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A b s t r a c t - - I n  this paper, we continue investigation of an action constant )~A(V) introduced in 
[1-3]. In particular, we show that, if n is the dimension of V, then )~A(V) ~ p(A)v/'n, which is the 
generalization of the well-known estimate .~I(V) <_ v"n. We then proceed to compare the estimates 
for .XA(V) and ,kI(V ) for a variety of two-dimensional spaces. These estimates are obtained with the 
extensive use of computer interaction. © 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - M i n i m a l  projections, Action constants. 

1. I N T R O D U C T I O N  

Let A be n x n matrix,  let a(A) be the set of eigenvalues of A, and let p(A) be its spectral  radius. 

Let V be an n-dimensional Banach space and let T be an operator on V. We say tha t  T is similar 
to A (T ,~ A) if there exists a basis in V such that  the matr ix  of the operator  T with respect to 

this basis is A. We now introduce a number of parameters  associated with A and V. Let 

nA(V) = inf{llTH : T: V ---* V;T ,,~ A}. 

If  X D V and T is an operator  on V, we use 

e(T,X)=inf  { T : :F:X--+ V ; T I v = T } ,  
T 

e(T) = sup{e(T, X ) :  V < X}. 
x 

The action constant )~A(V) is defined to be 

AA(V) = inf{e(T) :  T :  V --, V ; T  ~ A}. (1) 

Observe tha t  for A = I ,  the action constant AA(V) is the well-studied projection constant.  
In particular,  the celebrated Kadec-Snobar Theorem gives At(V) _< grn. In this paper,  we will 
demonst ra te  tha t  AA(V) <:_ p(A)v~ for an arbi t rary matr ix  A, thus generalizing the Kadec-Snobar  
Theorem. To prove tha t  theorem, we need an action version of the well-known two-summing norm 
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of an operator (cf. [4]) 

r2(T) = sup { 

N 
E IfTxjll 2 

j = l  

N 
supHIH=I E If (xj)l 2 

j = l  

1/2} 
where the supremum is taken over all N and all collections of vectors x l , . . . ,  XN E V. We thus 
define 

~rA(y) = inf{zr2(T) : T :  Y --* V; T ~ A}. 

We will need some well-known characterizations of 7r2(T : V --* V). For this, let V be an 
n-dimensional space and T be an operator from V to V. For some probability measures #, V is 
isometric to a space, say Veo, where Veo C Leo(#). Now let V2 c L2(#) be a space that  consists of 
the same functions as Veo but equipped with the L2 norm. Consider a factorization of T : V --* V 
as follows: 

T 
V ~ V 
l i  TR 

veo £ v2 
N A 

Leo(#) L2(#) 

Then (cf. [5]), the following theorem holds: 

(2) 

7r2(T) = inf [IS[[ [[RI[ , 

where the infimum is taken over all such representations and (this will be important later) over 
all measures #. 

It follows from this description (cf. [5]) that  

r2(T) _> e(T), 

and hence, 

Furthermore, 

7rA(V) > hA(V) > nA(V) > p(A). 

nA @~)) = p(A). 

It is also known that  for two-dimensional subspaces V, 

4 
hi(v)  < < 45. 

It is hence somewhat a pleasant surprise (Theorem 2) that  there exists a two-dimensional space V 
and A with p(A) = 1 such that  

hA(V) = 45. 

The extremal value for the projectional constant is attained on the space V with the regular- 
hexagonal unit ball. We thus dedicate the last section of this paper to estimating hA(V) and 
related parameters for this space V and for various rotations A. We hope that  these results 
contribute to the general understanding of the overall problem. 

PROBLEM. To what extent does the set of parameters 

{AA(V) : A ~ M~×~} 

describe an n-dimensional Banach space V? 
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THEOREM I. 

2. G E N E R A L  T H E O R E M S  

7rA(v) <_ p(A)v/-n. 

