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Abstract

For a graph G = (V (G), E(G)), a strong edge coloring of G is an edge coloring
in which every color class is an induced matching. The strong chromatic index of
G, χs(G), is the smallest number of colors in a strong edge coloring of G. The
strong chromatic index of the random graph G(n, p) was considered in [3], [4], [12],
and [16]. In this paper, we consider χs(G) for a related class of graphs G known
as uniform or ε-regular graphs. In particular, we prove that for 0 < ε � d < 1,
all (d, ε)-regular bipartite graphs G = (U ∪ V,E) with |U | = |V | ≥ n0(d, ε) satisfy
χs(G) ≤ ζ(ε)∆(G)2, where ζ(ε) → 0 as ε → 0 (this order of magnitude is easily seen
to be best possible). Our main tool in proving this statement is a powerful packing
result of Pippenger and Spencer [11].
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1 Introduction

For a finite simple graph G = (V (G), E(G)), a strong edge coloring of G is an
edge coloring in which every color class is an induced matching. The strong
chromatic index of G, χs(G), is the minimum number of colors k in a strong
edge coloring of G.
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The following conjecture of Erdős and Nešetřil (cf. [5]) is central to the area
of strong chromatic index problems: χs(G) ≤ 5

4
∆(G)2 holds for every graph

G. This conjecture has proven to be difficult and only very few partial results
are known.

Studying the strong chromatic index for special classes of graphs has yielded
interesting results. We focus our discussion to classes of random and pseudo-
random graphs and begin with the former.

In [3], [4], [12], and [16], the strong chromatic index of the random graph
G(n, p) was studied (cf. [7]). In particular, Z. Palka [12] showed that if p =
Θ(n−1), then asymptotically almost surely (cf. [7]), χs(G(n, p)) = Θ(∆(G(n, p)).
V. Vu [16] more recently showed that for positive δ, ε < 1, if n−1 log1+δ n ≤
p ≤ n−ε, then asymptotically almost surely, χs(G(n, p)) = Θ

(
∆(G(n,p))2

ln ∆(G(n,p))

)
. In

[3], the current authors recently extended Vu’s result to the range p ≥ nε0 for
a suitable ε0 > 0.

In this paper, we consider an analogous problem of estimating χs(G) for so-
called pseudo-random or uniform graphs G. As we define them below, these are
graphs obtained from and identified with the well-known Szemerédi Regularity
Lemma (cf [9], [14]). Uniform graphs were studied by Alon, Rödl, and Rucinski
[1] who estimated the number of perfect matchings of a super-regular pair
(see below for definitions) and by Frieze [6] who estimated the number of
hamiltonian cycles and perfect matchings in uniform graphs.

For a bipartite graph G = (U ∪ V, E), let U ′ ⊆ U and V ′ ⊆ V be two
nonempty sets, and let EG(U ′, V ′) = {{u, v} ∈ E(G) : u ∈ U ′, v ∈ V ′} and
eG(U ′, V ′) = |EG(U ′, V ′)|. Define the density of the graph (U ′ ∪ V ′, EG) by
dG(U ′, V ′) = eG(U ′, V ′)|U ′|−1|V ′|−1. For constant d and ε > 0 , we say that a
bipartite graph G = (U ∪ V, E) is (d, ε)-regular if for all U ′ ⊆ U , |U ′| > ε|U |,
and all V ′ ⊆ V , |V ′| > ε|V |, we have |d − dG(U ′, V ′)| < ε. If G = (U ∪ V, E)
is (d, ε)-regular for some 0 ≤ d ≤ 1, then G is called ε-regular. Bipartite
graphs which are (d, ε)-regular, 0 < ε � d, have uniform edge distributions
and therefore behave, in some senses, in a “random-like” manner.

Our theorem is stated as follows.

Theorem 1.1 (Main Theorem) For every 0 < d < 1 and µ > 0, there exist
ε > 0 and integer n0 such that if G = (U ∪ V, E) is a (d, ε)-regular bipartite
graph with |U | = |V | ≥ n0, then χs(G) ≤ µ∆(G)2.

As any (d, ε)-regular bipartite graph G = (U ∪ V, E), |U | = |V | = n, satisfies
∆(G) ≥ (d− ε)n, it suffices to prove Theorem 1.1 in the following form.

Theorem 1.2 For every 0 < d < 1 and µ > 0, there exist ε > 0 and integer
n0 such that if G = (U ∪ V, E) is a (d, ε)-regular bipartite graph with |U | =
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|V | = n ≥ n0, then χs(G) ≤ µn2.

The following observation shows that the order of magnitude for the upper
bound in Theorem 1.1 is best possible.

Fact 1 Let 0 < d < 1 be fixed. For all ε > 0 and integers n, there exists a
(d, ε)-regular bipartite graph G0 = (U ∪ V, E), |U | = |V | = N ≥ n, satisfying
χs(G0) ≥ ε2

2
∆(G0)

2.

The observation in Fact 1, in various forms, has been noted by various re-
searchers (e.g. Prof. T.  Luczak [8] and also an anonymous referee). The proof
of Fact 1 is easy and we present it at the end of Section 3.

