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Abstract. For a graph G, a strong edge coloring of G is an edge coloring in which
every color class is an induced matching. The strong chromatic index of G, χs(G), is the
smallest number of colors in a strong edge coloring of G. In [9], Z. Palka proved that if
p = p(n) = Θ(n−1), then with high probability, χs(G(n, p)) = O(∆(G(n, p))). Recently
in [12], V. Vu proved that if n−1(lnn)1+δ ≤ p = p(n) ≤ n−ε for any 0 < ε, δ < 1,
then with high probability, χs(G(n, p)) = O((pn)2/ ln(pn)). In this note, we prove
that if p = p(n) > n−ε for all ε > 0, then with b = (1 − p)−1, with high probability,

(1− o(1))
p(n

2)
logb n ≤ χs(G(n, p)) ≤ (2 + o(1))

p(n
2)

logb n .

1. Introduction

For a finite simple graph G = (V (G), E(G)), a strong edge coloring of G is an edge
coloring in which every color class is an induced matching. The strong chromatic index
of G, χs(G), is the minimum number of colors k in a strong edge coloring of G. It is not
difficult to see that every graph G satisfies χs(G) ≤ 2∆(G)2 − 2∆(G) + 1. Erdős and
Nešetřil conjectured, however, that this bound would never be sharp.

Conjecture 1.1 (Erdős and Nešetřil). For all graphs G,

χs(G) ≤
{ 5

4
∆(G)2 if ∆(G) is even,

5
4
∆(G)2 − 1

2
∆(G) + 1

4
if ∆(G) is odd.

Note that Conjecture 1.1, if true, would be best possible. Indeed, the “blown-up” pen-
tagon C5(t) requires 5

4
∆(C5(t))

2 colors in a strong edge coloring. (the graph C5(t) is
obtained by replacing each vertex of the pentagon C5 with a set of t independent vertices
and replacing each edge of C5 with the complete bipartite graph Kt,t) Conjecture 1.1 is
trivial for ∆(G) = 2 and open for graphs G satisfying ∆(G) ≥ 4 (cf. [1]).

Conjecture 1.1 seems very difficult and it was non-trivial to show that the upper
bound 2∆(G)2 is not sharp. A question of Erdős and Nešetřil asked if there exists ε > 0
so that for all graphs G, χs(G) ≤ (2− ε)∆(G)2. Molloy and Reed [8] used sophisticated
probabilistic techniques to affirmatively answer this question with ε = .002.

In this note, we consider strong edge colorings of the random graph G(n, p) (cf. [6]).
By the random graph G(n, p), 0 ≤ p ≤ 1, we mean the probability space consisting of

the set of all 2(n
2) graphs on vertex set {1, . . . , n} with the probability of a graph H on

{1, . . . , n} and m edges being pm(1−p)(
n
2)−m. For a graph property P , we say that G(n, p)

has property P with high probability if limn→∞ Prob[G(n, p) satisfies property P ] = 1. In
1
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what follows, we always write b = (1 − p)−1. As well, in the entirety of this paper, we
assume p ≤ c < 1 for some constant c.

Z. Palka was the first to formally consider the strong chromatic index of the random
graph G(n, p).

Theorem 1.2 (Palka [9]). Suppose p = p(n) = Θ(n−1). Then with high probability,

χs(G(n, p)) = O(∆(G(n, p))) = O(ln n/ ln ln n). (1)

Up to the constant, (1) is easily seen to be best possible.
Recently, V. Vu proved the following theorem for a denser and broader range of p =

p(n).

Theorem 1.3 (Vu [12]). Suppose p = p(n) satisfies n−1(ln n)1+δ ≤ p ≤ n−ε for any
constants 0 < ε, δ < 1. Then with high probability,

χs(G(n, p)) = O

(
(pn)2

ln(pn)

)
. (2)

We prove the following accompaniment to Theorems 1.2 and 1.3.