PROOF OF THEOREM 1. In view of the above, we need to construct an operator T ~ A and a 
factorization according to (2) with [ISI[ tIR[I < (v~)p(A) .  To do this, we use the fact (see [5]) 
tha t  

~ ( ~ :  v - ,  v )  = v~ .  

Hence, from the above there exists a factorization 

I 
V -~ V 

,Li TR '  

vo~ s_: V2 
n n 

Loo(#) L2(#) 

with IIS'll IIRql = v% 
Since V2 is a subspace of L2(#), 172 is isometric to g~n), and hence (by [6]) there exists an operator  

T '  : 112 --~ 172 such that  T '  ,,~ A; [[T'[[ = p(A). Consider an operator given by T -- R 'T 'S ' i  = RSi .  
The  diagram follows: 

V T V 

1i  T R' 

Vo~ ~ ~' v2 ---, v2 
N N n 

Then, T ~ A and T : V ~ V; 

IlSll [IRIt = IIS'll IIR'T'II <_ IIS'll IIT']I IIR'[[ ~ p(A)IIS'II IIR'Jl = p(A)v~ .  

Finally, observe that  T : RS i  is the factorization of form (2), and hence 

lr2(T) <_ p (A)v~ .  

COROLLARY 1. For every A and every V, 

AA(V) < p(A)v'~. 

COROLLARY 2. Let A be an n x n matr/x such that 

a(A) C {z e C :  Izl = U- 

Then, 

~¢(v) = v% 
for any n-dimensional Banach space V. 

PROOF. The proof follows from Theorem I and [7]. 

Corollary 2 is thus once again a direct generalization of the well-known estimate 

~'(v) = 4~ .  

CONJECTURE 1. 1rA(v) -- W/~'~nj=l I)~j[2 where the Ajs are the eigenvalues of A. 
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T H E O R E M  2. Let 
cos0 sinOl 

A =  - s i n 0  cosOJ 

and V = ~ )  over R. Then, AA(V) = [cos0[ + [sinO[ (p(A) = 1). 

PROOF. Consider hA(V) = infs [[S-1ASI[, where the norm is the maximum of the absolute row 

sums and 

S = [  a c bd] 

is an arbi t rary invertible 2 x 2 matrix. Further, let As  = S -1AS ,  A = a d -  bc, E = (ab + cd) /A,  
p = (b 2 + d ~ ) / A , Q  = (a 2 + c 2 ) / A ,  5 = c o t 0 ,  a = s i n g ,  and note tha t  I + E  2 = PQ. Now, 

without loss, assume 0 < O < r / 2 .  Then, 

IlAsll _ max{J5 + E[ + IP[, 16 - El-4-]Q[}-  
(7 

CASE 1. 5 k IF] _> 0. 

[[As[[ _ 5 + max{E + [ P [ , - E  + [Q[}. 
a 

For E fixed, determine, by use of IQ[ = (1 + E2)/IP[, tha t  the two arguments of the max axe 
equal to lx/i-~ 2E 2, when [P[ = x/1 + 2E 2 - E.  On the other hand, if [P[ > x/1 + 2E 2 - E,  then 

obviously E + [P[ > ~ ,  whereas if IF[ < x/ i -+ 2E 2 - E,  then - E  + [Q[ = - E  + (1 + 
E2)/[P[ > - E + ( I + E 2 ) / ( ~ - E ) =  ( I + 2 E 2 - E  I +x/i--+'~E2)/( I +x/i--+-'2E~-E) = ~ .  

We conclude that ,  for E fixed, i n f m a x { E  + [P], - E  + [Q[} = x/1 + 2E 2. Thus, the inf (over 
all S) is achieved when E = 0, and thus when [P] = [Q[ = 1, i.e., when ab + cd = 0 and 
b 2 + d 2 = a s + c 2 = lad - bc I, and in particular, when d = a and b = c = 0. 

CASE 2. [El > 5 > 0. Assume first that  E > 0. Then, 

IfAslJ 
(7 

= E + max{5 + [ P [ , - 6  + IQ[}. 

