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In the following, V and W are finite-dimensional subspaces of a Banach space X; let

AV = u,..., 0] =V,
B:W = (wy,...,wy]| =W,

be fixed operators on V and W, respectively, and let
P: XYV, Q:X-W

denote two bounded extension operators of A and B, respectively, i.e., By = A and Qw = B.
In the cases A =1 and B = I, P and @ are of course projections.

1. BOOLEAN SUM OF OPERATORS

Consider the Boolean sum of P and @
POQ=P+Q-PQRQ:X->V4+W=2

NoTE. If P and @ are projections, then P & Q is a projection & PQP = QP « PQ = QP.

Suppose now that Q = Qq is fixed. Let R = {P & Qo}. We wish to characterize the solution
to the following extremal problem:

in || R]| = min | P -z
min [|R]} = min | P ® Qollx -z
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NOTE. If P and @ are projections, then the operators R = P @ Q are not necessarily projections
in Theorems 1 and 2 but, if P and @ are projections, then R is a projection in Theorem 3 and
throughout Section 2 (blending-type projections and extensions).

Consider the set of “extremal pairs” of R
R) ={(z,y) € S(X**) x S(X™) : (R**=z,y) = || R||}.

In the following, let K = B(X**) x B(X*) and note that K is compact if we take the weak*-
topologies on B(X**) and B(X™*). Furthermore, each R € R can be identified with a continuous
(bilinear) function R on K in the obvious way.

THEOREM 1. CHARACTERIZATION. R = P & Q¢ has minimal norm in R « the closed convex
hull of {y ® (I - Q4*)x}(2,y)ce(r) contains an operator for which V is an invariant subspace.

ProoF. Following the method of proof of Theorem 1 in (1], best approximate Ry = Po(I — Qo) +
Qo € R C B(X, Z) from

D={A(I-Qo):Aesp{f@u:6€V veV}}.

Equivalently, perturb Ry € C(K) by functions D in the subspace D. R = ﬁ\o — Dy, where
Dy = Ag(I — Qy), is of minimal norm & J a (total mass one) measure u > 0 supported in £ (R)
(# may be taken positive since the functions R are homogeneous) such that u 1 D, ie.,

0= f?dﬂ=/ (A - Q5 z,y) du(z,y)
E(R) E(R)

- / (6@ (- Q)2 ) du(e,y) = / (- Q5 .0) v,y du(zy) (1)
E(R) £(R)

=</ (v,y)(I—QS*)xdu(x,y),6>, VA=6Qu &

E(R)

ER=/ y® (I - Qg )rdu(z,y): V- V. |
£(R)

In a similar fashion, we obtain the following theorem.

THEOREM 2. R = Py @ Q has minimal norm & there exists a (total mass one) measure u such
that the operator

Er =/ (wez)I - Po)dulz,y) : W — W.
E(R)

PROOF. Again following the method of proof of Theorem 1 in [1], best approximate Ry = P, +
(I - Py)Qo € R C B(X, Z) from

D={(I-PR)A:Aesp{e®u:ce W', weW}}.

Equivalently, perturb Ry € C(K) by functions D in the subspace D. R = Ry — Dy, where
Dy = (I — Py)Ap is of min norm < 3 a (total mass one) measure g > 0 supported in £(R)
(1 may be taken positive since the functions in R are homogeneous) such that u L D, i.e.,

0= Ddu= / ((I - Po)Az,y) du(z,y)
E(R) E(R)

= [ (- )@, du(e,) = [ @l -rwyday @
E(R) E(R)

= </ ((I—Po)w,y):cdu,e>, VA=eQw e
E(R)

ER=/ (yo@z)(I - P)du(z,y) : W — W. ]
E(R)
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Note that (1) translates to (¥ = v1,...,v; N some n X n matrix)
[ @na-q s 3)
E(R)
Note that (2) translates to (W = wy,...,wn,; M some m x m matrix)
[ (- Pydgads=pa @)
£(R)

NOTE 1. (See, e.g., [2] or [3] for definitions and notation.) Writing the operator of Theorem 1
as Er = (I — Qo) o Ep, where Ep = fs(R)(y ® z) du(z,y), we see that Ep can be viewed as
a norm-one integral operator in (X*®X)* separating R from D = {A(I —~ Qo) : A € B(X,V);
A =0on V}. Thatis,

(B, Bp) = trace (Ep o (P® Q) = [ (B0 due)

— IR /8 @) = [RIV(E) = IR

where v denotes the norm of Ep in the space of integral operators I;(X,X**) (v(Ep) <
Jew 9l Izl dp(, y) = 1), and (D, ER) = 0 as in the proof of Theorem 1.