Theorem 1.4. Suppose p = p(n) > n−ε for all ε > 0. Then with high probability,

χs(G(n, p)) ≤ (2 + o(1))
p
(

n
2

)
logb n

. (3)

We continue with the following remark.

Remark 1.5. We mention that one can show from our proof that Theorem 1.4 holds
also if p > n−ε for a suitably small constant ε > 0. As this extension is very slight and
is already handled by Vu’s result, we choose not to focus much to this case.

Observe that, up to the constants, both (2) and (3) are best possible. Indeed, for an
arbitrary graph F , let mmax(F ) denote the size of a largest induced matching in F . Then
|E(F )|/mmax(F ) is an easy lower bound for χs(F ). The following fact quickly follows
from the first moment method.

Fact 1.6. Let p = p(n) = Ω(n−1).

(i) If p = o(1), then with high probability,

mmax(G(n, p)) ≤ ln np

p
.

(ii) If p > n−ε for all ε > 0, then with high probability,

mmax(G(n, p)) ≤ logb n.
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Using Fact 1.6 and recalling that with high probability |E(G(n, p))| = (1− o(1))p
(

n
2

)
, we

see that, up to the constants, both (2) and (3) are best possible.
Particular to (3), we see from Fact 1.6 (ii) for p > n−ε for all ε > 0 that with high

probability,

χs(G(n, p)) ≥ (1− o(1))
p
(

n
2

)
logb n

.

We mention that Vu’s proof of Theorem 1.3 follows from more general and technical
work using the nibble method (cf. [10]). Our proof of Theorem 1.4 is short and elementary
and only uses a celebrated result of B. Bollobás [2] concerning the chromatic number of
G(n, p).

In the following section, we give our proof of Theorem 1.4. In the final section, we
briefly close with a few concluding remarks.

2. Proof of Theorem 1.4

Our proof of Theorem 1.4 uses Bollobás’ well known theorem concerning the chromatic
number of G(n, p). The following statement is a version of Bollobás’ result which we
slightly paraphrase from Theorem 7.14 of [6] (pp. 192). This version focuses to Bollobás’
result in the case of constant edge probability.

Theorem 2.1 ([6]). Let 0 < q < 1 be a constant and set d = (1 − q)−1. Let µ > 0 be
given. Then, with probability at least

1− 2mexp

{
− m2

log10 m

}
, (4)

the random graph G(m, q) satisfies

χ(G(m, q)) ≤ m

2 logd m− 8 logd logd m
≤ m

2 logd m
(1 + µ).

As we show below, Theorem 2.1 implies our Theorem 1.4 in the case when p is constant.
To be formal, Theorem 2.1 implies the following lemma.

Lemma 2.2. Let 0 < p < 1 be a constant and write b = (1 − p)−1. For every γ > 0,
with high probability,

χs(G(n, p)) ≤
2p
(

n
2

)
logb n

(1 + γ).

We then see that Lemma 2.2 establishes Theorem 1.4 in the case when p is constant.
Our proof of Lemma 2.2 below is easily extended to establish Theorem 1.4 in the range

p ≥ n−ε for all ε > 0. The proof is, in fact, essentially the same except that instead of
appealing to Theorem 2.1 above, one appeals to Theorem 5 and Corollary 6 in [2].
Proof of Lemma 2.2.

We begin with some notation. Let j be an integer satisfying 1 ≤ j ≤ n/2. Define Mj

as the set of all matchings in Kn with j edges. Clearly,

|Mj| ≤ n2j.
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Define

Mbig =
n/2⋃

j=n/ log2
b n

Mj.

Clearly,

|Mbig| ≤ nn+1. (5)

We continue with some notation. Let G be a fixed graph. Let Mj = {e1, . . . , ej} ∈ Mj

be fixed. Define the graph HMj
(G) on vertex set Mj as

HMj
(G) = {{ek, el} : there exists e ∈ G with ek ∩ e 6= ∅ 6= el ∩ e} .

