
BIPARTITE HANSEL RESULTS FOR HYPERGRAPHS

GREGORY CHURCHILL AND BRENDAN NAGLE

Abstract. For integers n ≥ k ≥ 2, let V be an n-element set, and let
(V
k

)
denote the set of all k-

element subsets of V . For disjoint A,B ⊆ V , we say {A,B} covers K ∈
(V
k

)
if K ⊆ A∪̇B and K meets

each of A and B, i.e., K ∩A 6= ∅ 6= K ∩B. We say that a collection C of such pairs {A,B} covers
(V
k

)
if every element of

(V
k

)
is covered by at least one member of C. When k = 2, such a family is called a

separating system of V , where this concept was introduced by Rényi [17] and studied by many authors.

Let h(n, k) denote the minimum value of
∑
{A,B}∈C(|A|+ |B|) among all covers C of

(V
k

)
. Hansel [6]

determined the bounds dn log2 ne ≤ h(n, 2) ≤ ndlog2 ne, and Bollobás and Scott [1] determined an exact

formula for h(n, 2). We extend these results to give an exact formula for h(n, k), and to guarantee that

all optimal covers C of
(V
k

)
share a common degree-sequence. Our proofs follow lines of Bollobás and

Scott, together with weight-shifting arguments in a similar vein to some of Motzkin and Straus [12].

1. Introduction

We consider a hypergraph version of a classical result of Hansel [6], and of a more recent result of

Bollobás and Scott [1]. For that, fix integers n ≥ k ≥ 2 and an n-element vertex set V , and let
(
V
k

)
denote the set of all k-element subsets of V . For disjoint A,B ⊆ V , we say {A,B} covers K ∈

(
V
k

)
if

K ⊆ A∪̇B and K meets each of A and B, i.e., K ∩ A 6= ∅ 6= K ∩B. We say that a collection C of such
pairs covers (is a cover of)

(
V
k

)
if every element of

(
V
k

)
is covered by at least one member of C. Rényi [17]

introduced covers C of
(
V
2

)
as separating systems of V , where every pair u 6= v ∈ V is separated by some

{A,B} ∈ C, in the sense that u ∈ A and v ∈ B or vice versa. Separating systems were since well-studied
(see, e.g., [1, 3–11, 13–20]), and the following particular results motivate some of our current work.

Rényi [17] observed that dlog2 ne members are necessary and can suffice for C to be a separating
system of V . For necessity, the chromatic number of the union KV =

⋃
{A,B}∈CK[A,B] satisfies

n = χ(KV ) = χ
( ⋃
{A,B}∈C

K[A,B]
)
≤

∏
{A,B}∈C

χ(K[A,B]) = 2|C|. (1)

For sufficiency, set m = dlog2 ne and let v 7→ v be any injection from V to {0, 1}m. For each 1 ≤ i ≤ m,
set Ai = {v ∈ V : v(i) = 0} and Bi = {v ∈ V : v(i) = 1}, where v(i) denotes the ith coordinate of v.
Then C = {{A1, B1}, . . . , {Am, Bm}} is a separating system of V since, for each u 6= v ∈ V , the vectors
u 6= v disagree on a coordinate 1 ≤ i ≤ m, whereby {Ai, Bi} separates u and v.

Hansel [6] considered a weighted version of Rényi’s result above, where we prepare a definition for

k ≥ 2. For a cover C of
(
V
k

)
, define the weight ω(C) of C by ω(C) =

∑
{A,B}∈C(|A|+ |B|), and set h(n, k)

to be the minimum weight ω(C) among all covers C of
(
V
k

)
. Hansel established the following bounds.

Theorem 1.1 (Hansel (1964), [6]). For all integers n ≥ 2, it holds that dn log2 ne ≤ h(n, 2) ≤ ndlog2 ne.
Independently, Krichevskii [10] proved a result similar to Theorem 1.1, and Katona and Szemerédi [9]

rediscovered Theorem 1.1 in the context of a diameter problem in graph theory. Bollobás and Scott [1]
improved Theorem 1.1 to the following exact formula for h(n, 2).

Theorem 1.2 (Bollobás and Scott (2007), [1]). For an integer n ≥ 2, set p = blog2 nc and R = n− 2p.
Then, h(n, 2) = np+ 2R.
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Extending Theorem 1.1 to (sharp) bounds for h(n, k) is not difficult (see [4]). Extending Theorem 1.2
to a formula for h(n, k) seems less straightforward, and this is our current focus.

Theorem 1.3. For integers n ≥ k ≥ 2, set q = bn/(k − 1)c, r = n − q(k − 1), p = blog2 qc, and
R = q − 2p. Then,

h(n, k) = np+ 2R(k − 1) +
⌈

r
k−1

⌉
(r + k − 1). (2)

Our proof of Theorem 1.3 gives slightly more information on optimal covers C of
(
V
k

)
, i.e., those

with ω(C) = h(n, k). For that, we define the C-degree degC(v) of v ∈ V as the number of {A,B} ∈ C
to which v is incident, i.e., v ∈ A∪̇B. Arranging these degrees in non-increasing order, we define
d(C) = (degC(v))v∈V to be the degree-sequence of C. We prove that all optimal covers C of

(
V
k

)
share

common degree-sequence D = Dn,k ∈ {p, p+ 1}V with jth coordinate, 1 ≤ j ≤ n, given by

D(j) = p+ 1 ⇐⇒ 1 ≤ j ≤ 2R(k − 1) +
⌈

r
k−1

⌉
(r + k − 1). (3)

Theorem 1.4. Let C be an optimal cover of
(
V
k

)
. Then, d(C) = D is given by (3).

We now discuss our proofs of Theorems 1.3 and 1.4. To begin, the integers k, n, p, q, r, and R from
the hypothesis of Theorem 1.3 are henceforth referenced by

n−r
k−1 = q = 2p +R, where 0 ≤ r < k − 1, and where 0 ≤ R < 2p, (4)

and the n-element set V is always fixed. To prove Theorem 1.3, we proceed along the following steps,
not all of which are difficult. In Section 2, we give a straightforward extension of Rényi’s construction
(from earlier in the Introduction) to establish the formula in (2) as an upper bound on h(n, k).

Proposition 1.5 (the upper bound). Let integers k, n, p, q, r, and R satisfy (4), and let V be an

n-element set. There exists a cover C0 of
(
V
k

)
with weight

ω(C0) = np+ 2R(k − 1) +
⌈

r
k−1

⌉
(r + k − 1).

For the lower bound on h(n, k), we split the formula in (2) into two cases, depending on whether or
not r = 0. In Section 3, we follow an elegant approach of Bollobás and Scott [1] for Theorem 1.2 to
prove the following lower bound on h(n, k).

Theorem 1.6 (a lower bound). Let integers k, n, p, q, r, and R satisfy (4). Then, h(n, k) ≥ np +
2R(k − 1) + 2r, whereby Theorem 1.3 holds when r = 0. Moreover, Theorem 1.4 holds when r = 0.

The bound in Theorem 1.6 is sharp if, and only if, r = 0. The majority of this paper is devoted to
improving the bound of Theorem 1.6 for r ≥ 1, which we ultimately complete in Section 5.

Theorem 1.7 (the lower bound when r ≥ 1). Let integers k, n, p, q, r ≥ 1, and R satisfy (4). Then,
h(n, k) ≥ np+ 2R(k − 1) + r + k − 1, whereby Theorem 1.3 holds. Moreover, Theorem 1.4 holds.

Our proof of Theorem 1.7 follows lines from the proof of Theorem 1.6. We also use structural results on
optimal covers given in upcoming Lemmas 4.4 and 4.6. These tools depend on weight-shifting arguments
not unlike some of Motzkin and Straus [12] (see also [2]). Lemmas 4.4 and 4.6 may be of independent
interest, but we were unable to avoid their use here.

Acknowledgment. The authors are indebted to the meticulous reading of the Referees, whose invaluable
suggestions lead to an improved presentation of this paper.

2. Proof of Proposition 1.5

Fix integers k, n, p, q, r, and R satisfying (4). We extend the approach of Rényi of mapping vertices
v 7→ v to vectors. Fix any partition Π : V = X1∪̇ . . . ∪̇X2p into 2p many classes, where |Xi| = 2(k − 1)
if 1 ≤ i ≤ R, |Xi| = r + k − 1 if i = R+ 1, and |Xi| = k − 1 if R+ 2 ≤ i ≤ 2p. Since(

2(k − 1)×R
)

+ r + k − 1 +
(
(k − 1)× (2p − (R+ 1))

) (4)
= n,
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such a partition Π exists. Fix an arbitrary bijection Xi 7→ xi from Π to {0, 1}p, and define v 7→ v by
setting v = xi if, and only if, v ∈ Xi. We next use v 7→ v to define the promised collection C0.

For each 1 ≤ j ≤ p, set Aj = {v ∈ V : v(j) = 0} and Bj = {v ∈ V : v(j) = 1}. Then |Aj |+ |Bj | = n.
For each 1 ≤ i ≤ R+ 1, let Xi be subdivided as Xi = Yi∪̇Zi, where |Yi| = k − 1. Set

Ap+1 =

{
Y1∪̇ . . . ∪̇YR when R 6= 0,

∅ when R = 0,
and Bp+1 =

{
Z1∪̇ . . . ∪̇ZR when R 6= 0,

∅ when R = 0.

Then |Ap+1|+ |Bp+1| = 2R(k − 1). Set

Ap+2 =

{
YR+1 when r 6= 0,
∅ when r = 0,

and Bp+2 =

{
ZR+1 when r 6= 0,
∅ when r = 0.

