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In the following, V and W are finite-dimensional subspaces of a Banach space X; let 

A :  Y--* [v , , . . . ,vn]  = V, 

B : W ~ [wl, . . . ,Wm] = W, 

be fixed operators on V and W, respectively, and let 

P : X - - - * V ,  Q : X - - - * W  

denote two bounded extension operators of A and B, respectively, i.e., PW = A and QIw = B. 
In the cases A = I and B = I,  P and Q are of course projections. 

1. BOOLEAN SUM OF O P E R A T O R S  

Consider the Boolean sum of P and Q 

P ~ Q =  P + Q - P Q : X - - - *  V + W = Z .  

NOTE. If P and Q are projections, then P @ Q is a projection ¢~ P Q P  = Q P  ¢= PQ = QP. 

Suppose now that  Q = Q0 is fixed. Let T~ -- {P @ Q0}. We wish to characterize the solution 
to the following extremal problem: 

min I]RII = n~n lIP @ Qollx--..z. 
RET~ 
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NOTE. If P and Q are projections, then the operators R = P @ Q are not necessarily projections 
in Theorems 1 and 2 but, if P and Q are projections, then R is a projection in Theorem 3 and 
throughout  Section 2 (blending-type projections and extensions). 

Consider the set of "extremal pairs" of R 

$(R) = {(x,y) • S(X**) × S ( X * ) :  (R** x,y) = IIRII). 

I n  the following, let K = B(X**) × B(X*) and note that  K is compact if we take the weak*- 
topologies on B(X**) and B(X*). Furthermore, each R • 7~ can be identified with a continuous 
(bilinear) function/~ on K in the obvious way. 

THEOREM 1. CHARACTERIZATION. R = P (~ Qo has minimal norm in T~ ¢* the closed convex 
hull of {y ® (I  - Q~)*)x}(x,u)ee(R) contains an operator for which V is an invariant subspace. 

PROOF. Following the method of proof of Theorem 1 in [1], best approximate R0 = Po(I - Qo) + 
Qo • T~ C B(X, Z) from 

= { ~ ( I - Q o ) :  ~ • sp{~ ® v :  ~ • v l ,  v • v }  }. 

Equivalently, perturb R0 • C(K) by functions / )  in the subspace /). /~ = Rt"0 - Do, where 
Do = Ao(I  - Qo), is of minimal norm ¢v 3 a (total mass one) measure # _> 0 supported in $(R) 
(# may be taken positive since the functions R are homogeneous) such that  # _l_ 7), i.e., 

o = D d . =  d . (x ,y )  
(R) (R) 

= fe R ( ( 5 ® v ) ( I - Q ~ * ) x , y )  d#(x ,y )= ~ ( ( I -Q~*)x ,5 )  (v,y)d#(x,y) (1) 
( ) (R) 

(z .. I = ( v , y ) ( I - Q o ) x d # ( x , Y ) , 5  , V A = 5 ® v V : ~  
(R) 

E R = ~  y ® ( I - Q ~ * ) x d # ( x , y ) : V ~ V .  I 
(R) 

In a similar fashion, we obtain the following theorem. 

THEOREM 2. R = Po • Q has minimal norm ¢~ there exists a (total mass one) measure # such 
that the operator 

E R =  ~ ( y ® x ) ( I -  Po)d#(x,y) : W - *  W. 
(R) 

PROOF. Again following the method of proof of Theorem 1 in [1], best approximate Ro = Po + 
(I - Po)Qo • n C B(X, Z) from 

V = { (I - Po)A : A E sp {e ® w : e E W ±, w E W } } .  