We now define an event important to our argument. Let G ∈ G(n, p). Let µ > 0 and
Mj ∈Mbig be fixed. Let QMj

(µ) denote the event that

χ(HMj
(G(n, p))) > (1 + µ)

2j

logb j
.

Let
Q(µ) =

⋃
Mj∈Mbig

QMj
(µ).

We proceed with the following proposition.

Proposition 2.3. For each µ > 0,

Prob[Q(µ)] = o(1).

Before continuing with our argument for Lemma 2.2, we prove Proposition 2.3.
Proof of Proposition 2.3.

Let µ > 0 be given. Fix Mj ∈Mbig and write Mj = {e1, . . . , ej}. Set p′ = 1− (1− p)4

and b′ = (1 − p′)−1 = b4. Clearly, 0 < p′ < 1 is a constant. Observe that for all x > 0,
logb x = 4 logb′ x.

For fixed 1 ≤ k < l ≤ j, observe {ek, el} ∈ HMj
(G(n, p)) with probability p′. We

therefore identify HMj
(G(n, p)) with the random graph G(j, p′) where with j ≥ n/ log2

b n,
j →∞ as n →∞. The event QMj

(µ) is identified with the event that

χ(G(j, p′)) > (1 + µ)
2j

logb j
= (1 + µ)

j

2 logb′ j
.

By Theorem 2.1, we see

Prob[QMj
(µ)] < 2jexp

{
− j2

ln10 j

}
< 2nexp

{
− n2

log4
b n ln10(n/ log2

b n)

}
. (6)

Using (5) and (6), we see

Prob[Q(µ)] ≤ nn+12nexp

{
− n2

log4
b n ln10(n/ log2

b n)

}
= o(1).

Thus, Proposition 2.3 is proved. 2
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We now conclude our proof of Lemma 2.2. Let A be the event that

∆(G(n, p)) ≤ pn(1 + n−1/4). (7)

As is well known, it easily follows from the Chernoff inequality that Prob(A) = 1− o(1).
Consequently, from Proposition 2.3 we thus infer that for all γ > 0,

Prob[A ∩ ¬Q(γ/2)] = 1− o(1). (8)

The following claim, together with (8), implies Lemma 2.2.

Claim 2.4. Let γ > 0 be given. Let G ∈ G(n, p) satisfy G ∈ A ∩ ¬Q(γ/2). Then

χs(G) ≤
2p
(

n
2

)
logb n

(1 + γ).

We prove Claim 2.4 below.
Proof of Claim 2.4.

Let γ > 0 be given. Let G ∈ G(n, p) satisfy G ∈ A ∩ ¬Q(γ/2). Let G = M (j1) ∪ . . . ∪
M (jt) be any proper edge coloring of G with t as small as possible. By Vizing’s Theorem,
t ≤ ∆(G) + 1. With G ∈ A, we see by (7) that

t ≤ pn(1 + 2n−1/4). (9)

Let Mbig(G) = Mbig ∩ {M (j1), . . . , M (jt)} and let Msmall(G) = {M (j1), . . . , M (jt)} \
Mbig(G). Since G ∈ ¬Q(γ/2), every M (j) ∈Mbig(G) satisfies

χ(HM(j)(G)) ≤
(

1 +
γ

2

)
2|M (j)|

logb |M (j)|
.

Fix M (j) ∈ Mbig(G). Observe that each independent set in HM(j)(G) corresponds to
an induced matching in G. Using the least number of colors, we color each independent

set of HM(j)(G) with its own color; we need only (1 + γ/2) 2|M(j)|
logb |M(j)| colors.

