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ABSTRACT. A recent question of S. Abbasi provides a degree condition on a hypergraph
and asks if every 3-uniform hypergraph G satisfying this condition admits a vertex
covering by copies of K, 23), the complete clique on 4 vertices. In this note, we answer
this question negatively, and in turn, ask whether every G satisfying the hypothesis
of Abbasi’s original question need even contain one copy of K f) as a subhypergraph.
While our question remains open, we prove that if true, Abbasi’s degree condition would
be best possible.

1. INTRODUCTION

Packing and covering problems for graphs belong to some of the most interesting yet
difficult questions considered in graph theory. In general, a packing problem can be
formulated as follows: Given a fized graph H on k vertices and a graph G on n wvertices,
what conditions on G guarantee a collection within G of || wvertex-disjoint copies of
H? An early result, due to Hajnal and Szemerédi [HS], relates the packing of copies
of H = Kj, the clique on k vertices, to the minimum degree 6(G) of G. Specifically,
their result states that any graph G on n > ng(k) vertices satisfying 6(G) > (1 - %) n
contains || vertex-disjoint copies of Kj. Using the well-known Regularity Lemma of
Szemerédi (cf. [KS|, [Sz|), Alon and Yuster [AY1] and [AY2] gave an “approximate”
extension of the result of Hajnal and Szemerédi for a general fixed graph H. Using the
Blow-up Lemma (cf. [KSS]), Komlds, Sarkozy and Szemerédi [KSS1] further extended
[AY2] in the following theorem.

Theorem 1.1. For every graph H, there is a constant K so that any graph G on n >
no(H) vertices satisfying 0(G) > (1 - ﬁ) n contains a collection of vertex-disjoint
copies of H covering all but at most K wvertices.

One can consider similar packing problems for /-uniform hypergraphs. One such ques-
tion is to ask for a degree condition which will guarantee a covering of a hypergraph G
with vertex-disjoint copies of a fixed hypergraph H. In this note, we are interested in
the case when [ = 3 (triple systems) and H = Kf’), the complete triple system on four
vertices. Note, however, that one can consider two types of vertex degree in a triple
system. For a vertex v, we can define the degree of v, deg(v), as

deg(v) = {e € Glv € e},
and for vertices u, v, u # v, we can define the codegree of the pair {u,v} as

codeg({u,v}) = \1{6 € Glu,v € e}|.
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Set
5(6) = mjn des(v),
and define the codegree of G, codeg(G), to be
codeg(G) = 151751 codeg({u,v}).

Although §(G) is certainly an interesting parameter to consider, it seems that the codegree
of a triple system G is a parameter which implies more structure on G.
The following problem, recently asked by S. Abbasi [A], relates the codegree of a triple

system G with packing copies of K £3).

Problem 1.2. Does every triple system G on n vertices, n = 0 (mod 4), satisfying

codeg(G) > 5 admit a covering by a collection of vertez-disjoint copies of Kf’) ?

We will show that the answer to the above problem is negative by constructing, for

every € > 0, a triple system G with codeg(G) > (% — e) n which has the property that

every vertex-disjoint collection of copies of K f') within G avoids many vertices.
Although the answer to Problem 1.2 is negative, it is interesting to ask whether
codeg(G) > % ensures that G contains even one copy of Kf). While the answer is
unknown and appears to be difficult, we conjecture that the affirmative statement is in-
deed the case, and prove that, if true, this would be best possible. This problem relates
to the famous Turan problem for triple systems where one asks for the minimum number
of triples on n vertices which will force a copy of K. P. Turén (cf. [Si]) conjectured
that this number is g(g)(l + 0(1)), and there are many constructions known ([B], [K])
which show that the number of such triples on n vertices must be at least this large.
However, in all these constructions for the Turan problem, the codegree is much smaller

than n/2 (asymptotically n/3). On the other hand, in the case when codeg(G) > %, the

number of triples is only guaranteed to be at least %(g) (1 4+ 0(1)), so we hope that the
additional structural assumption will beat the general case.

The rest of this note is organized as follows. In Section 2, we present a constructive
counterexample to Problem 1.2. In Section 3, we present a probabilistic construction
which shows that there exists a triple system G with codeg(G) = %(1 — o(1)) which does

not contain a copy of Kf’).

2. A NEGATIVE ANSWER TO PROBLEM 1.2

We prove the following theorem, providing a negative answer to Problem 1.2.

Theorem 2.1. For all € € (0,1/8), there exists an infinite family {G;}icr of triple sys-
tems so that each G € {G;}ier satisfies that codeg(G) > (% — e) \V(G)| and that every

)

collection of vertez-disjoint copies of K\> within G leaves at least €|V (G)| vertices uncov-

ered.
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Proof of Theorem 2.1. Pick € € (0,1/8). We construct an infinite family {G;}icr
of triple systems so that every G € {G;};cs satisfies the two properties stated in the
conclusion of Theorem 2.1. Consider all ordered triples (n, a, 8) of integers satisfying

0> % (1)
o = (G+5)n ©)
2+ = n. (3)

For each ordered triple (n, o, 3) defined above, we define a triple system G = Gy, q.5)-
Let A, B and C be pairwise disjoint sets satisfying |A| = |C| = a and |B| = f. Define

F={{cd,a}:c,d €C,ae A}. (4)

Define triple system G = (V(G), E(G)) by
V(G) = AUBUC, ()
E(G) = [AUBUCP\ (4P U [B]PuUF). (6)

Note that G is a triple system on n vertices. We show that G satisfies the two properties
in the conclusion of Theorem 2.1, and begin by showing that codeg(G) is as large as
promised. Note that

V(G)P = ([APU[BP U[CI U P({A, B}) U P({A,C}) U P({B,C})),
where
P({A,B}) = {{a,b} :a € A,b € B},
PH{A,C})={{a,c}:a€ A ceC},
P{B,C}) ={{b,c}:be B,ceC}.
We have the following equalities:

(1) If a,a’ € A, codeg({a,d'}) = a+ 5.