Equivalently, perturb R'~ • c ( g )  by functions D in the subspace ~ .  /~ = R~'0 - D0, where 
Do = (I  - Po)A0 is of min norm ¢=~ 3 a (total mass one) measure # > 0 supported in g(R) 
(# may be taken positive since the functions in/~ are homogeneous) such tha t / z  _t_/), i.e., 

(n) (n) 

= / ( ( I -  Po)(e®w)(x,y))d#(x,y)  = f (~,~)((I- Po)w, y) d#(x, y) (2) 
Jc (R) ge(R) 

ER ---- ~ ( y ® x ) ( I -  Po)d#(x,y) : W--~ W. I 
(R) 
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Note  t h a t  (1) t rans la tes  to  ( ~ =  v l , . . .  ,vn; N some n x n mat r ix )  

(g ,y ) ( I  - Qo)** x d #  = Ng.  (3) 
(R) 

Note  t h a t  (2) t rans la tes  to  (v~ = W l , . . . , w m ;  M some m × m mat r ix )  

f e  ((I  - Po)~, y}x d# = M ~ .  (4) 
(R) 

NOTE 1. (See, e.g., [2] or [3] for definit ions and notat ion.)  Wri t ing the  ope ra to r  of T h e o r e m  1 

as ER = (I  - Qo) o Ep,  where Ep = fg(R)(Y ® x ) d # ( x , y ) ,  we see t h a t  Ep can be viewed as 

a no rm-one  integral  ope ra to r  in (X*@X)* separa t ing  R from :D = { A ( I  - Qo) : A c B(X,  V); 

A = 0 on V}. T h a t  is, 

(R, Ep} = t race  (Ep o (P  @ Qo)) = f (R**x, y) d#(x,  Y) 
Jc (R) 

IIRII [ y) = IIRll.(EP) = IIRII, 
J~ (R) 

where  v denotes  the  no rm of Ep in the  space of integral  opera to r s  I I ( X , X * * )  (v (Ep)  < 
re(R) I[Yl[ [Ix[[ d#(x,  y) -- 1), and (T), ER) = 0 as in the  proof  of  T h e o r e m  1. 

T h e  ope ra to r  ER of T h e o r e m  2 can be  viewed analogously. 

DEFINITION. We say W = [u~] is P-related to V = [v~ if 

= (I  - P)~ ,  

for some  bases g and  ~ .  (Of  course, then m = n in this case.) 

NOTE 2. I f  W is P - r e l a t ed  to  V, then  V C ker P .  

COROLLARY 1. Le t  X = LP(T) ,  1 < p < co or X = C(T) ,  p = co, and W be piecewise 
continuously differentiable and Po-related to V in the setting of Theorem 2, where P0 = ~70 ® g 

= ~i=1 i ® wi provides a minimaJ R and Uo is piecewise continuously differentiable. Then, i f  Q n r 
in T¢, the  following linear (first-order differential, if  p < co) equation for .g  = ( r l , . . . ,  rn) holds: 

1 (~., + fig). g ~  = ~ ( ~ +  fro)" MN' ,  on'T, (5) 
P 

where  M is the matrix in (4), "~" denotes differentiation along an arbitrary vector field in T,  and 

1/q + 1/p = l. 

PROOF. From T h e o r e m  2, R is min imal  if and only if 

((I  - Po)~, y}x d# = M ~ ,  
(n) 

as no ted  in (4). Bu t  now (x, y) E g ( R )  implies t ha t  

IIRJ[ = (x, go)" (g, Y) + (x, g ) .  ( (I  - Po)~ ,  Y)- 

Let  d =  ( ( I  - P0)v~, y). Then ,  since W is P0-related to  V, we have t h a t  

x(t) = ext  (d" fi(t)) =:  f(d" f~(t)) , 
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where p’((t) = co(t) + r’((t). Then (suppressing unnecessary notation), we have 

G@(t)) := /if (d. p’(t)) dp = Mti(t). (6) 

As in [4], by examining p’ = G-l(Mti), we can see that p’ is almost everywhere differentiable. 

Assuming f is differentiable and differentiating both sides of the above equation with respect 

to t, we have (by the chain rule) 

Next, “dot” both sides of the above equation with p’(t) to obtain 

d’. p”(t) dp = p’(t) . Md’(t). 

Next, “factor out” p”(t) from the left-hand side of the above (and shift left the associated iin 

the integrand) 

p”(t) / &?a p’((t)f’ (& p’(t)) dp = p’(t) e MC’(t). 