Over all M (j) ∈ Mbig(G), color each independent set of HM(j)(G) with its own color
(where we choose pairwise disjoint palettes over different M (j) ∈ Mbig(G)). Note that,
at the most, we use

∑
M(j)∈Mbig(G)

(
1 +

γ

2

)
2|M (j)|

logb |M (j)|
≤ t

(
1 +

γ

2

)
n

logb(n/ log2
b n)

colors. Using (9), we see we use at most(
1 +

2γ

3

)
pn2

logb n
(10)

colors.
Now, for each M (j) ∈Msmall(G), simply color each edge of M (j) with a new and unique

color. As |M (j)| is small, we need few colors. Doing this over all M (j) ∈Msmall(G) (and
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using pairwise disjoint palettes each time) requires at most

t
n

log2
b n

≤ 2pn2

log2
b n

(11)

colors.
Combining (10) and (11), we have a strong edge coloring of G using no more than(

1 +
2γ

3

)
pn2

logb n
+

2pn2

log2
b n

≤
2p
(

n
2

)
logb n

(1 + γ)

colors. This proves Claim 2.4 and hence, Lemma 2.2. 2

3. Concluding Remarks

In this section, we discuss some issues related to Theorem 1.4.
A graph property P is an infinite class of graphs closed under isomorphism. For a

graph property P , let Pn denote the set of all graphs from P which are on vertex set
{1, . . . , n}. Let P≤n =

⋃n
i=1 Pi. Let U denote the trival property consisting of all graphs.

We say almost all graphs belong to P if

|P≤n|
|U≤n|

= 1− o(1).

Setting p = 1/2 and applying Theorem 1.4, we obtain the following easy corollary.

Corollary 3.1. Almost all graphs satisfy Conjecture 1.1.

In [4], the problem of estimating χs(G) was studied for a class of so-called pseudo-
random bipartite graphs. These graphs are obtained from and identified with the well-
known Szemerédi Regularity Lemma (cf. [7], [11]). We define these graphs precisely
below.

For a graph G, let X and Y be two nonempty disjoint subsets of V (G) and let
EG(X, Y ) = {{x, y} ∈ E(G) : x ∈ X, y ∈ Y } and eG(X, Y ) = |EG(X, Y )|. Define the
density of the pair X, Y by

dG(X, Y ) =
eG(X, Y )

|X||Y |
.

For constant d and ε > 0 , we say that a bipartite graph G = (U∪V, E) is (d, ε)-regular
if for all U ′ ⊆ U , |U ′| > ε|U |, and all V ′ ⊆ V , |V ′| > ε|V |, the following holds,

|d− dG(U ′, V ′)| < ε. (12)

If G = (U ∪ V, E) is (d, ε)-regular for some 0 ≤ d ≤ 1, then G is called ε-regular.
Bipartite graphs which are (d, ε)-regular, 0 < ε � d (i.e. ε is sufficiently smaller

than d), have very uniform edge distributions and therefore behave, in some senses, in a
“random-like” manner. While stated precisely in, for example, [7] and [11], Szemerédi’s
Regularity Lemma essentially says that the edge set of any large enough graph may be
decomposed into a bounded number of ε-regular bipartite subgraphs.

The following theorem was proved in [4].
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Theorem 3.2. For every 0 < d < 1 and µ > 0,there exist ε > 0 and integer n0 such that
if G = (U ∪ V, E) is a (d, ε)-regular bipartite graph with |U | = |V | = n ≥ n0, then

χs(G) ≤ µ∆(G)2.

Note that, like the random graph G(n, p), (d, ε)-regular graphs (with appropriately given
parameters) easily satisfy Conjecture 1.1. As well, recall that Theorems 1.2, 1.3 and
1.4 for G(n, p) are all, up to the constant, best possible. We mention that an easy
probabilistic construction is given in [4] showing that, up to the constant, Theorem 3.2
is also best possible.

As a final topic, we state the following conjecture.

Conjecture 3.3. For 0 < p < 1 constant,

χs(G(n, p)) =
p
(

n
2

)
logb n

(1 + o(1)).
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