An Intemational Joumal

computers &

mathematics
with applications

PERGAMON  Computers and Mathematics with Applications 40 (2000) 71-79
www.elsevier.nl/locate/camwa

Some Estimates of Action Constants
and Related Parameters

B. L. CHALMERS
Department of Mathematics, University of California
Riverside, CA 92521, U.S.A.

B. SHEKHTMAN
Department of Mathematics, University of South Florida
Tampa, FL 33620, U.S.A.

Abstract—1In this paper, we continue investigation of an action constant X4(V) introduced in
[1-3]. In particular, we show that, if n is the dimension of V, then As(V) < p(A)y/n, which is the
generalization of the well-known estimate A;(V) < +/n. We then proceed to compare the estimates
for A4(V) and A;(V) for a variety of two-dimensional spaces. These estimates are obtained with the
extensive use of computer interaction. © 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Let A be n X n matrix, let o(A) be the set of eigenvalues of A, and let p(A) be its spectral radius.
Let V be an n-dimensional Banach space and let T be an operator on V. We say that T is similar
to A (T ~ A) if there exists a basis in V such that the matrix of the operator T with respect to
this basis is A. We now introduce a number of parameters associated with A and V. Let

na(Vy=inf{||T||: T:V - V;T ~ A}.
If X D V and T is an operator on V, we use
e(T,X) = iqf{”i’” T:X - V;TW = T} ,
T
e(T) =sup{e(T, X): V C X}.
X
The action constant Aa(V') is defined to be
Aa(V)=inf{e(T): T:V - V;T ~ A}. (1)
Observe that for A = I, the action constant As(V) is the well-studied projection constant.
In particular, the celebrated Kadec-Snobar Theorem gives A;(V) < /n. In this paper, we will

demonstrate that A 4 (V) < p(A)+/n for an arbitrary matrix A, thus generalizing the Kadec-Snobar
Theorem. To prove that theorem, we need an action version of the well-known two-summing norm
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of an operator (cf. [4])

N 1/2
2
> 73
ma(T) = sup = ,
2
supy =1 2 I ()]
J=
where the supremum is taken over all N and all collections of vectors z1,...,zx € V. We thus

define
8 (V) =inf{mo(T) : T: V - V; T ~ A}.

We will need some well-known characterizations of mo(T : V — V). For this, let V be an
n-dimensional space and T be an operator from V to V. For some probability measures w, Vis
isometric to a space, say Vo, Where Voo C Loo(pt). Now let Vo C Lo(u1) be a space that consists of
the same functions as V., but equipped with the Ly norm. Consider a factorization of T: V — V
as follows:

v I v
li TR
Voo ﬁ’ V2 : (2)
n n
Loo(p) La(p)

Then (cf. [5]), the following theorem holds:
mo(T) = inf [|S] || R,

where the infimum is taken over all such representations and (this will be important later) over

all measures u.
It follows from this description (cf. [5]) that

m2(T) 2 e(T),
and hence,
73 (V) 2 Xa(V) = na(V) > p(A).
Furthermore,
na (62) = o(A).

It is also known that for two-dimensional subspaces V,
4
M) < 3 < V2.

It is hence somewhat a pleasant surprise (Theorem 2) that there exists a two-dimensional space V
and A with p(A) = 1 such that
Ma(V) = V2.

The extremal value for the projectional constant is attained on the space V with the regular-
hexagonal unit ball. We thus dedicate the last section of this paper to estimating A4 (V) and
related parameters for this space V and for various rotations 4. We hope that these results
contribute to the general understanding of the overall problem.

PROBLEM. To what extent does the set of parameters
{Aa(V): A€ Mpxn}

describe an n-dimensional Banach space V?
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2. GENERAL THEOREMS

THEOREM 1.
73 (V) < p(A)v/n.

PROOF OF THEOREM 1. In view of the above, we need to construct an operator T ~ A and a
factorization according to (2) with ||S|| [|R|] < (v/n)p(A). To do this, we use the fact (see [5])
that

m(l:V - V) =n.

Hence, from the above there exists a factorization

I

vV vt v
li TR
Vo 50w
n n
Loo (1) Lo(u)

with [|S|| [|IR'|| = v/n.

