shows
that V ∗ possesses a rank-two Hahn-Banach operator. But then, by Corollary 1.1
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(1 = ‖T ∗‖ = ‖T̃ ∗‖ = ‖T̃‖ = ‖T ‖ and e(T̃ ) = e(T̃ ; L∞)), V also possesses a
rank-two Hahn-Banach operator.

Corollary 2.2. If the unit ball of the 2-dimensional real space V is either not
smooth or not strictly convex, then V possesses a basis v1, v2 and a rank-2 Hahn-
Banach operator T̃ =

∑2
i=1 ũi ⊗ vi such that, for the extension T =

∑2
i=1 ui ⊗ vi,

each ‖ui‖ = ‖ũi‖, i = 1, 2, i.e., each ui is a Hahn-Banach extension of ũi. A
reasonable conjecture is that this phenomenon holds for every rank-2 Hahn-Banach
operator on V .

Note 2.1. In [3] it is shown in particular that, for each real non-singular 2 × 2
real matrix A not equal to a scalar multiple of the identity I, there exists a real
space V = [~v] 6∼= `

(2)
∞ which possesses a Hahn-Banach operator T̃ such that T̃~v = A~v.

Theorem 2.2 explains why any such space must be either non-smooth or non-strictly
convex. Indeed all the spaces provided in [3] are hexagonal spaces.

Note, furthermore, that the rectangle P in the proof of Theorem 2.2 can be
replaced by any parallelogram (symmetric with respect to the origin) contained
inside S(V ) and intersecting the flat sides of S(V ). In this way we see that V
possesses an entire family of two-dimensional Hahn-Banach operators of norm-1
(T̃ p = p for some p ∈ S(V ) ∩ T̃ (S(V )) of the form

T̃ = (αφ̃1 + βφ̃2)⊗ (1, 0) + (γφ̃1 + δφ̃2)⊗ (0, 1),

all of which have two real eigenvalues (1 and e, where |e| ≤ 1). In [4] we show that,
if the spectrum of T̃ 6= I lies on the unit circle, then the Hahn-Banach operator T̃
has norm > 1.

Corollary 2.3. If the two-dimensional real Banach space V possesses a rank-two
Hahn-Banach operator T̃ 6= I whose spectrum lies on the unit circle, then V also
possesses a rank-two Hahn-Banach operator with eigenvalues 1, d, |d| < 1.

Corollary 2.4. The two-dimensional real Banach space V possesses a rank-two
Hahn-Banach operator if and only if its dual space V ∗ possesses a rank-two Hahn-
Banach operator.

Corollary 2.5. For every two-dimensional subspace V of `1 or `∞ there exists a
rank-two operator T̃ : V → V such that e(T̃ ) = ‖T̃‖.

For every two-dimensional subspace V of `p (p ∈ (1, ∞)) and for every rank-two
operator T̃ : V → V we have e(T̃ ) > ‖T̃‖.

Example 2.1. Let V = [~v] ⊂ L1[−1, 1], where (v1, v2) = (1
2 , t) and let T̃ v1 = v1

and T̃ v2 = av2, a ≥ 1
2 . Then Theorem 1.2 yields that the minimal extension

operator T =
∑2

i=1 ui ⊗ vi : L1[−1, 1]→ V is given by

~u = κ
[ (1, 2mt)√

1 + 4m2t2
+ (0,

sgn t
2

)
]
,

where κ = ‖T ‖, m is a non-negative constant, and M = ( 1 0
0 m ). (In fact a =

(1
2 +

∫ 1

0
4mt2 dt√
1+4m2t2

)/
∫ 1

0
dt√

1+4m2t2
.) Since V is smooth, Theorem 2.2 provides that

‖T ‖ = ‖T̃‖ = 1 precisely when m = 0. Note that then u1 = 1 and u2 = 1
2 sgn t

shows that ui ∈ L∞[−1, 1] is the Hahn-Banach extension of ũi, i = 1, 2. (See Figure
2.)
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Figure 2.

As a further example, following Corollary 1.1, note that the space V is also
realized as V = [1

2 , t] ⊂ L1[R, ν], where ν is Lebesgue measure on [−1, 1] and zero
off [−1, 1]. Thus replacing [−1, 1] by R in the above, we see that, for m > 0,
~u/‖T ‖ now covers all of S(V ) and, for m = 0, let ~u(t)/‖T ‖ = ~u(t), |t| > 1, be
any convenient parameterization of the curved portion of S(V ). Thus for m = 0
the adjoint operator T̃ ∗ (with same-norm extension T ∗) provides a Hahn-Banach
operator for the non-smooth, strictly convex space V ∗ = [t, 1 − t2] ⊂ L∞[−1, 1]
with a “corner” at (1, 0). (V ∗ ∼= [~u/‖T ‖] ⊂ L∞[R].)
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