Then, |Ap+2|+ |Bp+2| = dr/(k − 1)e(r + k − 1). Define C0 = {{A1, B1}, . . . , {Ap+2, Bp+2}}, where

ω(C0) =

p+2∑
j=1

(|Aj |+ |Bj |) = np+ 2R(k − 1) +
⌈

r
k−1

⌉
(r + k − 1).

To see that C0 covers
(
V
k

)
, fix K ∈

(
V
k

)
and consider two cases. First, assume K meets distinct Xh

and Xi from Π. Fix u ∈ K ∩Xh and v ∈ K ∩Xi, whereby u 6= v disagree on some coordinate 1 ≤ j ≤ p.
Then {Aj , Bj} ∈ C0 separates u and v, and since Aj∪̇Bj = V ⊇ K, the same {Aj , Bj} ∈ C0 covers K.
Second, assume K ⊆ Xi for some 1 ≤ i ≤ 2p. Then 1 ≤ i ≤ R + 1, since otherwise |Xi| = k − 1 is too
small. Then K ⊆ Xi = Yi∪̇Zi, where |Yi| = k − 1 and |Zi| ∈ {r, k − 1} are each too small for either
Yi ⊇ K or Zi ⊇ K. Thus, {Yi, Zi} covers K, and hence so do one of {Ap+1, Bp+1}, {Ap+2, Bp+2} ∈ C0.

Remark 2.1. In the context of Proposition 1.5, the cover C0 is not unique. For example, when R ≥ 2
replace {Ap+1, Bp+1} with {Y1, Z1}, . . . , {YR, ZR}.

3. Proof of Theorem 1.6

In Section 3.1, we prove the former conclusion of Theorem 1.6, that h(n, k) ≥ np+ 2R(k− 1) + 2r. In
Section 3.2, we isolate some details of this proof that we wish to apply later in this paper. In Section 3.3,
we prove the latter conclusion of Theorem 1.6, that Theorem 1.4 holds when r = 0. Throughout this
section, integers k, n, p, q, r, and R satisfy (4), and V is a fixed n-element set.

3.1. Former conclusion of Theorem 1.6. We follow an elegant approach of Bollobás and Scott [1].

Fix an arbitrary cover C of
(
V
k

)
, and for simplicity of notation in this argument, write dv = degC(v) for

the C-degree of v ∈ V , and write d = d(C) for the degree-sequence of C. Standard double counting gives∑
v∈V

dv =
∑

{A,B}∈C

(|A|+ |B|) = ω(C), and α = α(C) def
=

1

n

∑
v∈V

dv =
ω(C)
n

(5)

denotes the average degree in C. For sake of argument, we assume that

α < p+ 1, (6)

since otherwise we would have

ω(C) (5)
= αn

¬(6)

≥ (p+ 1)n = np+ n
(4)
= np+ (2p +R)(k − 1) + r

(4)

≥ np+ (2R+ 1)(k − 1) + r = np+ 2R(k − 1) + r + k − 1, (7)

which already exceeds np+ 2R(k − 1) + 2r on account of r < k − 1 in (4).
The following ideas have roots in [1, 9, 13]: independently for each {A,B} ∈ C, set

Z{A,B} =

{
V \A with probability 1/2,
V \B with probability 1/2.

(8)

Set Z =
⋂
{A,B}∈C Z{A,B}, which is a random subset of V whose expected size we now analyze. On the

one hand, C covers
(
V
k

)
, so no k-tuple K ∈

(
V
k

)
can forever survive (8), i.e., belong to Z. Consequently,
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|Z| ≤ k − 1 and thus E[|Z|] ≤ k − 1. On the other hand, linearity of expectation gives E[|Z|] =∑
v∈V P[v ∈ Z], where the event v ∈ Z holds if, and only if, the independent events v ∈ Z{A,B} (cf. (8))

hold for each of the dv many elements {A,B} ∈ C to which v is incident. Thus,

E[|Z|] =
∑
v∈V

(
1

2

)dv
≤ k − 1. (9)

Applying the Arithmetic-Geometric Mean Inequality to (9) yields

k − 1

n
≥ 1

n

∑
v∈V

(
1

2

)dv
≥
(

2−
∑

v∈V dv
)1/n (5)

= 2−α =⇒ α ≥ log2

(
n

k − 1

)
(4)

≥ p. (10)

We continue with a key idea of Bollobás and Scott [1]: in (9), replace d = (dv)v∈V with a positive
integer sequence e = (ev)v∈V satisfying the following properties:

(a)
∑
v∈V ev =

∑
v∈V dv;

(b)
∑
v∈V

(
1
2

)ev ≤∑v∈V
(

1
2

)dv
;

(c) |ew − ex| ≤ 1 for all w, x ∈ V .

To construct e = (ev)v∈V , fix w, x ∈ V . An easy calculation reveals that

dx ≥ dw + 1 ⇐⇒
(

1

2

)dx
+

(
1

2

)dw
≥
(

1

2

)dx−1

+

(
1

2

)dw+1

, (11)

where equality holds in one iff equality holds in both. Now, if dx ≥ dw + 2, we replace dx in d with
d′x = dx − 1, and we replace dw in d with d′w = dw + 1. The resulting sequence d′ clearly satisfies
Property (a), and by (11) it also satisfies Property (b). Iterating such replacements on d′ eventually
yields a sequence e which also satisfies Property (c).

We claim e assumes only the values p and p+ 1. Indeed, Property (c) guarantees e assumes at most
two values e and e+ 1 (and e when e is constant). Property (a) gives

1

n

∑
v∈V

ev =
1

n

∑
v∈V

dv
(5)
= α, (12)

so e = b(1/n)
∑
v∈V evc = bαc. Since (6) and (10) give p ≤ α < p+ 1,

e = bαc = p. (13)

We now conclude the proof of Theorem 1.6. Set V − = {v ∈ V : ev = p} and V + = {v ∈ V : ev = p+ 1}.
Property (b) and (9) yield

|V −|
(

1

2

)p
+ |V +|

(
1

2

)p+1

≤
∑
v∈V

(
1

2

)dv
≤ k − 1 =⇒ 2|V −|+ |V +| ≤ 2p+1(k − 1), (14)

or equivalently (using |V −| = n− |V +|)

|V +| ≥ 2n− 2p+1(k − 1) = 2 (n− 2p(k − 1))
(4)
= 2 (R(k − 1) + r) = 2R(k − 1) + 2r. (15)

Thus, by (5) and Property (a), we conclude with

ω(C) =
∑
v∈V

dv =
∑
v∈V

ev = p|V −|+ (p+ 1)|V +| = np+ |V +|
(15)

≥ np+ 2R(k − 1) + 2r. (16)

3.2. Notes. We have now proven both Proposition 1.5 and the former conclusion of Theorem 1.6. These
combine to say (with k, n, p, q, r, and R satisfying (4)) that

np+ 2R(k − 1) + 2r ≤ h(n, k) ≤ np+ 2R(k − 1) +
⌈

r
k−1

⌉
(r + k − 1). (17)

Recall that C in Section 3.1 was an arbitrary cover of
(
V
k

)
. Below, we revisit (6), (7), and (9) when C is

assumed to be optimal (but where k, n, p, q, r, and R remain fixed by (4)).
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Fact 3.1. Let C optimally cover
(
V
k

)
. Then the average degree α of C (cf. (5)) satisfies p ≤ α ≤ p+ 1.

Moreover, α = p ⇐⇒ r = R = 0, and α = p+1 ⇐⇒ R = 2p−1 and h(n, k) = np+2R(k−1)+r+k−1.

Proof of Fact 3.1. We shall often use the identities αn = ω(C) = h(n, k), which hold by (5) and the
optimality of C. We showed α ≥ p in (10), and α = p ⇐⇒ r = R = 0 is immediate from (17).
If α > p + 1, then (7) would contradict (17). Similarly, if α = p + 1, then (7) would have equality
throughout, which gives R = 2p − 1 and h(n, k) = ω(C) = np + 2R(k − 1) + r + k − 1. Finally, if
R = 2p − 1 and h(n, k) = ω(C) = np+ 2R(k − 1) + r + k − 1, then

αn = h(n, k) = np+ 2R(k − 1) + r + k − 1 =⇒ (α− p)n− r
k − 1

= 2R+ 1 = 2p +R
(4)
=
n− r
k − 1

,

from which α = p+ 1 follows. �

Fact 3.2. Let C optimally cover
(
V
k

)
. Then,

∑
v∈V

(
1

2

)dv
≥ r

(
1

2

)p+1

+ (k − 1)

(
1−

(
1

2

)p+1
)
.