Since V; is a subspace of La(u), V2 is isometric to £; ", and hence (by [6]) there exists an operator
T’ : Vo — Va such that TV ~ A; ||T’|| = p(A). Consider an operator given by T = R'T’'S’i = RSi.
The diagram follows:

(n)
2

1% z, 1%
Li 1R
Vo, Swih v,
n N N

Loo(p)  La(p)  Lao(w)
Then,TNAandT:V—>V;

ISIIRN = 1S RR'T' < IS0 T IR < o(A) (S]] R\ = p(A)V/n.
Finally, observe that T = RSi is the factorization of form (2), and hence
m5(T) < (AW I
COROLLARY 1. For every A and every V,

Aa(V) < p(A)Vn.

COROLLARY 2. Let A be an n x n matrix such that

o(A)yc {zeC:|z|=1}.

Then,
5 (V) = v/,
for any n-dimensional Banach space V.
PROOF. The proof follows from Theorem 1 and [7]. 1

Corollary 2 is thus once again a direct generalization of the well-known estimate
(V) = vn.

CONJECTURE 1. (V) = /37, |A;|> where the );s are the eigenvalues of A.
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THEOREM 2. Let

cosf siné
A—[~sin9 cosa]

and V = 52 over R. Then, As(V) = | cos8| + |sin6| (p(4) = 1).
PROOF. Consider ny (V) = infg ||S~*AS|), where the norm is the maximum of the absolute row

sums and )
a
s=[2 4]

is an arbitrary invertible 2 x 2 matrix. Further, let As = S1AS, A =ad—be, E = (ab+cd)/A,
P = +d?)/A, Q= (a®+c?)/A, § = coth, o = sinf, and note that 1 + E* = PQ. Now,
without loss, assume 0 < 8 < 7/2. Then,

U451 oo + 51+ 1P1, 15 ~ £1 + Q1)

Case 1. § > |E| > 0.
| Asll _ B
> =6+ max{E +|P|,-E+|Q|}.

For E fixed, determine, by use of |Q| = (1 + E?)/|P|, that the two arguments of the max are
equal to v/1 + 2E2, when |P| = V1 + 2E? — E. On the other hand, if |P| > +v1+ 2E? — E, then
obviously E + |P| > V1 + 2E2, whereas if |P| < V1+2E? — E, then —E+|Q| = -E+ (1 +
E?)/|P| > —E+(1+E?)/(VI T 2E2-E) = (1+2E*~EV1 + 2E%)/(v1+ 2E?—E) = V1 + 2E%.
We conclude that, for E fixed, inf max{E + |P|,—E + |Q|} = v1+2E?. Thus, the inf (over
all S) is achieved when E = 0, and thus when |P| = |QI = 1, i.e., when ab + cd = 0 and
b% + d? = a2 + ¢® = |ad — bel, and in particular, when d =a and b=c =0.

CASE 2. |E| > § > 0. Assume first that E > 0. Then,

”_Afﬂ = E+max{s +|P|, —6 + |Q[}.

Analogously, as in Case 1, determine that the two arguments of the max are equal to v'1 + EZ 1582
when |P| = /1 + EZ + 62 — §. Thus, the inf (over all S) is achieved when E = 4.
Assume, finally, that E < 0. Then,

4s

= —FE +max{-8§ + |P|,d +|Q|},

and the argument is completely symmetric and the conclusion is the same as in the case £ > 0.
Note, however, that § ++/1 + 262 > §+1 and thus the inf over all S from both cases is achieved
in Case 1. That is, we find that the infimum is achieved for S = I, and thus

na(V) = inf||Ag|| = o(1 + &) = sinf + cos .

But then, since V = e&?,’ is its own maximal overspace, A4 (V) = na(V). 1
COROLLARY 3. Let 1 1
|
R
V2 V2

Then, there exists a two-dimensional Banach space V such that na(V) = V2. Hence, we have

VZ=na(V) < Aa(V) S (V) < V2,
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and thus
\/5 = nA(V) = )\A(V) = 71'2(V) = \/5

The operator T ~ A for which /2 = |T|| is an operator for which the norms
”T”7 7r2(T), e(T),

coincide.

Theorem 2 does not generalize to large n. In fact, we have the following result.

THEOREM 3. For every A with p(A) = 1,
Aa (eg.'ﬁ) < V2.

PROOF. Let € > 0. Let A be an n X n matrix written in the “real” Jordan form

Ay mli
Ay Mol

Ak

where A;; are two-by-two or one-by-one real matrices and 7; are € or 0. Consider this matrix as

an operator acting on £, direct sum 69’?=1€i(oj) ~ ¢$2 where i(j) = 1 or 2 depending on the size

2
of the matrix A;;
4] = (max HAH 09 — 69|} + maxn; < V3 +e

Since eS..i" is an injective space
e(4) = Al £ V2 +e

and ,\(eﬁ..'})) < V2 + ¢ for any € > 0. (]
By use of Dvoretzky’s Theorem and the fact that

na (62) = p(a),

the stronger version of this result can probably be obtained.