The- operator Er of Theorem 2 can be viewed analogously.

DEFINITION. We say W = [] is P-related to V = [v] if
7= (I — P)&,

for some bases ¥ and w. (Of course, then m = n in this case.)
NOTE 2. If W is P-related to V, then V C ker P.

COROLLARY 1. Let X = LP(T), 1 < p < oo or X = C(T), p = oo, and W be piecewise
continuously differentiable and Py-related to V' in the setting of Theorem 2, where Py = 1o ® U
and iy is piecewise continuously differentiable. Then, if Q = Z?zl r; ® w; provides a minimal R
in R, the following linear (first-order differential, if p < c0) equation for-7 = (ry,...,7,) holds:

1
(F'+ﬁ6)-MtE=a(F+ﬁo)-Mﬂi’, on'T, (5)
where M is the matrix in (4), “’” denotes differentiation along an arbitrary vector field in T, and

1/g+1/p=1.
ProOOF. From Theorem 2, R is minimal if and only if

/ (I - Py, y)a dys = M,
E(R)

as noted in (4). But now (z,y) € £(R) implies that
IRl = (2, do) - (¥, y) + (. 7) - {({ — Po)u, y)-

Let d = ((I — Po)w,y). Then, since W is Py-related to V, we have that

2(t) = ext (- 7(t)) = £ (d-5®)
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where p(t) = wo(t) + 7(t). Then (suppressing unnecessary notation), we have

6wy = [ df (I 70)) du= M) ©)
As in [4], by examining § = G~!(Mw), we can see that § is almost everywhere differentiable.

Assuming f is differentiable and differentiating both sides of the above equation with respect
to ¢, we have (by the chain rule)

Jdr (3 a0)d- 7' Odu= 0.
Next, “dot” both sides of the above equation with p{(t) to obtain
[ d-mor (3-50) d- 7' du = 0 7).

Next, “factor out” g’(t) from the left-hand side of the above (and shift left the associated d in
the integrand)

p'e) [ i g (3-50) du = ) M ). ™
But now, let X = LP, for 1 < p < oco; then
f2) = (sgn )l and  2f(z) = elal/P = 25(a)
Thus, we have
5! %/d’f(d‘-ﬁ) du = 7- M’

and finally, we conclude by use of (6) that

1 1
-p' MW@ =~-p- M, onT.
p q
We obtain the result for p = 1, oo either by a limiting process or by referring to [5,6]. ]

NOTE 3. An equation similar to (5) cannot be derived from (1) of Theorem 1 since the extremals z
do not appear exposed.
If P and Q commute, however, then the equation (5) also holds where Q) is replaced by P.

COROLLARY 2. Let R={P®Q = P+ Q — PQ}. P& Q is minimal = there exist (total mass
one) measures ji; and pg such that

EggaQ = / y I - Q™Mzdu(z,y): V-V, and
£(PQ) 9

Be= [ e - P)dule) s W~
£(PoQ)

PROOF. R is not the translate of a subspace, but apply Theorems 1 and 2 to R; = {R € R:Q

is fixed} and to Ry = {R € R : P is fixed}. ]
Condition (8) in Corollary 2 is probably not sufficient to provide a converse. As mentioned

above, if P and @ are projections, then P & @ may not be a projection (cf. example below).

EXAMPLE. In [7], a sequence of pairs of n-dimensional subspaces V;, and W,, in X were con-
structed such that there exist projections P, : X — Vy,; Qpn : X — W, with [|P,]| = 1; [|@Qn] <2
and such that for every projection R, : X,, — V,, + W,, we have ||R,|} — oo. This shows that
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the minimal-norm Boolean sum may not be a projection. Indeed, if it were, then its norm would
be <14+2+1.2=05.
It is tempting, however, to make the following conjecture.

CONJECTURE 1. If Py and Qy are projections and Py@®Qy satisfies (8) and Py®Qy is a projection,
then the converse of Corollary 2 is true, i.e., Py ® (g Is minimal in R. .