Proof of Fact 3.2. We separate the cases of α ≤ p + 1 (cf. Fact 3.1). If α = p + 1, then Fact 3.1 says
R = 2p − 1, and so in (4) we have q = (n− r)/(k − 1) = 2p+1 − 1. Thus (10) yields

∑
v∈V

(
1

2

)dv
≥ n

(
1

2

)p+1

= (k − 1)q

(
1

2

)p+1

+ r

(
1

2

)p+1

= (k − 1)

(
1−

(
1

2

)p+1
)

+ r

(
1

2

)p+1

,

as desired. Henceforth, we assume p ≤ α < p+ 1 (cf. Fact 3.1), but we suppose

∑
v∈V

(
1

2

)dv
< r

(
1

2

)p+1

+ (k − 1)

(
1−

(
1

2

)p+1
)
. (18)

Construct e = (ev)v∈V precisely as in (11) so that e assumes at most two values, which are still p and
p+ 1 (by Fact 3.1, (12), and (13)). By Property (b) and (18), we infer

|V −|
(

1

2

)p
+ |V +|

(
1

2

)p+1

≤
∑
v∈V

(
1

2

)dv
< r

(
1

2

)p+1

+ (k − 1)

(
1−

(
1

2

)p+1
)
,

or equivalently (cf. (15)), |V +| > 2R(k − 1) + k − 1 + r. By Property (a) (cf. (16)),

h(n, k) = ω(C) = p|V −|+ (p+ 1)|V +| = np+ |V +| > np+ 2R(k − 1) + k − 1 + r,

which contradicts (17). �

3.3. Latter conclusion of Theorem 1.6. The proof is similar to that of Fact 3.2. Assume now that
r = 0, but that k, n, p, q, and R are otherwise fixed by (4). We use that h(n, k) = np + 2R(k − 1),

which follows from (17). Now, let C optimally cover
(
V
k

)
with degree-sequence d = d(C) = (dv)v∈V , but

assume for contradiction that d 6= D (cf. (3)). Using Fact 3.1, C has average degree p ≤ α < p + 1,
where α = p+ 1 is forbidden by h(n, k) = np+ 2R(k − 1). We again construct e = (ev)v∈V precisely as
in (11), and observe that (once appropriately ordered) e = D. Indeed, revisiting (16),

np+ 2R(k − 1) = h(n, k) = ω(C) = np+ |V +|,

so that e ∈ {p, p+ 1}V has precisely 2R(k − 1) many (p+ 1)-digits. Since d 6= D = e, there must exist
x,w ∈ V with dx ≥ dw + 2. As such, strict inequality holds throughout (11), and so strict inequality
holds throughout (14)–(16). Now, ω(C) > np+ 2R(k − 1) = h(n, k), contradicting the optimality of C.
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4. Tools for Proving Theorem 1.7

Our proof of Theorem 1.7 follows lines from Section 3, where the set Z from (8) continues to play a
critical role. Here, we will work with specialized optimal covers C which admit structural information
on these sets Z. This structure is described formally in upcoming Lemmas 4.4 and 4.6, but we first
describe it informally in (i) and (ii) below. For that, we again consider the context of Section 3, where
Z is from (8), and where we fix an arbitrary {A,B} ∈ C. Suppose Z meets A∪̇B, i.e., Z ∩ (A∪̇B) 6= ∅.
It is not possible for Z to meet both A and B, but it is possible for A∪̇B to miss some of Z. We prefer
to avoid the concurrence Z ∩ (A∪̇B) 6= ∅ 6= Z \ (A∪̇B), and therefore seek optimal covers C whose every
outcome Z from (8) satisfies

(i) for each {A,B} ∈ C, either Z ⊆ A, or Z ⊆ B, or Z ∩ (A∪̇B) = ∅.
In this context, degC(Z) is well-defined, but we wish to say more. We want for C to also satisfy that

(ii) whenever degC(Z) < α = α(C) is below the average, then |Z| = k − 1.

In Section 4.1, we restate (i) and (ii) formally in order to prove that such optimal covers exist, and to
apply them to the context of Theorem 1.7. In Section 4.2, we give a few other related but easy facts.

4.1. Formalizing (i) and (ii). To develop (i), we fix a cover C of
(
V
k

)
, and describe the sample space

of (8) as follows. Fix symbols a and b, and let {a, b}C denote the set of all functions ψ : C → {a, b}. For
ψ ∈ {a, b}C and {A,B} ∈ C, define

Zψ{A,B} =

{
V \A if ψ({A,B}) = a,
V \B if ψ({A,B}) = b,

and define Zψ =
⋂

{A,B}∈C

Zψ{A,B}. (19)

Then (8) arises when ψ ∈ {a, b}C is chosen uniformly at random. Below, we consider all such instances.

Definition 4.1 (surviving sets). Let V , C, and {a, b}C be given as above. For ψ ∈ {a, b}C , we call Zψ
in (19) the surviving set (w.r.t. ψ) of C. We call Z = Z(C) =

{
Zψ : ψ ∈ {a, b}C

}
the surviving family of

C. Since ∅ ∈ Z is possible, we write Z∗ = Z \ {∅} for the non-empty surviving sets of C.

The following remark suggests some relevance of properties (i) and (ii) and Definition 4.1.

Remark 4.2. In the context of (8), we may use the notation from Definition 4.1 to rewrite (9) as

E[|Z|] = 2−|C|
∑

ψ∈{a,b}C
|Zψ| =

∑
ZΨ∈Z

(
|ZΨ| · P[Z = ZΨ]

)
, (20)

where for each ZΨ ∈ Z, the quantity 2|C|P[Z = ZΨ] counts the number of functions ψ ∈ {a, b}C for
which Zψ = ZΨ. Thus, if C satisfies property (i) above, we may further infer

E[|Z|] =
∑
ZΨ∈Z

(
|ZΨ| · 2− degC(ZΨ)

)
, (21)

because for each ZΨ ∈ Z, precisely 2|C|−degC(ZΨ) many functions ψ ∈ {a, b}C satisfy Zψ = ZΨ. Note
that (ii) adds that terms ZΨ ∈ Z of degree below average each contribute |ZΨ| = k − 1 to (21). 2

To continue developing (i), we define the equivalence relation ∼C on V by setting u ∼C v if, and only
if, for each {A,B} ∈ C,

u, v ∈ A, or u, v ∈ B, or {u, v} ∩ (A∪̇B) = ∅. (22)

We use the following terminology and notation for the equivalence classes S of ∼C .

Definition 4.3 (bones, skeleton). Let V , C, and ∼C be given as in (22). We call the family S = S(C)
of equivalence classes of ∼C the skeleton of C. We call the elements S ∈ S the bones of C.

The following lemma (proven in Section 6) implies (i) in the language of Definitions 4.1 and 4.3.

Lemma 4.4. For every cover C of
(
V
k

)
, there exists a cover Ĉ of

(
V
k

)
so that the following hold:

(1) for each v ∈ V , we have degĈ(v) ≤ degC(v), and so ω(Ĉ) ≤ ω(C) (cf. (5));
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(2) the skeleton Ŝ and surviving family Ẑ of Ĉ satisfy Ẑ∗ = Ŝ.

In light of Lemma 4.4, we shall call any optimal cover C of
(
V
k

)
with Z∗(C) = S(C) a strong cover.

Remark 4.5. Every finite set V admits a strong cover C of
(
V
k

)
. Indeed, applying Lemma 4.4 to an

optimal cover C yields a strong cover Ĉ since ω(Ĉ) ≤ ω(C) = h(n, k) must have equality. In particular,

Ĉ must satisfy degĈ(v) = degC(v) for each v ∈ V , in which case Ĉ and C are degree-equivalent. 2

We now restate (ii) in the terminology above (which we prove in Section 9).

Lemma 4.6. For a finite set V , let C be a strong cover of
(
V
k

)
. Then every bone S ∈ S with degC(S) <

α = α(C) below the average has maximum size |S| = k − 1.

4.2. Shifting facts. To prove Theorem 1.7, we also use the following elementary ‘shifting’ mechanisms
(defined for arbitrary covers C), together with some elementary consequences.

Definition 4.7 (shifting). Let V , C, and S be given as in Definition 4.3. Fix a bone S ∈ S, and fix a
subset U ⊂ V \ S. For {A,B} ∈ C, the following sets are well-defined by (22):

AU,S =

{
A ∪ U if S ⊆ A,
A \ U if S ∩A = ∅, and BU,S =

{
B ∪ U if S ⊆ B,
B \ U if S ∩B = ∅.

Define C∗U,S = {{AU,S , BU,S} : {A,B} ∈ C} and CU,S =
{
{U, S}

}
∪ C∗U,S , to be S-shifts of U in C.

Remark 4.8. It may happen that elements {AU,S , BU,S} ∈ C∗U,S repeat, making C∗U,S a multiset, or that

|AU,S |+|BU,S | < k (or |U |+|S| < k), making such elements ineffective toward covering
(
V
k

)
. Nonetheless,

we leave C∗U,S and CU,S as is, and maintain the obvious and herein pervasively used identities

degC∗U,S
(U) = degC∗U,S

(S) = degC(S) = degCU,S
(S)− 1 = degCU,S

(U)− 1, (23)

and degC∗U,S
(v) = degCU,S

(v) = degC(v) for all v ∈ V \ (U ∪̇S). 2

Moreover, sometimes we ‘shift’ when the set U (originally disjoint from S) is, in fact, disjoint from V .

Definition 4.9 (immersion). Let V , C, and S be given as in Definition 4.3. Fix a bone S ∈ S, and let
W be a set which is disjoint from V . For {A,B} ∈ C, define

AW,S =

{
A ∪W if S ⊆ A,
A if S ∩A = ∅, and BW,S =

{
B ∪W if S ⊆ B,
B if S ∩B = ∅.

Define CW,S =
{
{W,S}

}
∪
{
{AW,S , BW,S} : {A,B} ∈ C

}
to be the S-immersion of W into C.

The following elementary fact (verified in the Appendix) is easy to prove from the definitions above.

Fact 4.10. Let C, CU,S, C∗U,S and CW,S be given as in Definitions 4.7 and 4.9. The following hold:

(a) CU,S covers
(
V
k

)
whenever 1 ≤ |U | ≤ k − 1 = |S|.

(b) When CU,S covers
(
V
k

)
, it has weight ω(C) + |U |+ |S|+

∑
u∈U

(
degC(S)− degC(u)

)
.