But now, let X = LP, for 1 < p < co; then 

(7) 

f(z) = (sgnz)JzJq’P and zf’(z) = Qz/zp~p-l = %,(z). 
P 

Thus, we have 

and finally, we conclude by use of (6) that 

;a’. Mzu’ = ;$. Mzo”, on T. 

We obtain the result for p = 1, 00 either by a limiting process or by referring to [5,6]. I 

NOTE 3. An equation similar to (5) cannot be derived from (1) of Theorem 1 since the extremals z 

do not appear exposed. 

If P and Q commute, however, then the equation (5) also holds where Q is replaced by P. 

COROLLARY 2. Let%={P@Q=P+Q-PQ}. P@Q is minimal =S there exist (total mass 

one) measures p1 and p2 such that 

EgiQ = 
J 

y@((I-Q**)zdpl(z,y):V+V, and 
&(P@Q) 

J 
(8) 

E$?AQ = E(pBQl(~ CZD x)(1 - P) d&z, Y) : I+’ 4 I+‘. 

PROOF. 7? is not the translate of a subspace, but apply Theorems 1 and 2 to RI = {R E 7? : Q 

is fixed} and to R2 = {R E 7% : P is fixed}. I 

Condition (8) in Corollary 2 is probably not sufficient to provide a converse. As mentioned 

above, if P and Q are projections, then P $ Q may not be a projection (cf. example below). 

EXAMPLE. In [7], a sequence of pairs of n-dimensional subspaces V, and W, in X were con- 

structed such that there exist projections P, : X -+ I&; Qn : X + W,, with IIP,II = 1; IIQnII 5 2 
and such that for every projection R, : X, + V, + W,, we have II&II + co. This shows that 
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the minimal-norm Boolean sum may not be a projection. Indeed, if it were, then its norm would 

b e < 1 + 2 + 1 . 2 = 5 .  

I t  is tempting,  however, to make the following conjecture. 

CONJECTURE 1. I f  Po and Qo are projections and PoOQo satisfies (8) and Po@Qo is a projection, 
then the converse of Corollary 2 is true, i.e., Po @ Qo is minimal in 7~. 

THEOREM 3. Let V N W = {0}, V C kerQo and consider the set of operators into V + W given 

by 7~ = { P  ~ Qo : W c ker P}.  Then, the operator R E R is minimal ¢~ there exists a (total 

mass one) measure # such that 

f 
ER = J y ®  ( I -  Q~*)xdp(x ,y )  : V ~ V + W. 

J~ (R) 
(9) 

PROOF. Mimic the proof of Theorem 1 where now 5 E V ± N W ± = (V + W) ±. I 

THEOREM. EXISTENCE. Minimal operators exist in all the theorems of this paper.  

PROOF. The proof follows from a s tandard argument using the fact tha t  79 is closed and any 

closed bounded subset of B(X ,  Z*) is compact  in the weak* operator topology. I 

As immediate  examples, we obtain well-known characterizations of minimal Boolean sum pro- 

jections in the following cases. 

EXAMPLE 1. n = m = 1, 

EXAMPLE 2. Let T (with "+")  be a compact  Abel±an group with Haar measure ~, T its dual, 

{v~}~e2 the set of all characters, and let X = LP(T), 1 < p < co or X = C(T) ,  p = co. 

COROLLARY 3. Let m = 0, i.e., W = {0}. Then, 

f 
ER = Ep  = ] y ® x d~(x, y) : V ---* V 

JE (R) 

is the characterization of a minimal operator P given in [1]. 

THEOREM 4. CHARACTERIZATION. Let Qo : X -~ W be a fixed operator and let P : X --, V be 

arbitrary. Then, R = P @ Qo has minimal norm in ~ = {P  G Q0} ~=~ there exists a (total mass 
one) measure # such that  

E R =  ~ y ® ( I - Q ; * ) x d # ( x , y )  : V ~ {O}. 
(R) 

PROOF. Modify the proof of Theorem 1 so tha t  5 E {0} 1, i.e., 5 has no restrictions. 