The rest of the paper is organized as follows. In Section 2, we state some
background material we use to prove Theorem 1.2. In Section 3, we prove
Theorem 1.2 and verify Fact 1.

1.1 Acknowledgement

We wish to thank the referees for suggestions which lead to simplified details
in this paper.

2 Definitions and Facts

In this section, we give some background material we use to prove Theorem
1.1. We begin our discussion with basic notation and considerations. For a
graph G = (V (G), E(G)) and a vertex v ∈ V (G), let N(v) = {x ∈ V (G) :
{v, x} ∈ G} and set deg(v) = |N(v)|. In all that follows, graphs G = (V, E)
are identified with their edge sets. For convenience of calculations, we use the
convention s = (a± b)t to mean t(a− b) ≤ s ≤ t(a + b).

2.1 (d, ε)-regular bipartite graphs

We begin with the following well-known fact which may be found as Fact 1.3
in [9].

Fact 2 Let G = (U ∪ V, E) be a (d, ε)-regular bipartite graph. Then, all but
2ε|U | vertices u ∈ U and all but 2ε|V | vertices v ∈ V satisfy, respectively,

deg(u) = (d± ε)|V |, deg(v) = (d± ε)|U |. (1)
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We use following definition (cf. Definition 1.6 of [9]).

Definition 3 ((d, ε)-super regularity) Let G = (U∪V, E) be a (d, ε)-regular
bipartite graph. We say that G is (d, ε)-super-regular if all vertices u ∈ U and
all vertices v ∈ V satisfy (1).

We continue with the following fact.

Fact 4 Let G = (U ∪ V, E) be a (d, ε)-regular bipartite graph where, say,
3ε < 1 − d, and |U | = |V | = n. Then G has a (d, ε′)-super-regular induced
bipartite subgraph G0 = G0[U0∪V0], where ε′ = 6ε

d
and |U0| = |V0| > (1−2ε)n.

The precise details of the proof of Fact 4 are extremely standard and so we
omit them. The idea behind proving Fact 4, however, is to delete the vertices
u ∈ U and v ∈ V not satisfying (1). Then, appealing to the Slicing Lemma,
Fact 1.5 of [9], Fact 4 immediately follows.

2.2 Hypergraph Packings

At the heart of our argument for Theorem 1.1 lies an application of the follow-
ing strong theorem of Pippenger and Spencer (cf. [11]). LetH = (V (H), E(H))
be an l-uniform hypergraph. For a vertex u ∈ V (H), define the degree of the
vertex u, deg(u), as deg(u) = |{h ∈ E(H) : u ∈ h}|. Set δ(H) to be the mini-
mum degree of any vertex in H and set ∆(H) to the maximum degree of any
vertex in H. For a pair of distinct vertices u, v ∈ V (H), set codeg({u, v}) =
|{h ∈ E(H) : u, v ∈ h}| and let codeg(H) = maxu,v∈V (H),u 6=v codeg({u, v}).
Then the theorem of [11] is stated as follows.

Theorem 2.1 (Pippenger, Spencer, [11]) For all positive integers l and
positive constants γ, there exists ε = ε(l, γ) so that if H = (V (H), E(H)) is
an l-uniform hypergraph with minimum degree δ(H) satisfying δ(H) > (1 −
ε)∆(H) and codeg(H) ≤ ε∆(H), then there exists a set M ⊆ E(H), h∩h′ = ∅
for every h 6= h′ in M , which covers all but γ|V (H)| vertices of H.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The following theorem, combined with
Fact 4, almost immediately implies Theorem 1.2.

Theorem 3.1 For every 0 < d < 1 and every ζ > 0, there exist ε > 0 and
integer n0 such that if G = (U ∪ V, E) is a (d, ε)-super-regular bipartite graph
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with |U | = |V | = n ≥ n0, then χs(G) ≤ ζn2.

In view of Theorem 3.1 and Fact 4, we may prove Theorem 1.2 by producing
a promised strong edge coloring in “two rounds”. Indeed, Fact 4 guarantees a
large (d, ε′)-super-regular induced subgraph G0 of G. Theorem 3.1 guarantees
G0 admits strong edge colorings using few colors. Fix one such coloring. As
G \G0 is small, we may greedily color the remaining edges. As the subgraph
G0 of G is induced, the greedy coloring of G \G0 does not disturb the strong
edge coloring of G0 guaranteed by Theorem 3.1.

It remains to prove Theorem 3.1. We make preparations to that end in what
follows.

3.1 Setting up the argument of Theorem 3.1

For an integer k ≥ 1, graph G and edge e ∈ G, define Mk(e, G) to be the set of
all induced matchings of size k containing edge e. Set mk(e, G) = |Mk(e,G)|.

To prove Theorem 3.1, we use the following well-known fact.

Lemma 3.2 Let 0 < d < 1 be given. For every integer k ≥ 1, for every ρ > 0,
there exists ε > 0 so that if G = (U ∪ V, E) is a (d, ε)-super regular bipartite
graph, |U | = |V | = n ≥ n0(d, k, ρ, ε), then for all e ∈ G,

mk(e,G) = dk−1(1− d)(k−1)2−(k−1) n2(k−1)

(k − 1)!
(1± ρ).