Analogously, as in Case 1, determine tha t  the two arguments of the max are equal to x/1 + E 2 + 6 2 

when IP[ = x/1 + E 2 + 6 2 - 6. Thus, the inf (over all S) is achieved when E = 6. 

Assume, finally, tha t  E < 0. Then, 

]]ASH = - E +  m a x { - 5 +  IP[,5 + [Q[}, 
(7 

and the argument  is completely symmetric and the conclusion is the same as in the case E > 0. 
Note, however, tha t  5 + ~ 252 > 5 + 1 and thus the inf over all S from both cases is achieved 

in Case 1. Tha t  is, we find tha t  the infimum is achieved for S = I ,  and thus 

nA(V) = inf [IAs[[ = (7(1 + 5) = sin0 + cos0. 

But  then, since V = g~) is its own maximal overspace, AA(V) = nA(V).  

COROLLARY 3. Let 1 1 

1 

Then, there exists a two-dimensional Banach space V such that nA(V) = V~. Hence, we have 

= .A(v) <  A(v) < < 
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and thus 

v ~  = ha(V)  = hA(V) = ~2(V) = ~ .  

The operator T ~ A for which vf2 = [[T[[ is an operator for which the norms 

]ITII, 7r2(T), e(T), 

coincide. 

Theorem 2 does not generalize to large n. In fact, we have the following result. 

THEOREM 3. For every A with p(A) = 1, 

PROOF. Let e > 0. Let A be an n x n matrix written in the "real" Jordan form 

All  rllI 
A22 ~21 

A ~ . , 

Akk 

where Ajj are two-by-two or one-by-one real matrices and ~j are e or 0. Consider this matr ix as 
~k pi(j) ~ g~) an operator  acting on £c~ direct sum ~ j = l . ~  _ where i ( j )  = 1 or 2 depending on the size 

of the matr ix  Ajj 

[]A],-- (max[  A j j :  l i ( j ) -~  ~ )  ) + m a x , j  <_ v ~ + e .  

Since g(~) is an injective space 

e(A) = IIAll < v ~  + ~, 

and A ( ~  )) < vf2q- e for any e > 0. | 

By use of Dvoretzky's Theorem and the fact that  

the stronger version of this result can probably be obtained. 

CONJECTURE 2. Let An be an arbitrary sequence of n × n matrices. Then 

lim AAn(l~¢) = 1. 

3. N O T E S  ON H E X A G O N A L  SPACES 

In this part ,  we will estimate some extension and action constants on the two-dimensional 
real spaces with the hexagonal unit ball. These estimates are motivated by the fact tha t  the 
hexagonal spaces are extremal for the estimates of the projectional constants. The study of the 
two-dimensional case is also motivated by the still unsolved problem. 

CONJECTURE 3. Suppose that V is a two-dimensional Banach space such that A A ( V )  -~ AA(~ (2)) 

for all 2 x 2 matrices A. Then, V is isometric to g(2). 
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PROPOSITION l.  For 0 < a = cot 8 < 1 (0 < 

[vl, v2] C e{ 3), where Vl, v:a = (1, a, 0), (0, a, 1) and let 

A =  [ cos0 sin 

l - sin 0 cos 

Noting that A is similar to the following matrix: 

--a 2 -- a + 2 
1 

A' = 21¢V4--~ a (a s + 2a + 5) 

(1 + a) 

8 _< zr/4), consider the hexagonal space V = 

1. 
a(1 + a) ] 

a2 + a + 2 J ' 

s tandard basis) by 
"1 l + a  2a 

2 l + a  

a 0 a(1 - a) 

l + a  
.0 2 

l + a  

1 

since 

Then, check that  2F is an extension of the operator T on V given by the matrix A with respect to 
the basis Vl, v2. It is then straightforward to compute (use the absolute column sums (all equal) 
to compute 1[2Fl[) that  

l + a  
- g l  + a - - - - - - ~  - IITII, (3)  

A=I[Xa 1+:] 
a 2 + l  1 +  ' 
l + a  

let T : V --* V be the operator given by the matrix A' with respect to the basis vl,  v2. Then, 
e(T) = v ~  = cos(It/4) + sin(~r/4). 