2. B L E N D I N G - T Y P E  O P E R A T O R S  

X = L p, 1 < p <_ co, "LC¢"= C. Consider the blending-type operator 

p~ @ Qt = ps  + Qt - psQt  : L p (T 2)__ ,V 8 + W  t = Z ,  

where p s  = p ® I and Qt = I ® Q with V s being the range of p s  and W t being the range of Qt. 

v(s , t )  = vt(s) = P( f t ( s ) ) ,  where f t ( s )  = f ( s , t ) .  

NOTE 4. psQt  = Qtp8 (approximate f by a finite sum of separable functions on which clearly 
p sQt  = Qtp~),  and this implies tha t  if p8 and Qt are projections, then P8 ~ Qt is a projection 

onto Z. 

From Theorem 1, we obtain the following result. 
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THEOREM 5. CHARACTERIZATION. Fix Q = Qo. Then R = ps  ~ Q~ has minimal norm ¢* there 
exists a (total mass one) measure # such that 

(R) 

(Here, for each t, (V(S, t) ® x(., t ) ) (w(s))  = (x(., t), (w(s), U(S, t))s> e LP(T)**.) 

PROOF. Modify the proof of Theorem 1 as follows. First, check that  5 ® w defined on (x, y) E 
LP(T 2) x Lq(T 2) by 5 ® w(x,  y) = ((z(r, t), 5(r))r, (w(s),  y(s, t)>s)t is continuous on X** x X* (= 
LP(T 2) x Lq(T2)),  and then follow the proof of Theorem 1. (Also, use LP(T 2) = LP(T) ® LP(T).) 

Likewise, from Theorem 2 we obtain the following result (the proof is the analogue of that  of 
Theorem 5). 

THEOREM 6. CHARACTERIZATION. Fix P = Po. Then, R = P~ @ Qt has minimal norm ¢=~ there 
exists a (total mass one) measure # such that 

E R =  [ ( y ® x ) ( I - P ~ ) ) d # ( x , y ) : W  t ~ W  t. 
Jc (R) 

COROLLARY 4. In Theorem 6, where P = go ® g, write Qt _~ ~(s, t) ® ~(s ,  t) and assume that 
W t is piecewise continuously differentiable and P~-related to V s. Then, i f  Qt = ~-'~in=l ri ® wi 
provides a minimal R in T~, then the following linear (first-order differential i f  p < oo) equation 
for ~" = ( r l , . . . ,  r~) holds: 

i( s- sU00-) Mu7 = l f +  fro)" M u~, on T, (10) 
q 

where M is the matrix in (4), "o ,, denotes partial-differentiation along an arbitrary vector field 

in T and 1/q + l i p  = 1. 
Similarly, write ps  = g( s, t)®g(s, t) and assume that V s is piecewise continuously differentiable 

and Q~-related to W s, where Qo = r'o ® ~. Then, if P s = ~in=l ui ® vi provides a minimal R in 
7-¢, then the following linear (first-order differential if p < oc) equation t'or ~7 = (Ul , . . . ,  un) holds: 

P - ~ r o + - ~ u  N g =  ( r ~ + f f ) . N  ~7, i n T ,  (11) 

where N is the analogue of the matrix in (3), "o ,, -~ denotes partial-differentiation along an arbi- 
trary vector field in T and 1/q + 1/p = 1. 

COROLLARY 5. R = p s  @Qt has minimal norm ~=~ there exist (total mass one) measures #1, #2, 
#3, and #4 such that 

f y®(I '** = - Q )  x d # l ( x , y ) :  - - , V  s, 
JE (R) 

E(Rlb) = / y ® ( I - PS)** x d#2(x, y) : Wt  --* Wt ,  
(R) 

(12) 
E ~  ~ ) = /  ( y ® x ) ( I - P S ) d # 3 ( z , y ) : W  t - -*W t, 

Jc (R) 

E(R 2b)= [ ( y ® x ) ( I - Q t )  d#a(x,y)  : V 8 ~ V  s. 
JE (R) 

PROOF. See the proof of Corollary 2 and use Theorems 5 and 6 and the fact that  p8 and Qt 
commute. | 
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CONJECTURE 2. The converse o[ Corollary 5 is true. (See Conjecture 1.) 