(c) When C∗U,S covers
(
V
k

)
, it has weight ω(C∗U,S) = ω(CU,S)− |U | − |S|.

(d) CW,S covers
(
V ∪W
k

)
whenever 1 ≤ |W | ≤ k−1 = |S|, and has weight ω(C)+|W |

(
1+degC(S)

)
+|S|.

5. Proof of Theorem 1.7

Let integers k, n, p, q, r ≥ 1, and R satisfy (4), and let V be a fixed n-element set. We prove
Theorem 1.7 by induction on 2p −R ≥ 1, and begin with the base case.
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5.1. base case: 2p − R = 1. In Proposition 5.1 below, we prove all conclusions of Theorem 1.7 si-
multaneously for 2p − R = 1 and r ≥ 1. For this, all optimal covers C of

(
V
k

)
have common weight

ω(C) = h(n, k), and thus common average degree α = α(n, k) = (1/n)h(n, k) (cf. (5)). Fact 3.1 gives
that p ≤ α ≤ p + 1, and that α = p + 1 implies h(n, k) = np + 2R(k − 1) + r + k − 1. Thus, we prove
that α = p+ 1 necessarily holds when R = 2p − 1 and r ≥ 1, and in the following strong form.

Proposition 5.1. Let k, n, p, q, r ≥ 1, R = 2p − 1, and V be given as above. Then, all optimal covers
C of

(
V
k

)
are (p+ 1)-regular, i.e., degC(v) = p+ 1 for all v ∈ V .

Proposition 5.1 gives all conclusions of Theorem 1.7 when R = 2p − 1 and r ≥ 1. Indeed, the first
conclusion h(n, k) = np + 2R(k − 1) + r + k − 1 is guaranteed (via Fact 3.1) by α = p + 1. The latter
conclusion (on the number of (p+ 1)-digits of d(C)) is trivial since (3) gives precisely

2R(k − 1) + r + k − 1 = (2R+ 1)(k − 1) + r = (2p +R)(k − 1) + r
(4)
= n

many (p+ 1)-digits of D ∈ {p, p+ 1}V (when R = 2p − 1 and r ≥ 1).

Proof of Proposition 5.1. Assume, on the contrary, that there exist optimal covers C of
(
V
k

)
which are

not (p + 1)-regular. From this hypothesis, we shall derive a contradiction proving Proposition 5.1. For

this, observe that we may restrict our attention to strong covers C of
(
V
k

)
. Indeed, if C is an optimal

cover of
(
V
k

)
which is not (p + 1)-regular, then the strong cover Ĉ of

(
V
k

)
guaranteed by Lemma 4.4 is

optimal and also not (p+ 1)-regular, because C and Ĉ are degree-equivalent (cf. Remark 4.5). Thus,

we assume that there exist strong covers C of
(
V
k

)
which are not (p+ 1)-regular. (24)

Below in (28), we choose a particular such strong cover C� with which to derive the promised contradic-
tion, but for this we require several preparations.

First, Fact 3.1 ensures that an optimal cover C has (common) average degree p < α = α(C) ≤ p+ 1,

where α = p is forbidden by r ≥ 1 and by R = 2p − 1. Second, for an optimal cover C of
(
V
k

)
, define

V−(C) = {v : degC(v) ≤ p} , V0(C) = {v : degC(v) = p+ 1} , V+(C) = {v : degC(v) ≥ p+ 2} . (25)

Note that

V−(C) 6= ∅, (26)

since otherwise α ≤ p + 1 then requires V+(C) = ∅, while we focus on optimal covers C which are not
already (p+ 1)-regular. Third, observe that

when C is strong, every bone S ∈ S(C) of C with S ⊆ V−(C) has size |S| = k − 1. (27)

Indeed, when S ⊆ V−(C) is a bone, then degC(S) ≤ p < α = α(C) holds in a strong cover C, and so
Lemma 4.6 ensures |S| = k− 1. (In particular, every v ∈ V−(C) 6= ∅ (cf. (26)) belongs to a bone S = Sv
of size |S| = k − 1.) Finally,

we choose C = C� to minimize |V+(C)| among all

strong covers C of
(
V
k

)
which are not (p+ 1)-regular (cf. (24)). (28)

We proceed with the following claim.

Claim 5.2. The strong cover C� chosen in (28) satisfies |V+(C�)| ≤ k − 1.

Proof of Claim 5.2. Assume, on the contrary, that |V+(C�)| ≥ k. Fix any subset U ⊆ V+(C�) of size
|U | = k − 1, and fix any additional vertex v0 ∈ V+(C�) \ U . Since V−(C�) 6= ∅ by (26), fix any bone
S ∈ S(C�) of C� satisfying S ⊆ V−(C�). Then (27) gives |S| = k − 1, and so Statements (a) and (b) of

Fact 4.10 say that C�U,S covers
(
V
k

)
with weight

ω(C�U,S) = ω(C�) + |U |+ |S|+
∑
u∈U

(degC�(S)− degC�(u)) ≤ h(n, k) + |U |+ |S| − 2|U | = h(n, k),
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where we used degC�(S) ≤ p (from S ⊆ V−(C�)), degC�(u) ≥ p + 2 for each u ∈ U ⊆ V+(C�), and

|U | = |S| = k − 1. Then C�U,S is an optimal cover of
(
V
k

)
, where (23) gives

degC�U,S
(U) = degC�U,S

(S) = 1 + degC�(S)
(25)

≤ p+ 1, while degC�U,S
(v) = degC�(v) (29)

holds for each v ∈ V \ (U ∪̇S). (In particular, degC�U,S
(v0) = degC�(v0) ≥ p+ 2 holds for the fixed vertex

v0 ∈ V+(C�) \ U , which will be important in a moment.) Thus,

V+(C�U,S) = V+(C�) \ U =⇒ |V+(C�U,S)| = |V+(C�)| − (k − 1) < |V+(C�)|. (30)

To the optimal cover C�U,S of
(
V
k

)
, we apply Lemma 4.4 to obtain the strong cover Ĉ�U,S of

(
V
k

)
. Remark 4.5

says that Ĉ�U,S and C�U,S are degree-equivalent, and so

V+(Ĉ�U,S) = V+(C�U,S) =⇒ |V+(Ĉ�U,S)| = |V+(C�U,S)|
(30)
< |V+(C�)|. (31)

Now, Ĉ�U,S is a strong cover of
(
V
k

)
satisfying (31), which is also not (p+1)-regular, since the fixed vertex

v0 ∈ V+(C�) \ U still satisfies (cf. Remark 4.5 and (29))

degĈ�U,S
(v0) = degC�U,S

(v0) = degC�(v0) ≥ p+ 2.

Now, strict inequality in (31) contradicts our choice of C� in (28). �

For the remainder of the proof, we consider no further alterations to the strong cover C� of
(
V
k

)
chosen

in (28), so we relax the notation C� to C. We then relax the notation in (25) to V− = V−(C), V0 = V0(C),
and V+ = V+(C), and we write S = S(C) for the skeleton of C. Since each of V−, V0, and V+ is defined
in terms of C-degrees, each of these sets is a union of bones S ∈ S. Analogously to (25), define

S− = {S ∈ S : S ⊆ V−} , S0 = {S ∈ S : S ⊆ V0} , S+ = {S ∈ S : S ⊆ V+} , (32)

where we claim the following inequality.

Claim 5.3. |S0| ≥ 2p+1 − |S−| − 1.

Proof of Claim 5.3. Indeed, (27) gives |V−| = (k − 1) · |S−|, and since every bone S ∈ S has size
|S| ≤ k− 1, we similarly have |V0| ≤ (k− 1) · |S0|. As such, and to n = |V−|+ |V0|+ |V+|, Claim 5.2 adds

(k − 1) · |S0| ≥ |V0| = n− |V−| − |V+| ≥ n− |V−| − (k − 1)

= n− (k − 1)|S−| − (k − 1) > n− r − (k − 1)|S−| − (k − 1),

where the strict inequality holds from r ≥ 1. Thus, with R = 2p − 1 in (4), the inequality above gives

|S0| >
n− r
k − 1

− |S−| − 1
(4)
= 2p +R− |S−| − 1 = 2p+1 − |S−| − 2,

and Claim 5.3 follows from the strict inequality above. �

We now conclude the proof of Proposition 5.1. Since C is a strong cover of
(
V
k

)
, its surviving family

Z = Z(C) consists of the skeleton S, together with possibly the empty set. Now, consider the random
surviving set Z = Zψ ∈ Z obtained by selecting ψ ∈ {a, b}C uniformly (cf. Remark 4.2). Then

1 = P[Z = ∅] + P[Z ∈ S] = P[Z = ∅] + P[Z ∈ S−] + P[Z ∈ S0] + P[Z ∈ S+]

= P[Z = ∅] + P[Z ∈ S+] +
∑
S∈S−

P[Z = S] +
∑
S∈S0

P[Z = S]. (33)
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For each bone S ∈ S = Z∗, we have that P[Z = S] = 1/2degC(S) (cf. (21)), and so we infer from (25),
(32), (33), and Claim 5.3 that

1 ≥ P[Z = ∅] + P[Z ∈ S+] + |S−|
(

1

2

)p
+ |S0|

(
1

2

)p+1

≥ P[Z = ∅] + P[Z ∈ S+] + |S−|
(

1

2

)p
+
(
2p+1 − |S−| − 1

)(1

2

)p+1

= P[Z = ∅] + P[Z ∈ S+] + 1 +
1

2p+1
(|S−| − 1) . (34)

Now, it is necessarily the case |S−| ≤ 1, where |S−| = 0 isn’t possible by (26). Thus, |S−| = 1 and so
P[Z = ∅] = P[Z ∈ S+] = 0, in which case S+ = ∅. Now, |S−| = 1 implies that S− consists of a single
(k − 1)-tuple (cf. (27)) of vertices of (common) degree at most p, and all other vertices have degree
precisely p+ 1. As such,

h(n, k) = ω(C) ≤ (k − 1)p+ (n− (k − 1))(p+ 1) = n(p+ 1)− (k − 1) = np+ 2R(k − 1) + r,

because n(p + 1) = np + 2R(k − 1) + r + k − 1 when R = 2p − 1 (cf. (4)). Since r ≥ 1, the bound
h(n, k) ≤ np+ 2R(k − 1) + r contradicts the bound h(n, k) ≥ np+ 2R(k − 1) + 2r of Theorem 1.6.