CONJECTURE 2. Let A,, be an arbitrary sequence of n X n matrices. Then

. Aa, (€3
lim ———==2 — 1,
n—oo  p(Ay)

3. NOTES ON HEXAGONAL SPACES

In this part, we will estimate some extension and action constants on the two-dimensional
real spaces with the hexagonal unit ball. These estimates are motivated by the fact that the
hexagonal spaces are extremal for the estimates of the projectional constants. The study of the
two-dimensional case is also motivated by the still unsolved problem.

CONJECTURE 3. Suppose that V is a two-dimensional Banach space such that A4(V) = A A(ég))
for all 2 x 2 matrices A. Then, V is isometric to eg”.
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PROPOSITION 1. For 0 < a = cotf < 1 (0 < 8 < w/4), consider the hexagonal space V =
[v1,v2] C ng), where vy,ve = (1,4,0),(0,a,1) and let
A= Cf)Sg sin @ .
—sinf cosf
Noting that A is similar to the following matrix:
~a?-a+2 a(l + a)
A= ———=1 a(a®+2a+5
2v1 + a? _a(@+2+5) a’+a+2
(1+a)
let T : V — V be the operator given by the matrix A’ with respect to the basis vy,vq. Then,
e(T) = (1 +a)/v1+a? = |cosf| + |sind).
PROOF. Define the operator T' from 8(13) onto V given (in matrix form with respect to the
standard basis) by

-1 l1+a 2a 1
2 1+4+a
1 1—
e o -9
14+a l+a
1+a
_0 9 1 J

Then, check that T is an extension of the operator T on V given by the matrix A with respect to
the basis vy, vz. It is then straightforward to compute (use the absolute column sums (all equal)
to compute ||T}|) that

7] = 2 =m. 3)
since
Tl = sup T (awy + Bual)) C |&+ &y +a 'a +b+ (c + d) ’y‘ ‘b + d'yl
ap  |lovs + Bus|| v 1+all+9]+

and,at y=—1, = (|é—a|+ |b—d| +alb—é+a—d|)/2 = (1 +a)/V1+a? in all cases where

a2l

Note that, since the unit ball of V' is a hexagon (with six extreme points), V is not isometric
to £ (whose unit ball has four extreme points). The result now follows because (3) implies
e(T) = ||T}|, since Ly is a “maximal overspace” [8,9], e(T) = e(T, €(13)). ]

PROPOSITION 2. For 0 < a < 1, consider the hexagonal space V = [vj,v2] C ng), where

v1,v2 = (1,a,0),(0,a,1), and let A be the (rotation by w/4) matrix (1/\/5)[_1 i
Noting that A is similar to the following matrix:

or 82t
o |y,

1 1-a 1+4+a
A=— 241
V2 _alja 1+a

let T : V — V be the operator given by the matrix A’ with respect to the basis v,,v,. Then,
e(T) = V2 = cos(m/4) + sin(n/4).

PROOF. Define the operator T' from 2(13) onto V given (in matrix form with respect to the
standard basis) by

l1—-a 1-a 1
) 14a 1+4a
— 2a 2a
\/5 1+a 1+a 0

1 1 1



Estimates of Action Constants 7

Then, check that T is an extension of the operator T on V' given by the matrix A with respect to
the basis vy, vg and ||T|| = v/2. It is then straightforward to compute (use the absolute column
sums (all equal) to compute || T'||) that

7] = v2 =1z, @

since

e 7ol _ 1 lQ—a)vi+ (1 +a)ull _ v20+a) _ 5

Tl — V2 sl ~ 1l+a
Once again, note that the unit ball of V' is a hexagon, and thus V is not isometric to &(,%). The
result now follows because (4) implies e(T) = |||, since, as in Proposition 1, L; is 2 “maximal
overspace”. 1

NoTE 1. Consider the regular hexagonal space H = [v1,v2] C 553), where v1,v2 = (1,1/2,1/2),
(0,v/3/2,4/3/2). The ball is then the regular hexagon with all s1x sides the same length as is
easﬂy seen. Let A be the (rotation by m/4) matrix (1/v/2)] _ ] and let T : H — H be the
operator given by the matrix A with respect to the basis vy, vo. Then we have the estimate

4 sin(57/12) 4 V3+1
3 sin(r/3) 3 6 > V2

PROPOSITION 3. In the setting of Note 1 above, we have in fact that e(T') < 4/3 < v/2.