PROOF. Define the operator 2F from g~3) onto V given (in matrix form with respect to the 
standard basis) by 

1 

l + a  l + a  
1 2a 2a . 

vf2 l + a  l + a  

1 1 

la + ~1 + a a + ~ + (e + d) 7 + ~ + & [[T(CWl + 3v211) IITII = sup = sup 
~,~ [lay1 + 3v211 ~ 1 + a l l  + 71 + t71 ' 

and, at 7 = -1 ,  = (15 - 51 + Ib - d l  + Rib - e + a - d l ) / 2  = (1 + a)/x/1 + a 2 in all cases where 

Note that,  since the unit ball of V is a hexagon (with six extreme points), V is not isometric 
to g~) (whose unit ball has four extreme points). The result now follows because (3) implies 

e(T) = II:Pll, since L 1 is a "maximal overspace" [8,9], e(T) = e(T, e~3)). | 

PROPOSITION 2. For 0 < a < 1, consider the hexagonal space V = [Vl,V2] C g~ 3), where 
1 Vl, V 2 = (1, a, 0), (0, a, 1), and let A be the (rotation by 7r/4) matrix (1/v~)[ _111 ]. 

Noting that A is similar to the following matrix: 

let T : V --* V be the operator given by the matrix A' with respect to the basis vl,  v2. Then, 

e(T) = (1 + a ) / v / ~  = I cos01 + Isin0l. 

PROOF. Define the operator T from g~3) onto V given (in matrix form with respect to the 
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Then, check that  T is an extension of the operator T on V given by the matrix A with respect to 
the basis Vl,V2 and [ITI[ = x/2. It is then straightforward to compute (use the absolute column 

sums (all equal) to compute [IT]f) that  

since 

= v ~  = IITII, (4) 

ItTI [ > IITvlll 1 I I ( 1 - a ) v l  + (l +a)v2II _ v ~ ( l + a )  - - v ~ .  

-Ilvllt = ~  IlVll[ l + a  

Once again, note that  the unit ball of V is a hexagon, and thus V is not isometric to g~). The 
result now follows because (4) implies e(T) = II:rll, since, as in Proposition 1, L1 is a "maximal 

overspace". | 

NOTE 1. Consider the regular hexagonal space H = [vl, v2] C g~a), where Vl, v2 = (1, 1/2, 1/2), 
(0, v/3/2, x/~/2). The ball is then the regular hexagon with all six sides the same length, as is 
easily seen. Let A be the (rotation by Ir/4) matrix (1/v~)[  11 11], and let T :  H --~ H be the 
operator given by the matrix A with respect to the basis vl, v2. Then, we have the estimate 

4 sin(57r/12) 4 v/3 + 1 
- -  > v/2. e(T) <_ AI(H)[[T[[-  3 sin(zr/3) 3 v ~  

PROPOSITION 3. In the setting of  Note 1 above, we have in fact that e(T) < 4/3 < v/2. 

PROOF. Define the operator 2~ from g~3) onto V given (in matrix form with respect to the 

standard basis) by 
2 1 - V ~  - 1 - V ~ 7  

1 l + x / ' 3  2 1 x/3 . J  

-l+v  l+v  2 

Then, check that  T is an extension of the operator T on V given by the matrix A with respect 
to the basis Vl, v2. It is then immediate (use the absolute column sums (all equal) to compute 

[tT][) that  

=-K 1+v5 

In this case, we can use elementary geometric considerations to conclude that 

sin(57r/12) v ~  + 1 v ~  (1 + x/3) = 
t[T[] = sin(pi/3) - ~ < ~ 

Thus, we cannot so easily conclude that e(T) = 112P][ as we did in Propositions 1 and 2 (where 
][T[[ = I[TI[). We can, however, use the theory of [10] to check that T is indeed a minimal 
extension of the operator T. But, nevertheless, since once again L1 is a "maximal overspace" 
for V, the result follows. | 