5.2. inductive step: 2p − R > 1. For the inductive step, we verify the former and latter conclusions
of Theorem 1.7 separately, and begin with the former.

Former conclusion of Theorem 1.7. To prove h(n, k) ≥ np+ 2R(k− 1) + r+ k− 1, we use the following
recurrence, which holds when 0 ≤ R < 2p − 1, and whose proof we give in a moment:

h(n, k) ≥ h(n+ k − 1, k)− (k − 1)(2 + p). (35)

Now, recall from (4) that n = q(k − 1) + r, where 1 ≤ r < k − 1, q = 2p + R, and 0 ≤ R < 2p − 1.
Thus, n + k − 1 = (q + 1)(k − 1) + r has the same modular remainder r, and q + 1 = 2p + (R + 1)
has the same exponent p, but q + 1 has remainder 1 ≤ R + 1 ≤ 2p − 1 w.r.t. base 2 expansion. Thus,
1 ≤ 2p − (R+ 1) < 2p −R, and we may apply induction to h(n+ k − 1, k) to conclude from (35) that

h(n, k) ≥ (n+ k − 1)p+ 2(R+ 1)(k − 1) + r + k − 1− (k − 1)(2 + p) = np+ 2R(k − 1) + r + k − 1.

To prove (35), let C be a strong cover of
(
V
k

)
(cf. Lemma 4.4), and let C have average degree α = α(C).

Fact 3.1 ensures that p < α < p+ 1, where α = p is forbidden by r ≥ 1, and α = p+ 1 is forbidden by
R < 2p − 1. Thus, some bone S ∈ S = S(C) satisfies degC(S) ≤ p < α in the strong cover C, and so
Lemma 4.6 ensures that |S| = k − 1. Let W be a set of |W | = k − 1 new vertices, and let CW,S be the

S-immersion of W into C. Then Fact 4.10 (Statement (d)) ensures that CW,S covers
(
V ∪W
k

)
with weight

ω(CW,S) = ω(C) + (k − 1)(2 + degC(S)) ≤ h(n, k) + (k − 1)(2 + p), (36)

where we used degC(S) ≤ p. Since ω(CW,S) ≥ h(n+ k − 1, k) holds by definition, (35) follows.

Latter conclusion of Theorem 1.7. We continue with the considerations above, where C is a strong cover
of
(
V
k

)
, S ∈ S = S(C) is a (k − 1)-bone of C with degree degC(S) ≤ p, and CW,S is the S-immersion of a

set of k − 1 new vertices W into the cover C. In (36), we observed that

h(n+ k − 1, k) ≤ ω(CW,S) = ω(C) + (k − 1)(2 + degC(S)) ≤ h(n, k) + (k − 1)(2 + p), (37)

where n + k − 1 has the same modular remainder r, where q + 1 has the same exponent p, but where
q + 1 has remainder 1 ≤ R + 1 ≤ 2p − 1 w.r.t. base 2 expansion. Since Theorem 1.3 is now proven in
full, we apply it to both sides of (37) to obtain

(n+ k− 1)p+ 2(R+ 1)(k− 1) + r+ k− 1 ≤ ω(CW,S) ≤ np+ 2R(k− 1) + r+ k− 1 + (k− 1)(2 + p), (38)
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and so equality holds throughout (37) and (38). Thus, CW,S is an optimal cover of
(
V ∪W
k

)
, and it is

necessarily the case that degC(S) = p. Since CW,S is optimal with 2p − (R + 1) < 2p − R, induction
guarantees that its degree sequence d(CW,S) is the unique Dn+k−1,k ∈ {p, p+ 1}V ∪W with precisely

2(R+ 1)(k − 1) + r + k − 1 = 2R(k − 1) + r + k − 1 + 2(k − 1)

many (p+ 1)-digits (cf. (3)). We now compare the sequences d(CW,S) and d(C), which by Definition 4.9
differ only on the |W ∪ S| = 2(k − 1) many coordinates corresponding to W ∪ S. First, each (W ∪ S)-
coordinate of CW,S is a (p + 1)-digit, since we observed that degC(S) = p, where Definition 4.9 gives
degCW,S (W ∪ S) = 1 + degC(S). Second, the |W | = k − 1 many W -coordinates of d(CW,S) don’t appear
in d(C) at all. Third, the |S| = k − 1 many S-coordinates of d(CW,S) do appear in d(C), but as p-digits
(as noted above). Thus, d(C) consists of precisely

2R(k − 1) + r + k − 1 + 2(k − 1)− 2(k − 1) = 2R(k − 1) + r + k − 1

many (p + 1)-digits, and all remaining coordinates are p-digits, making d(C) = Dn,k ∈ {p, p + 1}V the
unique sequence described in (3).

6. Proof of Lemma 4.4

Let V be a finite set, and let C cover
(
V
k

)
with surviving family Z and skeleton S, as described in

Definitions 4.1 and 4.3. The following two observations will initiate the proof of Lemma 4.4.

Observation 6.1. Every surviving set Zψ ∈ Z is a union of bones S ∈ S.

Proof. For sake of argument, assume Zψ 6= ∅ and fix v ∈ Zψ =
⋂
{A,B}∈C Z

ψ
{A,B}. Fix {A,B} ∈ C, and

let Sv ∈ S be the unique bone containing v (cf. (22)). By (19), Zψ{A,B} is V \A (resp. V \B) iff ψ({A,B})
is a (resp. b). Definition 4.3 then ensures Sv ⊆ Zψ{A,B}, and hence Sv ⊆

⋂
{A,B}∈C Z

ψ
{A,B} = Zψ. �

Observation 6.2. If Z∗ ⊆ S, then in fact Z∗ = S.

Proof. Fix S ∈ S, and define ψS ∈ {a, b}C by ψS({A,B}) = a if, and only if, S ∩A = ∅. We will show

S ⊆ ZψS
. (39)

If true, S is a bone and ZψS
∈ Z∗ ⊆ S is also a bone, so as overlapping equivalence classes S = ZψS

.

To see (39), fix {A,B} ∈ C. If ψS({A,B}) = a, then S ∩ A = ∅ and (19) gives ZψS

{A,B} = V \ A ⊇ S. If

ψS({A,B}) = b, then S∩A 6= ∅ and so (22) gives S ⊆ A and S∩B = ∅, and (19) gives ZψS

{A,B} = V \B ⊇ S.

Either way, S ⊆ ZψS

{A,B} and hence S ⊆
⋂
{A,B}∈C Z

ψS

{A,B} = ZψS
. �

Observations 6.1 and 6.2 allow a sketch of the main idea for proving Lemma 4.4. Indeed, if Z∗ ⊆ S,
then we set Ĉ = C and Observation 6.2 says we are done. For sake of argument, let Z0 = Zψ0

∈ Z∗ \ S
be a surviving set which is itself not a bone. Then Observation 6.1 says that Z0 is a union of at least
two bones S ∈ S, so we choose S0 ∈ S to satisfy

S0 ( Z0, where degC(S0) = min
S∈S
{degC(S) : S ⊆ Z0} , and we set U0 = Z0 \ S0 6= ∅. (40)

Let C0 = C∗U0,S0
= CU0,S0

\{U0, S0} be the S0-shift of U0 in C (cf. Definition 4.7). We claim the following.

Proposition 6.3. The family C0 covers
(
V
k

)
. Moreover, the skeleton S0 of C0 satisfies |S0| < |S|.

Proposition 6.3, upon possible iteration, will give Lemma 4.4. To see this, we first note that C0
from Proposition 6.3 satisfies degC0(v) ≤ degC(v) for each v ∈ V . Indeed, fix u ∈ U0 and v ∈ V \ U0.
By (23), C0 = C∗U0,S0

admits the identities degC0(v) = degC(v) and degC0(u) = degC0(S0) = degC(S0),

where (40) adds that degC0(u) = degC(S0) ≤ degC(u). Second, we consider the surviving family Z0 of

C0. If Z∗0 ⊆ S0, then set Ĉ = C0 and Observation 6.2 says we are done. Otherwise, Z∗0 \ S0 6= ∅, and we
repeat (40). By Proposition 6.3, we can’t repeat (40) indefinitely, and so Lemma 4.4 follows.
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6.1. Proof of Proposition 6.3: first assertion. To verify the first assertion of Proposition 6.3, we
fix K ∈

(
V
k

)
and consider three cases. (Recall S0 and U0 from (40).)

Case 1 (K ∩ U0 = ∅). Let {A,B} ∈ C cover K. Then

{AU0,S0
, BU0,S0

} ∈ C0 also covers K, (41)

because Definition 4.7 gives K ∩AU0,S0
= K ∩A and K ∩BU0,S0

= K ∩B.