THEOREM 3. Let VNW = {0}, V C ker Qo and consider the set of operators into V + W given
by R = {P®Qp : W C ker P}. Then, the operator R € R is minimal < there exists a (total
mass one) measure p such that

ER=/€(R)y®<I—Q3*)zdu(w,y):V~V+W- (9)

PROOF. Mimic the proof of Theorem 1 where now § € V- n Wi = (V + W)+, 1

THEOREM. EXISTENCE. Minimal operators exist in all the theorems of this paper.

PROOF. The proof follows from a standard argument using the fact that D is closed and any
closed bounded subset of B(X, Z*) is compact in the weak* operator topology. ]

As immediate examples, we obtain well-known characterizations of minimal Boolean sum pro-
jections in the following cases.

EXAMPLE 1. n=m=1.

ExaMPLE 2. Let T (with “4”) be a compact Abelian group with Haar measure v, T its dual,
{vy},e7 the set of all characters, and let X = LP(T'), 1 <p < oo or X = C(T), p = co.

COROLLARY 3. Let m =0, i.e., W = {0}. Then,
ER-':EP=/ yQudulz,y): VoV
E(R)

is the characterization of a minimal operator P given in [1].

THEOREM 4. CHARACTERIZATION. Let Qg : X — W be a fixed operator and let P : X — V be
arbitrary. Then, R = P & Qo has minimal norm in R = {P & Qo} & there exists a (total mass
one) measure p such that

Er =/ y® (I - Q) zdu(z,y) : V — {0},
£(R)

PROOF. Modify the proof of Theorem 1 so that § € {0}+, i.e., § has no restrictions. ]

2. BLENDING-TYPE OPERATORS
X =IL71<p<oo, “L¥ = C. Consider the blending-type operator

PoQ' =P +Q -PQ:I»(T?) -V + W' =7,

where P* = P®1I and @t = I ® Q with V* being the range of P®* and W* being the range of Q.
v(s,t) = vt(s) = P(ft(s)), where fi(s) = f(s,t).

NOTE 4. P*Q' = Q!P?® (approximate f by a finite sum of separable functions on which clearly
P*Qt = QtP?®), and this implies that if P* and Q* are projections, then P* & Q! is a projection
onto Z.

From Theorem 1, we obtain the following result.
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THEOREM 5. CHARACTERIZATION. Fix Q = Qo. Then R = P* ® Q} has minimal norm < there
exists a (total mass one) measure p such that

Ba= [ o (1-(@)")eduwy): V' =",
£(R)

(Here, for each t, (y(s,t) ® z(-,t))(w(s)) = (z(-, 1), (w(s),y(s,t))s) € LP(T)**.)

Proor. Modify the proof of Theorem 1 as follows. First, check that 6 ® w defined on (z,y) €

LP(T?) x LY(T?) by § @ w(z,y) = ((z(r,t),6(r))r, (w(s),y(s,t))s)s is continuous on X** x X*(=

LP(T?) x LI(T?)), and then follow the proof of Theorem 1. (Also, use LP(T?) = LP(T) ® LP(T).)
Likewise, from Theorem 2 we obtain the following result (the proof is the analogue of that of

Theorem 5).

THEOREM 6. CHARACTERIZATION. Fix P = Py. Then, R = P§® Q" has minimal norm < there
exists a (total mass one) measure u such that

FEp= / (yoz)(I - P§) du(z,y) : W' — W'
£(R)

COROLLARY 4. In Theorem 6, where P = iy ® ¥, write Q' = 7(s,t) ® W(s,t) and assume that
W' is piecewise continuously differentiable and P§-related to V°. Then, if Q' = > | r; @ w;
provides a minimal R in R, then the following linear (first-order differential if p < o0) equation
for ¥ = (ry,...,Ty) holds:

1/0 0 R T 0

]—) (B_SF aﬁg) Mu = 5(7' + UO) . Mg.;w, on T, (10)
where M is the matrix in (4), “% " denotes partial-differentiation along an arbitrary vector field
inTand1/q+1/p=1.

Similarly, write P* = d(s,t)®7(s,t) and assume that V' is piecewise continuously differentiable

and Q}-related to W*, where Qo = 7o ® W. Then, if P* = E?___l u; ® v; provides a minimal R in

R, then the following linear (first-order differential if p < 0c) equation for @& = (uy, . .., u,) holds:
1/0 0 1 a
(0. 9\ No=Limamy - N25 .
? (atro+ Btu) 0] q(r0+u) Erid inT, (11)

where N is the analogue of the matrix in (3), “% ” denotes partial-differentiation along an arbi-

trary vector field in T and 1/qg+1/p = 1.