“Counting results” for ε-regular graphs are well-studied by many researchers.
We refer the reader to one of the first papers in this area, [13]. The proof of
Lemma 3.2, while not trivial, is extremely standard and we therefore omit it.
The details of this proof are given in full in [2].

3.2 Proof of Theorem 3.1

Let 0 < d < 1 and ζ > 0 be given. Set γ = ζ/2 and l = d 1
γ
e. Let ε2.1 = ε2.1(l, γ)

be that constant guaranteed by Theorem 2.1 for the parameters l and γ. For
k = l and ρ = ε2.1

2
, let ε = ε3.2(d, l, ε2.1

2
) be that constant guaranteed by

Corollary 3.2. Let G = (U ∪ V, E) be a (d, ε)-super-regular bipartite graph
where |U | = |V | = n. We show that χs(G) ≤ ζn2.

To that end, with l = d 1
γ
e, define auxiliary l-uniform hypergraphH = (V (H), E(H))
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to have vertex set V (H) = G, the edge set of G, and E(H) = Ml(G),
the set of all induced matchings in G of size l. For e ∈ V (H), note that
degH(e) = ml(e,G). With ε = ε3.2(d, l, ε2.1

2
), we infer from Corollary 3.2 that

for every e ∈ V (H),

degH(e) = dl−1(1− d)(l−1)2−(l−1)

(
n2(l−1)

(l − 1)!

)
(1± ε2.1

2
).

In particular, we see

dl−1(1− d)(l−1)2−(l−1)

(
n2(l−1)

(l − 1)!

)
(1− ε2.1

2
) ≤ δ(H),

∆(H) ≤ dl−1(1− d)(l−1)2−(l−1)

(
n2(l−1)

(l − 1)!

)
(1 +

ε2.1

2
),

and consequently,

δ(H) ≥
1− ε2.1

2

1 + ε2.1

2

∆(H) > (1− ε2.1)∆(H).

Clearly, codeg(H) ≤ n2(l−2), which with n sufficiently large satisfies codeg(H) <
ε2.1∆(H). With ε2.1 = ε2.1(l, γ), we apply Theorem 2.1 to H to conclude that
there exists a set {h1, . . . , ht} ⊂ E(H), hi∩hj = ∅ for all 1 ≤ i < j ≤ t, which
covers all but γ|V (H)| vertices e ∈ V (H). Note that tl ≤ |V (H)| = |E(G)|
trivially follows.

We now give the strong edge coloring of G using no more than the maximum
number of colors required by Lemma 3.1. The edge classes {h1, . . . , ht} con-
stitue t color classes in our coloring. Let X =

⋃
1≤i≤t{e|e ∈ hi}. Then the

singelton classes {{e}|e ∈ E(G) \X} constitue the remaining coloring classes
in our coloring. Since there are at most γ|V (H)| = γ|E(G)| edges in E(G)\X
the number of colors used in the above colorings is at most

t + γ|E(G)| ≤ |E(G)|
l

+ γ|E(G)| ≤ 2γn2,

where the last inequality follows from the fact that l = d 1
γ
e. With γ = ζ/2, we

see that at most ζn2 colors have been used. It is easy to see that the obtained
coloring is a strong edge coloring of E(G). 2

3.3 Proof of Fact 1

Let 0 < d < 1 be given along with ε and integer n. We produce a graph
G0 satisfying the conclusion of Fact 1. Indeed, fix disjoint sets U and V with
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|U | = |V | = N where N ≥ n is a sufficiently large integer. Take any (d, ε/2)-
regular bipartite graph G on U ∪ V . (the existence of such a graph is easily
established by the probabilistic method provided N is sufficiently large) Now,
fix any U0 ⊂ U where |U0| = ε2

2
|U |. Define the graph G0 on U ∪ V by G0 =

G ∪K [U0, V ] . In other words, G0 is obtained from G by replacing the edges
G [U0, V ] with the complete bipartite graph K [U0, V ]. Clearly, ∆(G0) = |V | =
N and

χs(G0) ≥
ε2

2
N2 =

ε2

2
∆(G0)

2.

What remains to be shown is that G0 is (d, ε)-regular. Indeed, let U ′ ⊆ U and
V ′ ⊆ V be given, |U ′| > ε|U | and |V ′| > ε|V |. Set U ′

0 = U ′ ∩ U0. Then

dG(U ′, V ′) ≤ dG0(U
′, V ′) ≤ dG(U ′, V ′) +

|U ′
0|

|U ′|
.

Since |U ′
0| ≤ (ε2/2)|U |,

dG(U ′, V ′) ≤ dG0(U
′, V ′) ≤ dG(U ′

1, V
′) +

ε

2
. (2)

As |U ′| > ε
2
|U | and |V ′| > ε

2
|V |, we see from the (d, ε/2)-regularity of G that

|dG(U ′, V ′)− d| < ε
2
. Consequently, in (2), we see |dG0(U

′, V ′) − d| < ε. This
proves Fact 1. 2
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applications in graph theory, in “Combinatorics, Paul Erdős is Eighty” (D.
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