Case 2 (K ∩ S0 6= ∅). For our most delicate case, let {A,B} ∈ C cover K. Since K meets S0, then S0

meets A∪̇B, and so by (22) we take, w.l.o.g., S0 ⊆ A. Now, Definition 4.7 ensures AU0,S0
= A∪U0 ⊇ A

and BU0,S0
= B \ U0, and so we will infer (41) if we can prove that

BU0,S0
= B, which holds if B ∩ U0 = ∅. (42)

To see (42), recall that Z0 = Zψ0
∈ Z∗ \ S is a surviving set, where ψ0 ∈ {a, b}C (recall (19)) de-

notes that function for which Z0 = Zψ0
=
⋂
{C,D}∈C Z

ψ0

{C,D}. Thus, for the element {A,B} ∈ C fixed

above, we have that Z0 = S0 ∪ U0 satisfies S0 ⊂ Z0 ⊆ Zψ0

{A,B}. Since we know S0 ⊆ A, it can only be

(recall (19)) that Zψ0

{A,B} = V \B, and so U0 ⊂ Z0 ⊆ Zψ0

{A,B} = V \B is disjoint from B, as desired in (42).

Case 3 (K ∩ U0 6= ∅ and K ∩ S0 = ∅). Fix u ∈ K ∩ U0 and fix v ∈ S0, where we necessarily have
v 6∈ K. Define Ku,v = (K \ {u}) ∪ {v}, which as a k-tuple of V is covered by some fixed {A,B} ∈ C.
Applying Case 2 to Ku,v, we infer that Ku,v is also covered by {AU0,S0

, BU0,S0
} ∈ C0, and moreover and

w.l.o.g. that S0 ⊆ A, AU0,S0
= A ∪ U0 and BU0,S0

= B. As such, to see (41), we simply note that

K4Ku,v = {u, v} ⊆ AU0,S0
, (43)

and so K ∩BU0,S0
= Ku,v ∩BU0,S0

6= ∅, and u ∈ K ∩AU0,S0
6= ∅.

6.2. Proof of Proposition 6.3: second assertion. It remains to verify the second assertion of Propo-
sition 6.3. For that, we make a natural but important observation.

Observation 6.4. Z0 = U0∪̇S0 is a C0-bone, i.e., a bone of C0 = C∗U0,S0
.

Proof. Definition 4.7 forces all vertices of Z0 = U0∪̇S0 to be C0-equivalent in C0 = C∗U0,S0
, and so a

unique C0-bone (C0-equivalence class) T ∈ S0 of C0 contains Z0. If Z0 ( T isn’t already that bone, then
fix any v ∈ T \ Z0. Now, recall that Z0 ∈ Z∗ is a surviving set of C, where ψ0 ∈ {a, b}C (recall (19))

satisfies Z0 = Zψ0 =
⋂
{C,D}∈C Z

ψ0

{C,D}. Since v 6∈ Z0, there exists {A,B} ∈ C for which v 6∈ Zψ0

{A,B}, and

here we take Zψ0

{A,B} = V \ A (w.l.o.g. (cf. (19))). Thus, v ∈ A while S0 ⊂ Z0 = Zψ0 ⊆ Zψ0

{A,B} = V \ A
entirely misses A. Since S0 ∩A = ∅, Definition 4.7 gives AU0,S0

= A \U0, which still contains v because
v ∈ A but v 6∈ Z0 ⊃ U0. At the same time, S0 entirely misses AU0,S0

= A \ U0, and so v and S0 do not
agree on {AU0,S0

, BU0,S0
} ∈ C0 = C∗U0,S0

. Thus, v can’t be C0-equivalent to S0, and so v ∈ T \ Z0 can’t
be part of the C0-bone T ∈ S0 of C0 which contains Z0. �

The remaining assertion of Proposition 6.3 is a formal corollary of Observation 6.4. Indeed, write
U0 = S1∪̇ . . . ∪̇St as a union of t ≥ 1 many C-bones, in which case Z0 = S0∪̇U0 = S0∪̇S1∪̇ . . . ∪̇St is the
union of t+ 1 ≥ 2 many C-bones. Define the relation f : S \{S0, S1, . . . , St} → S0 \{Z0} by f(S) = T if,
and only if, S ⊆ T . We claim that f is a well-defined surjection, which would conclude Proposition 6.3:

|S| − (t+ 1) = |S \ {S0, S1, . . . , St}| ≥ |S0 \ {Z0}| = |S0| − 1 =⇒ |S0| ≤ |S| − t ≤ |S| − 1 < |S|.

To see that f is well-defined, fix S ∈ S \ {S0, S1, . . . , St}. Since S, S0, S1, . . . , St are all C-bones, it
follows that S ∩ U0 = S ∩ (S1∪̇ . . . ∪̇St) = ∅, in which case no part of S moves1 upon shifting U0 to S0

in C0 = C∗U0,S0
. As such, the vertices of S are C0-equivalent, and so a unique C0-bone T ∈ S0 contains

1That is, for each {A,B} ∈ C, we have, e.g., S ⊆ A (S ∩A = ∅) if, and only if, S ⊆ AU0,S0 (S ∩AU0,S0 = ∅).
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S. Since S was disjoint from Z0 = S0∪̇S1∪̇ . . . ∪̇St, this unique C0-bone T is not the C0-bone Z0 of
Observation 6.4. Thus, the unique containment S ⊆ T ∈ S0 \{Z0} verifies that f(S) = T is well-defined.

To see that f is surjective, fix T ∈ S0 \ {Z0}. Moreover, fix any v ∈ T , and let Sv ∈ S be the unique
C-bone containing v. Since T,Z0 ∈ S0 are distinct C0-bones, it must be the case that T ∩ Z0 = ∅, and
so v ∈ T satisfies v 6∈ Z0 = S0∪̇S1∪̇ . . . ∪̇St. As such, the C-bone Sv can’t overlap any of the C-bones
S0, S1, . . . , St, which places Sv in the domain of f . In particular, Sv can’t overlap U0 = S1∪̇ . . . ∪̇St, and
so Sv doesn’t move upon shifting U0 to S0 in C0. Thus, vertices of Sv are C0-equivalent, where v ∈ Sv∩T
belongs to the C0-bone T . Thus, Sv ⊆ T , and so Sv satisfies f(Sv) = T .

7. A Special Case of Lemma 4.6, and a Tool for the General Case

We prove a special case of Lemma 4.6, and we also establish a tool critical for the general case. Fix
a set V of size n and fix a strong cover C of

(
V
k

)
with skeleton S = Z∗, where p, q, r, and R satisfy (4).

Lemma 4.6 asserts that every bone S ∈ S = Z∗ with degC(S) < α = α(C) below the average has
maximum size |S| = k − 1. For r = 0, we use Theorem 1.6 to prove this assertion in strong form.

Fact 7.1. When r = 0, every bone S ∈ S = Z∗ of the strong cover C satisfies |S| = k − 1.

Theorem 1.6 is valid to apply because we established it in Section 3. Moreover, Theorem 1.6 says that,
since C is optimal and r = 0, the degree sequence d(C) is given uniquely by D = Dn,k ∈ {p, p + 1}V
from (3), with precisely 2R(k − 1) many coordinates of p+ 1.

Proof of Fact 7.1. As in Section 3, consider again the random surviving set Z of C from (8), and recall
from (9) that E[|Z|] =

∑
v∈V 2− degC(v). Applying Theorem 1.6 according to the discussion above,

k − 1
(9)

≥ E[|Z|] (9)
= 2R(k − 1)

(
1

2

)p+1

+ (n− 2R(k − 1))

(
1

2

)p
=

(
1

2

)p
(k − 1)

(
n

k − 1
−R

)
(4)
= k − 1.

Thus, the random surviving set averages the maximum size of k − 1, and so all surviving sets of Z ∈
Z = Z∗ achieve |Z| = k − 1. Since C is strong, i.e., S = Z∗, all bones S ∈ S satisfy |S| = k − 1. �

The proof above used Theorem 1.6, which established (in Section 3) the case r = 0 of Theorem 1.4.
For r ≥ 1, we must proceed more carefully because Theorem 1.4 for r ≥ 1 depends on Theorem 1.7, which
depends on Lemma 4.6 for r ≥ 1, whose establishment won’t be complete until Section 9. Nonetheless,
we can still apply some ideas from Section 3 to the strong cover C for general r ≥ 0, and this will in fact
make a critical step in the desired direction.

Proposition 7.2. For r ≥ 0, every bone S ∈ S = Z∗ of the strong cover C with degC(S) < α = α(C)
below the average has size |S| ≥ (r + k − 1)/2 (which is at least half of what Lemma 4.6 promises).