e(T) < A (H)|TI| =

PROOF. Define the operator T from E(ls) onto V given (in matrix form with respect to the
standard basis) by
2 1-v3 -1-3

1+v3 2 1-V3
~1+v3 1++3 2
Then, check that T is an extension of the operator T on V given by the matrix A with respect

to the basis v1,vq. It is then immediate (use the absolute column sums (all equal) to compute
[iT|) that

1
6v2

7= 5 (+v8) <5

In this case, we can use elementary geometric considerations to conclude that

sin(5m/12) V3+1l V2 -
- S (1)< |
Il sin(pi/3) NG <73 + \/_)

Thus, we cannot so easily conclude that e(T') = ||T|| as we did in Propositions 1 and 2 (where
ITI = §Tl). We can, however, use the theory of [10] to check that T' is indeed a minimal
extension of the operator 7. But, nevertheless, since once again L; is a “maximal overspace”
for V, the result follows. (]
NoOTE 2. Consider again the regular hexagonal space H = [v1,v] C € , where vy,v9 =
(1,1/2,1/2), (0,4/3/2,v/3/2), let A be the (rotation by 7/6) matrix 1/2[__1/5 13], and let T :
H — H be the operator given by the matrix A with respect to the basis v;,v2. By elementary
geometric considerations, we see that ||T|| = 2//3, and thus, we have the immediate estimate
e(T) < M(H)|IT) = (4/3)(2v3) > V2.

PROPOSITION 4. In the setting of Note 2 above, we have in fact that e(T) = 2/ V3 <4/3< V2.
PRrROOF. Define the operator T from 8(13) onto V given (in matrix form with respect to the

standard basis) by
1 0 -1
-\g—g 1 1 0l.
01 1
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Then, check that T is an extension of the operator T’ on V given by the matrix A with respect
to the basis vy, v;. It is then immediate (use the absolute column sums (all equal) to compute

1) that
~ 2
7= 7

In this case, we can use elementary geometric considerations to conclude that ||T|| = 2/v/3 = ||T|.
Thus, we can conclude that e(T) = ||T'|| (as we did in Propositions 1 and 2).

NoTE 3. Consider again the regular hexagonal space, H = [vy,v3] C £§3) , where vy,vy =
(1,1/2,1/2), (0,v/3/2,v/3/2), let A be the (rotation by n/3) matrix (1/2)[_f/§ ‘{3], and let
T : H — H be the operator given by the matrix A with respect to the basis v;,v5. Then, we

have the estimate e(T) < A\;(H)||T|| = (4/3) -1 < v2.

PROPOSITION 5. In the setting of Note 2 above, we have in fact that e(T) = 4/3 < /2.

PROOF. Define the operator T from 653) onto V given (in matrix form with respect to the
standard basis) by

1 -1 -2
1
3 2 1 -1
1 2 1

Then, check that 7" is an extension of the operator T on V given by the matrix A with respect

to the basis vy, vz. It is then immediate (use the absolute column sums (all equal) to compute
|71 that

- 4

-4

7]} = 3

In this case, we can use elementary geometric considerations to conclude that ||T|| = 1. Thus, we

cannot so easily conclude that e(T) = ||T'|| as we did in Propositions 1 and 2 (where ||T]| = ||T)).
We can, however, use the theory of [10] to check that T is indeed a minimal extension of the
operator T. Once again, L; is a “maximal overspace” for V and the result follows. ]

DEFINITION 1. Define A4(V):= infy e(T) where T yields

. ¢ [ e(T) }
inf T: VoV, T~A
{ 17|

CONJECTURE 4. In the settings of Propositions 1 and 2, we conjecture that e(T) = X Aa(V). In
particular, let A be the (rotation by 7/4) matrix

50

and consider the regular hexagonal space H = [v1,vq] C Z , where vy,v2 = (1,1,0),(0,1,1).
That is, we conjecture that Aa(H) = v/2.

CONJECTURE 5. Since the regular hexagonal space H is also extreme for the case A = I (with
Ar(H) = 4/3 (see [11])), we conjecture that, for all n, those spaces V which yield the extreme
of Ar(V) also yield the spaces which are extreme for A4(V) in Conjecture 5. (For example, in
the case n = 3, the extremal space is conjectured to be the “icosahedron” space, although the
authors at this time have no idea what the “natural” extremal A (corresponding to the rotation
by m/4 in the case n = 2) might be.)

For related work, see also [12-14].
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