NOTE 2. Consider again the regular hexagonal space H = [vl, v2] C e~ 3), where vl, v2 = 

(1, 1/2, 1/2), (0, x/~/2, v/3/2), let A be the (rotation by zr/6) matrix 1/2[_~3 1'~]' and let T :  
H --* H be the operator given by the matrix A with respect to the basis vl, v2. By elementary 
geometric considerations, we see that  IIT[[ = 2/x/3, and thus, we have the immediate estimate 
e(T) <_ AI(H)IIT]I = (4/3)(2v~) > x/2. 

PROPOSITION 4. In the setting of Note 2 above, we have in fact that e(T) = 2/x/~ < 4/3 < v~.  

PROOF. Define the operator T from g~3) onto V given (in matrix form with respect to the 
standard basis) by 

- -  1 . 

3 1 
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Then, check that  T is an extension of the operator T on V given by the matrix A with respect 
to the basis vl, v2. It is then immediate (use the absolute column sums (all equal) to compute 
[[Tll) that  

2 

In this case, we can use elementary geometric considerations to conclude that  tlTII = 2/v'5 = IITII. 
Thus, we can conclude that  e(T) = IITll (as we did in Propositions 1 and 2). | 

NOTE 3. Consider again the regular hexagonal space, H = [vl,v2] C ~3), where vl,v2 = 

(1,1/2, 1/2), (0, x/~/2, v~/2) ,  let A be the (rotation by 7r/3) matrix (1/2)[ 1 v~ -v~ 1 ]' and let 
T : H ~ H be the operator given by the matrix A with respect to the basis Vl, v2. Then, we 
have the estimate e(T) <_ AI(H)[[T[[ = (4/3)-1 < v/2. 

PROPOSITION 5. In the setting of Note 2 above, we have in/:act that e(T) = 4/3 < v/2. 

PROOF. Define the operator T from g~3) onto V given (in matrix form with respect to the 
standard basis) by 

- 1 - 1  . 

3 2 1 

Then, cheek that  T is an extension of the operator T on V given by the matrix A with respect 
to the basis vl, v2. It is then immediate (use the absolute column sums (all equal) to compute 
IIT]]) that  

4 
T = 5 "  

In this case, we can use elementary geometric considerations to conclude that  lIT[[ = 1. Thus, we 
cannot so easily conclude that  e(T) = []T[[ as we did in Propositions 1 and 2 (where [[T[[ = [[T[[). 
We can, however, use the theory of [10] to check that  ~b is indeed a minimal extension of the 
operator T. Once again, L1 is a "maximal overspace" for V and the result follows. | 

DEFINITION 1. Define AA(V) := infT e(T) where T yields 

• re(T) } 
mf~.H-~-~- H : T : V - - * V ; T ~ A  . 

CONJECTURE 4. In the settings of Propositions 1 and 2, we conjecture that e(T) = AA(V).  In 
particular, let A be the (rotation by 1r/4) matrix 

x/~ - 

and consider the regular hexagonal space H = [Vl, V2] C e~ 3), where vl, v2 ---- (1, 1, 0), (0, 1, 1). 
That is, we conjecture that AA(H) = x/2. 

CONJECTURE 5. Since the regular hexagonal space H is also extreme for the case A = I (with 
AI(H) = 4/3 (see [11D), we conjecture that, for all n, those spaces V which yield the extreme 
of At(V) also yield the spaces which are extreme for AA(V) in Conjecture 5. (For example, in 
the case n = 3, the extremal space is conjectured to be the "icosahedron" space, although the 
authors at this time have no idea what the "natural" extremal A (corresponding to the "rotation 
by Ir/4 in the case n = 2) might be.) 

For related work, see also [12-14]. 
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