COROLLARY 5. R = P*® Q! has minimal norm < there exist (total mass one) measures 1, pz,
13, and pg such that

EU = / y® (I - Q)" zdps(z,y): V® - V°,
E(R)

B = [ yo - P sdua(ay) s W W,
€(R) (12)

EZ") = /E P IEDU =P dus@,y) W W,

Egb) =/ (y®z) (I - Qt) dug(z,y) : VP - V=,
£(R)

PROOF. See the proof of Corollary 2 and use Theorems 5 and 6 and the fact that P* and Q*
commute. [ ]
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CONIECTURE 2. The converse of Corollary 5 is true. (See Conjecture 1.)
CONJECTURE 3. P*® Q! is minimal precisely when P and Q are minimal.

CONJECTURE 4. IfV® = W, then R = P* @ Q! is minimal = P = Q, and so, for some positive
(total mass one) measure p,

Broop = [y® (1= P)" sdu(z,p): V* = V. (13)

COROLLARY 6. If m = 0 (ie., W' = {0}), then P* is minimal < there exists a positive (total
mass one) measure i such that

Ep. = / y®zdu(z,y): V- V> (14)
E(P*)
Note that (14) translates to (¥ = v1,...,v,; N some n x n matrix)
[ 506) ol 0,05, 000 die, ) = M3
E(P3)

As a consequence of Corollary 6, we have the following result due to Franchetti and Cheney.
COROLLARY 7. (See [8].) In Corollary 6, then P° = P @ I where P is a minimal operator.
Further, P*® is minimal among all operators onto V4.

PRrOOF. From (1} or Corollary 3, E, = fg(P)y Q xdu(x,y) : V® — V. Then, ||P*|| = || P |||
and so (z(s,t),y(s,t)) = (z(s),y(s)) is an extremal pair for P*, V(z,y) € £(P). Thus, Ep. = Ep
and P° is minimal by Corollary 6. Moreover, check that Ep. : V® — V* and so P? is minimal
among all projections onto V*.

EXAMPLE 3. n = 1. W =V = [11]. P =u; ®vy. Then, (P*® PY)f = (fi(-),u1)vi(s) +
(f2(), w)va(y)—(({F* (), wa () (), ur(z))v1(x))v1(y). Then, it can be checked that P = ext(v;)®
v is minimal where ext(v) is an extremal of v (e.g., if v € LP, 1 < p < o0, then ext(v) =
ksign(v)|v|P~1), in particular, if

n (PP f /fmyda:+/ flz,y)dy ~ //fa:ydwdy

EXAMPLE 4. Let T (with “+”) be a compact Abelian group with Haar measure v, 71" its dual,
{vy} e the set of all characters, N a finite part of T, V the linear span of the characters v,
T € N,and let X = LP(T),1 < p < oo or X = C(T), p = oo. Then, the Fourier projection
F =73 cnVr ®v; yields a minimal blending projection.

EXAMPLE 5. P = F is minimal in Corollary 6.

PROOF. SKETCH. Let (z(s,t),y(r,u)) be a fixed extremal pair for P?,

/T [/T {Z(xt(s),vr(S))svT(T)y(r, t)] dv(r)} du(t) = | P°).

teEN

Then, analogously as in (9], show (x4(s,t), yo(r,u)) = (z(o +s,t),y(0 +r,u)) is an extremal pair
for P° for each o € T (by use of v, (0)v,(~0c) = 1).
Next, verify (14) as follows: Ep. = [y, @ z,dv(c) : V — V since
(Epsvr,uy) =/((vr(S)»(ma(r»t%ya(s,t))t)s,vw(r)% dv(o)
T

= [ {0r(9), (@(o + 1,81, +5,000)er (7)) o)

= [ {orls = 01, a0, 00 Y5, Debasoa(r + 1) o)

= ((y®x)(v7‘)7v“/>(v‘7’vr) =0, ify#7. |
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EXAMPLE 6. Let W = V; then R = F* @ F* is minimal with F* fixed (and, by symmetry, is
minimal with F* fixed).

Proor. The proof follows analogously as in the proof of Example 5. (]

For related work, please see the references [10-17].
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