Proof of Proposition 7.2. Fix a bone S0 ∈ S = Z∗ of the strong cover C with degC(S0) < α = α(C)
below the average. Since C is optimal, Fact 3.1 gives α ≤ p+ 1, and so

degC(S0) ≤ p. (44)

Since C is a strong cover, the bone S0 ∈ S = Z∗ is a surviving set, and therefore has the form S0 = Zψ0

for some function ψ0 ∈ {a, b}C (cf. Definition 4.1). Thus, S0 = Zψ0 is a possible outcome of the random
surviving set Z from (8), which is obtained when ψ ∈ {a, b}C is chosen uniformly. As such, we pivot the
size |S0| = |Zψ0

| against the expected size E[|Z|] given in (20):

E[|Z|] =
∑
ZΨ∈Z

(
|ZΨ| · P[Z = ZΨ]

)
. (45)

Since S0 ∈ S = Z∗ ⊆ Z appears in (45), and all surviving sets ZΨ ∈ Z satisfy |ZΨ| ≤ k − 1, we infer

E[|Z|] = |S0| ·P[Z = S0] +
∑

S0 6=ZΨ∈Z

(
|ZΨ| ·P[Z = ZΨ]

)
≤ |S0| ·P[Z = S0] + (k− 1)

∑
S0 6=ZΨ∈Z

P[Z = ZΨ]

= |S0| · P[Z = S0] + (k − 1)
(
1− P[Z = S0]

)
= k − 1− P[Z = S0]

(
k − 1− |S0|

)
. (46)
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Again, since S0 ∈ S = Z∗ is a surviving set, we recall from (21) that

P[Z = S0] =

(
1

2

)degC(S0) (44)

≥ 1

2p
,

(46)
=⇒ E[|Z|] ≤ k − 1− 1

2p
(
k − 1− |S0|

)
= (k − 1)

(
1− 1

2p

)
+

1

2p
|S0|. (47)

On the other hand, Fact 3.2 yields

E[|Z|] (9)
=
∑
v∈V

(
1

2

)dv
≥ r

(
1

2

)p+1

+ (k − 1)

(
1−

(
1

2

)p+1
)
. (48)

Comparing (47) and (48) yields 2|S0| ≥ k − 1 + r, which gives Proposition 7.2. �

8. Shifting Considerations for Proving Lemma 4.6

It remains to prove Lemma 4.6, which we do in Section 9 using shifting. This section develops a few
helpful considerations on shifting which are motivated by the following basic questions. Fix an arbitrary
cover C of

(
V
k

)
, bone S ∈ S, and subset U ⊆ V \ S of size 1 ≤ |U | ≤ k − 1:

Does CU,S cover
(
V
k

)
? If so, does C∗U,S cover

(
V
k

)
? (49)

Sections 5 and 6 featured the following conditions sufficient for confirming parts of (49). First, Section 5

used the condition |S| = k− 1, which Fact 4.10 proved is sufficient2 for CU,S to cover
(
V
k

)
. However, this

condition matches the conclusion of Lemma 4.6. Second, Section 6 used the condition that U ∪ S was a
surviving set of C which was specifically not a bone, which Proposition 6.3 proved is sufficient for C∗U,S
to cover

(
V
k

)
. However, Lemma 4.6 assumes C is strong, where (non-empty) surviving sets and bones are

indistinguishable concepts. We can’t use these earlier conditions in Section 9.
We now initiate further insights on (49) that we use in Section 9. In fact, it will be enough for our

purposes to resolve (49) (see Proposition 8.4 below) under the following restrictions:

(i) we always assume |S| < k − 1;
(ii) we only consider when U = {u} ⊆ V \ S is a singleton;

(iii) we only consider C∗{u},S .

By the discussion above, (i) is necessary for further investigation on (49). From (ii), we abbreviate C{u},S
to Cu,S and C∗{u},S to C∗u,S , and we abbreviate each {A{u},S , B{u},S} ∈ Cu,S to {Au,S , Bu,S}. Finally, (i)

and (ii) warrant (iii), because {u, S} ∈ Cu,S covers none of
(
V
k

)
.

8.1. Observations on (49) under (i) − (iii). We start with the following very easy observation.

Observation 8.1. With |S| < k− 1, the family C∗u,S covers all K ∈
(
V
k

)
for which u 6∈ K or S \K 6= ∅.

Proof. Indeed, if u 6∈ K, then {Au,S , Bu,S} ∈ C∗u,S covers K whenever {A,B} ∈ C does, which happens

at least once in the cover C. If u ∈ K but v ∈ S \K, then {Au,S , Bu,S} ∈ C∗u,S covers K whenever it

covers Ku,v = (K \ {u}) ∪ {v}, which happens at least once by the previous case. �

Observation 8.1, prompts that we investigate the coverage of a fixed element K satisfying

{u}∪̇S ( K ∈
(
V
k

)
, (50)

where ( holds by |S| < k − 1. Note that L = K \ {u} is not a bone of C, because it properly contains
the bone S. The following curious concept will characterize all K in (50) not covered by C∗u,S .

Definition 8.2 (limb). A (k − 1)-set L ⊂ V is a limb of C if L 6∈ S is not a bone, but ∀ {A,B} ∈ C,
L ⊆ A ∪B =⇒ L ⊆ A or L ⊆ B. (51)

2The same condition prevents C∗U,S from covering
(V
k

)
, since then

(U∪S
k

)
6= ∅ requires {U, S} ∈ CU,S for coverage.
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Remark 8.3. Every bone S ∈ S satisfies (51) as an equivalence class of ∼C (cf. (22)). The condition (51)
is weaker than that of (22), since for a fixed limb L and a given {A,B} ∈ C, condition (51) allows for

L ∩ (A ∪B) 6= ∅ 6= L \ (A ∪B). (52)

In fact, (52) must hold for some {A,B} ∈ C. Indeed, Definition 8.2 insists that L 6∈ S is not a bone of
C, whence u 6∼C v holds for some u, v ∈ L. By (22), there exists {A,B} ∈ C so that, w.l.o.g.,

(i) u ∈ A ∪B but v 6∈ A ∪B, or
(ii) u ∈ A but v ∈ B.

In (i), u ∈ L ∩ (A ∪ B) and v ∈ L \ (A ∪ B), so {A,B} satisfies (52). In (ii), u, v ∈ L ∩ (A ∪ B), but
if L ⊆ A ∪ B, then u ∈ A and v ∈ B contradict (51). Let us also note at this time that a limb L is of
maximum size w.r.t. (51), since |L| = k would require some {A,B} ∈ C to cover it. 2

We proceed with the promised characterization, which is crucial in Section 9.

Proposition 8.4. With |S| < k − 1 and u ∈ V \ S fixed, every K ∈
(
V
k

)
satisfies

K is not covered by C∗u,S ⇐⇒ K satisfies (50) and L = K \ {u} is a limb of C.

Proof. Let K satisfy (50) where L = K \ {u} is a limb of C. To see that K is not covered in C∗u,S , fix

{Au,S , Bu,S} ∈ C∗u,S with K ⊆ Au,S∪̇Bu,S . Since Au,S ⊆ A∪{u} and Bu,S ⊆ B∪{u} (cf. Definition 4.7),

L = K \ {u} ⊆ (Au,S∪̇Bu,S) \ {u} = (Au,S \ {u})∪̇(Bu,S \ {u}) ⊆ A∪̇B.
Since L is a limb of C, L ⊆ A or L ⊆ B, and w.l.o.g. we assume the former. Now, S ⊂ K \ {u} = L ⊆ A,
so Definition 4.7 guarantees Au,S = A ∪ {u}. Now, K \ {u} = L ⊆ A implies K ⊆ A ∪ {u} = Au,S .

Conversely, let K be uncovered in C∗u,S . Observation 8.1 guarantees K satisfies (50), so L = K \ {u}
is a (k − 1)-set properly containing S and can’t be a bone of C. To see that L is a limb of C, let
{A,B} ∈ C satisfy L ⊆ A∪̇B. Now, S ⊂ L ⊆ A∪̇B, so we take w.l.o.g. S ⊆ A. Definition 4.7 guarantees
Au,S = A ∪ {u} and Bu,S = B \ {u}, so K = L ∪ {u} ⊆ Au,S∪̇Bu,S . Now, K meets Au,S in u and S,
but {Au,S , Bu,S} ∈ C∗u,S does not cover K, so K ⊆ Au,S = A ∪ {u} and L = K \ {u} ⊆ A. �

Proposition 8.4 shows that limbs resolve (49) under the restrictions (i)–(iii). However, Section 9 will
need to understand limbs beyond just this context, and for this we collect a few more observations.

8.2. Observations on limbs. Our remaining observations relate the limbs of a cover C to its bones.
To maintain neutrality from (49) (and S ∈ S in particular), we write an arbitrary bone of C as T ∈ S.

Observation 8.5. Every limb L of C is a union of at least two bones of C. In particular, if L is a limb
of C and T ∈ S is any bone of C,

T ∩ L 6= ∅ =⇒ T ⊆ L. (53)

Proof. Indeed, let v ∈ T ∩ L, but suppose w ∈ T \ L. Then Kw,L = {w} ∪ L is a k-tuple of V covered
by some {A,B} ∈ C. Now, L = Kw,L \ {w} ⊆ A∪̇B, and so by definition L satisfies, w.l.o.g., L ⊆ A.
This forces v ∈ Kw,L ∩A = L ∩A and Kw,L ∩B = {w}, contradicting that v, w ∈ T are ∼C-equivalent.
Now, L is a union of bones, and by definition necessarily more than one. �

Our final observation is critical in Section 9, and will relate closely to our earlier Proposition 7.2.

Proposition 8.6. Every bone T ∈ S of C of size |T | ≥ k/2 is contained within at most one limb L of C.

Proof. Suppose, on the contrary, that T0 ∈ S is a bone of C of size |T0| ≥ k/2, and suppose L1 6= L2 are
distinct limbs of C for which T0 ⊆ L1 ∩ L2. By (53), the union L1 ∪ L2 = T0∪̇T1∪̇ . . . ∪̇Tt is partitioned
into bones, which necessarily includes T0, and where necessarily t ≥ 1. Observe that t ≤ k − 2, since

t ≤
∣∣(L1 ∪ L2) \ T0

∣∣ ≤ |L1 \ T0|+ |L2 \ T0| = |L1|+ |L2| − 2|T0| = 2(k − 1)− 2|T0| ≤ k − 2.