CONJECTURE 3. ps  ~ Qt is minimal precisely when P and Q are minimal. 

CONJECTURE 4. I f V  8 = W t, then R = ps ~ Q t  is minimal ~ P = Q, and so, for some positive 
(total mass one) measure ~, 

/ . 
L B . , p ,  = y ® (I - pt)** x d#(x, y ) :  V 8 --* V s. (13) 

COROLLARY 6. If  m = 0 (i.e., W t = {0}), then p8 is minimal ¢* there exists a positive (total 
mass one) measure # such that 

LB, = f y ® x d#(x, y ) :  Y ~ --* Y ~. (14) 
Jc (P.) 

Note that  (14) translates to (g = Vl , . . . ,  vn; N some n x n matrix) 

(~(s), ix(r, t), d#(x, Mg. y(s, t))t)s Y) 
(P') 

As a consequence of Corollary 6, we have the following result due to Pranchetti  and Cheney. 

COROLLARY 7. (See [8].) In Corollary 6, then p8 = p @ I where P is a minimal operator. 
Further,  ps  is minimal among all operators onto V 8. 

PROOF. From [1] or Corollary 3, Ep = re(P)Y ® x d # ( x , y ) :  V 8 --* V s. Then, ]]ps[] = []PII I[I][ 

and so (x(s, t), y(s, t)) = (x(s), y(s)) is an extremal pair for ps ,  V(x, y) E C(P).  Thus, Ep~ = Ep 
and ps  is minimal by Corollary 6. Moreover, check that  Ep ,  : V ~ --* V s, and so ps  is minimal 
among all projections onto V ~. 

E X A M P L E  3.  r~ = 1. W = V = [Vl]. P = Ul ~ Vl.  Then, (ps ~ p t ) f  _ (f t( .) ,Ul)Vl(S) + 
<fs(.), uy)vl(y)-(<(f*( . ) ,  Ul(.))(x), Ul(X))Vy(X))Vl(y). Then, it can be checked that  P = ext(vl)® 
Vl is minimal where ext(v) is an extremal of v (e.g., if v • L p, 1 < p < c~, then ext(v) = 
nsign(v)]v]P-1), in particular, if 

/01 /01 S0l/01 Vl = 1: ( P '  ~ P*) f = f ( x ,  y) dx + f ( x ,  y) dy - f ( x ,  y) dx dy. 

EXAMPLE 4. Let T (with "+")  be a compact Abelian group with Haar measure u, ~b its dual, 
{v~}~e~ the set of all characters, N a finite part of ~b, V the linear span of the characters vr, 
T • N,  and let X = LP(T), 1 _ p  < c~ or X = C ( T ) , p =  oo. Then, the Fourier projection 
F = ~-ceN vr ® vr yields a minimal blending projection. 

EXAMPLE 5. P = F is minimal in Corollary 6. 

PROOF. SKETCH. Let (x(s, t), y(r, u)) be a fixed extremal pair for ps ,  

s. Is. ,,-,, 

Then, analogously as in [9], show (x.(s, t), y.(r, u)) = (x(a + s, t), y(a + r, u)) is an extremal pair 
for ps  for each a • T (by use of v , ( a ) v , ( - a )  = 1). 

Next, verify (14) as follows: Eps = fT Ya ® Xa dv(a) : V --* Y since 

. /((~-(s), (x, 0", t), y~(s, t)),)., v~(,-))~ d~(o) u,~,) 

. /  ((~(s), (~(o + r, t), y(o + ~, t)hL, v.(r)) ,  d~('r) 

f ( iv~(s - a), (x(~, t), y(s, t)) ,L, ~ ( r  + 7)).  dr(7) 

--- ( (y®z)(v~) ,v~)(v~,v~)  = O, i f 7  ¢ r. | 
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EXAMPLE 6. Let W -:  V; then  R = F s @ F t is min ima l  wi th  F t f ixed (and, by symmetry ,  is 

min ima l  wi th  F s fixed). 

PROOF. The  proof follows analogously as in the proof of Example  5. | 

For related work, please see the references [10-17]. 
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