Now, choose any k-tuple K ⊆ L1 ∪ L2 (noting L1 6= L2 implies |L1 ∪ L2| ≥ k) meeting each of
T0, T1, . . . , Tt. Let {A,B} ∈ C cover K. Since K meets each bone T0, T1, . . . , Tt of L1 ∪ L2, and since
K ⊆ A∪̇B, we have from (22) that L1 ∪ L2 ⊆ A∪̇B. Since L1 ⊂ A∪̇B is a limb, take (w.l.o.g.) L1 ⊆ A
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so that T0 ⊆ A. Then ∅ 6= T0 ⊆ L2 ∩ A, and since L2 ⊂ A∪̇B is a limb, it must be that L2 ⊂ A. Now,
K ⊆ L1 ∪ L2 ⊆ A, contradicting that {A,B} covered K. �

9. Proof of Lemma 4.6

Let V be an n-set, let C be a strong cover of
(
V
k

)
with skeleton S = Z∗, and let p, q, r, and R

satisfy (4). We prove that every bone S ∈ S with degC(S) < α = α(C) below the average has maximum
size |S| = k − 1. When r = 0, Fact 7.1 already proved this assertion, so it suffices to take r ≥ 1. We
proceed indirectly: suppose that there exists a bone S0 ∈ S with

degC(S0) < α = α(C) but |S0| < k − 1. (54)

Proposition 7.2 and r ≥ 1 guarantee that S0 is large:

|S0| ≥ (r + k − 1)/2 ≥ k/2. (55)

Using (54) and (55), we will find a vertex u0 ∈ V \ S0 satisfying both

(I) degC(u0) ≥ α, and

(II) C∗u0,S0
covers

(
V
k

)
.

When so, (I) and (II) immediately contradict the optimality of C, because Fact 4.10 guarantees

ω(C∗u0,S0
)

(c)
= ω(Cu0,S0

)− 1− |S0|
(b)
= ω(C) + degC(S0)− degC(u0)

(54), (I)

< ω(C). (56)

In other words, (54) is incorrect, which would prove Lemma 4.6. It remains only to guarantee (I) and (II).
With (II), we are in precisely the context of Section 8 with restrictions (i)–(iii). Indeed, to the bone

S0 of (54) satisfying |S0| < k− 1 (as in (i)), we seek to shift a single vertex u = u0 ∈ V \ S0 (as in (ii)),

and we want C∗u,S0
to cover

(
V
k

)
(as in (iii)). For the moment, fix an arbitary u ∈ V \S0. Observation 8.1

guarantees C∗u,S0
covers all K ∈

(
V
k

)
for which u 6∈ K or K \S0 6= ∅, and Proposition 8.4 guarantees that

a remaining K is not covered in C∗u,S0
if, and only if, L = K \ {u} is a limb of C. In summary,

every element K ∈
(
V
k

)
which is uncovered in C∗u,S0

contains the vertex u

and bears a limb L = K \ {u} necessarily containing the bone S0 from (54). (57)

Since S0 satisfies |S0| ≥ k/2 from (55), Proposition 8.6 guarantees that S0 is contained within at most
one limb. We therefore consider the following two cases:

Case 1 (S0 is contained within no limbs L of C). Choose any u0 ∈ V \ S0 with degC(u0) ≥ α, which
exists by degC(S0) < α from (54). Then (I) is satisfied by u0, and (II) is satisfied by Case 1 and (57).

Case 2 (S0 is contained within precisely one limb L0 of C). Observation 8.5 guarantees that L0 =
S0∪̇S1∪̇ . . . ∪̇St is a union of t+1 ≥ 2 bones, one of which is S0. Observe that degC(S1), . . . ,degC(St) ≥ α,
for if Si ∈ {S1, . . . , St} would be otherwise, Proposition 7.2 would apply to Si precisely as it did with S0

in (55), yielding k − 1 = |L0| ≥ |S0|+ |Si| ≥ (k/2) + (k/2) = k. Now, choose u0 ∈ L0 \ S0 arbitrarily so

that (I) is satisfied with degC(u0) ≥ α. With u0 now chosen, (II) is necessarily satisfied: if K ∈
(
V
k

)
is

uncovered in C∗u0,S0
, then (57) guarantees L1 = K \ {u0} is a limb of C containing S0, but u0 ∈ L0 and

u0 6∈ L1 ensure that L1 6= L0 are distinct limbs containing S0, contradicting Case 2. 2

Appendix: Proof of Fact 4.10

We prove Fact 4.10 by elementary arguments using Definitions 4.7 and 4.9. Throughout this section,
V , C, S, S, U , W , CU,S , C∗U,S , and CW,S are given as in Definitions 4.7 and 4.9.
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9.1. Statement (a) of Fact 4.10. For 1 ≤ |U | ≤ k − 1 = |S|, we show that CU,S covers an arbitrary

K ∈
(
V
k

)
. For sake of argument, assume that {U, S} ∈ CU,S does not already cover K, and proceed by

induction on |K ∩U |. For K ∩U = ∅, let {A,B} ∈ C cover K. Then {AU,S , BU,S} ∈ CU,S also covers K,
because Definition 4.7 ensures K ∩ AU,S = K ∩ A and K ∩ BU,S = K ∩ B. Inductively, let u ∈ K ∩ U
and let v ∈ S \K, where v exists by |S| = k − 1 = |K| − 1 and our assumption that {U, S} does not
cover K. Set Ku,v = (K \ {u}) ∪ {v}, which like (43) satisfies K4Ku,v = {u, v}. Observe that Ku,v

is not covered by {U, S} ∈ CU,S , since otherwise either K would be too (contrary to our assumption),
or K ⊆ U (contrary to |U | ≤ k − 1 < |K|). Thus, by induction, some {AU,S , BU,S} ∈ CU,S covers Ku,v,
and we claim the same {AU,S , BU,S} ∈ CU,S covers K. Indeed, since v ∈ Ku,v, which is covered by
{AU,S , BU,S} ∈ CU,S , we take w.l.o.g. v ∈ AU,S . Now, v ∈ AU,S ∩ S, and so Definition 4.7 ensures that
AU,S = A ∪ U ⊇ U ∪̇S. Now, K4Ku,v = {u, v} ⊆ U ∪̇S ⊆ AU,S gives that K ⊆ AU,S∪̇BU,S , where
u ∈ K ∩AU,S 6= ∅ and K ∩BU,S = Ku,v ∩BU,S 6= ∅.

9.2. Statements (b) and (c) of Fact 4.10. For each v ∈ V , recall from (23) that degCU,S
(v) =

1 + degC(S) if v ∈ U ∪̇S, and degCU,S
(v) = degC(v) otherwise. Thus,

ω (CU,S) =
∑
v∈V

degCU,S
(v) =

∑
v∈U

degCU,S
(v) +

∑
v∈S

degCU,S
(v) +

∑
v∈V \(S∪̇U)

degCU,S
(v)

= |U |
(
1 + degC(S)

)
+
∑
v∈S

(
1 + degC(v)

)
+

∑
v∈V \(S∪̇U)

degC(v)

= |U |+ |S|+
∑
v∈U

degC(S) +
∑

v∈V \U

degC(v) = ω(C) + |U |+ |S|+
∑
v∈U

(
degC(S)− degC(u)

)
.

Now, Statement (c) of Fact 4.10 is trivial, since if C∗U,S covers
(
V
k

)
, then so does CU,S , and whatever its

weight, we have ω(C∗U,S) = ω(CU,S)− |U | − |S| by construction.

9.3. Statement (d) of Fact 4.10. Statement (4) can be similarly established directly from Defini-
tion 4.9, but we infer it from Statements (a) and (b). For that, we construct CW,S (the S-immersion

of W in C) indirectly as follows. Set X = W ∪ V and CX = {{W,V }} ∪ C so that CX covers
(
X
k

)
by

construction, and CXW,S (the S-shift of W in CX) covers
(
X
k

)
by Statement (a) of Fact 4.10. We claim

CXW,S = {{∅, X}} ∪ CW,S , or equivalently, CW,S = CXW,S \ {{∅, X}}, (58)

which would imply that CW,S covers
(
X
k

)
, because CXW,S covers

(
X
k

)
while {∅, X} ∈ CXW,S covers nothing.

To see (58), note first that {W,V } ∈ CX corresponds to {∅, X} ∈ CXW,S , since S ∩W = ∅, S ⊆ V , and
Definition 4.7 give

WW,S = W \W = ∅ and VW,S = V ∪W = X.

Otherwise, for each {A,B} ∈ C, we have A ∩W = ∅ and so Definitions 4.7 and 4.9 agree that either

AW,S = A ∪W = AW,S or AW,S = A \W = A = AW,S ,

and similarly, BW,S = BW,S . Now, Statement (b) of Fact 4.10 gives

ω(CXW,S) = ω(CX) + |W |+ |S|+
∑
w∈W

(degCX (S)− degCX (w)) , (59)

where by construction ω(CX) = ω(C) + |W | + |V | = ω(C) + |X|, degCX (S) = degC(S) + 1, and where
degCX (w) = 1 holds for each w ∈W . Returning to (59), we infer

ω(CXW,S) = ω(C) + |X|+ |S|+ |W | (1 + degC(S)) , (60)

and applying (58) to (60), we infer

ω(CW,S) + |X| = ω(CXW,S) = ω(C) + |X|+ |S|+ |W | (1 + degC(S)) ,

which implies the desired formula for ω(CW,S).
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