(i7) If b1 € B, codeg({b,b'}) = 2a.

(113) If ¢, ¢’ € C, codeg({c,c'}) =a+ 5 — 2.

(iv) If a € A,b € B, codeg({a,b}) =2a+ 5 — 2.
(v) Ifae A,ceC, codeg({a,c}) =a+ -1

(vi) If b€ B,c € C, codeg({b,c}) =2a+ 5 — 2.

Thus, (7)-(vi) imply
codeg(G) = minguepvaypcodeg({u,v}),

= min{2q,a+ g — 2},

= o+ B - 27
where the last equality follows from the fact that 8 < «. Due to (2) and (3), we have
that

3 €
codeg(G)=n—a—-2> (3—§>n—2,
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and since n > 4/e,
codeg(G) > (g - 6) n.

We now show that any vertex-disjoint collection of copies of K £3) within G leaves at least
en vertices uncovered. Indeed, let {Xi,..., X} be a set of pairwise disjoint subsets of

V(G), each of which spans a copy of K in G. We show that WV (H)\ U_ X5 > en. We
begin by observing that for each i € [I],

X, N A < 2.

Indeed, if |X; N A] > 3, then [X;]* N [A]® # 0 and since [A]? N E(G) = 0 from (6),
[X:]* ¢ E(G), contradicting that X; € {Xi,...,X;}. Next, we observe that for each
i € [l] such that X; N A # (), X; N B # (). Indeed, suppose X; N A # () but X; N B = 0.
Since |X; N A| < 2, then |X; N C| > 2. However, for ¢;,c0 € X;NC, a € X; N A,
{c1,¢2,a} € F from (4). Since FNE(G) = 0 from (6), [X;]* ¢ F(G), again contradicting
that X; € {X1,...X;}. As a result of our observations above and the fact that the X;’s
are chosen to be pairwise disjoint,

V(G) \ Ui Xi| > [A\ Ui, Xi > |A] - 2|B].
Since |A| = «, |B| = S, we infer from (3) that
|A| —2|B| = 5a — 2n

which by (2) and (1) is at least

Hen
— — 5> en.
5 en

Consequently,
V(G) \ Ui X;| > en.
Thus, the proof of Theorem 2.1 is complete. O

3. DISCUSSION

Although the answer to the original problem of Abbasi is negative, it is possible that
if the codegree of a triple system G is at least n/2, then G must contain at least one copy

of K f). We conjecture that this is indeed the case.
Conjecture 3.1. Let G be a triple system on n vertices. If codeg(G) > %, then G
contains a copy of Kf’).

Modifying an example from [NR|, we show that the constant 1/2 in the lower bound
for codeg(G) in Conjecture 3.1 cannot be improved.

Proposition 3.2. There exists a triple system G on n vertices which satisfies codeg(G) =

5 —o(n) but which does not contain a copy of K.
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Proof of Proposition 3.2. Consider a random tournament 7" on {1,...,n}, that is,
a complete directed graph on vertices {1,...,n} where for any i < j, (4,j) € T with
probability 1/2. Define a triple system G on {1,...,n} as follows: for {i,j, k} with
i = min{34, j, k}, we add {i,7,k} € E(G) if and only if (i, ) and (k,7) are arcs of T. We
observe two simple facts.

Fact 3.3. G does not contain a copy of Kf').

Indeed, take S = {4, j, k,} and suppose that i = min{s, j, k,[}. If S induces a copy of
Kf'), then {4, j,k} and {i,k,(} are triples of G, implying that (4, j), (k, %), (¢,1) are arcs
of T, but then {3, j,{} is not a triple of G.

Fact 3.4. Pr [codeg(g) > (1 - nllﬁ) ”T_Z] > 0, when n is large enough.

Indeed, fix i,j € {1,...,n}, i < j, where by symmetry, we assume (i,j) € T. For
k # 1,7, let X;;; be an indicator random variable which is equal to one if {i,j,k} € G
and zero otherwise. If 7 < k, then Pr[X;;; = 1] = 1/2, since with probability 1/2, (k, 1)
is a arc of T'. If ¢ > k, then again Pr X, = 1] = 1/2, since with probability 1/2, we will
have either (k,4) and (4, k) as arcs of T or (k,j) and (i, k) as arcs of T. Consequently,
for X;; = >4 4 Xijk, we have

n—2

E(Xy) = —

(7)

Since for fixed %, j, the random variables X, 1 < k < n, k # 14, j, are independent, we
can apply the Chernoff bound (cf. [MR]) to conclude that

Pr |X;; < (1 — #) E(Xij)] < exp (—E(X;;)/2n'/?). (8)

Therefore, combining (7) with (8) yields

Pr [Xij < (1 ! )”—_2] < exp(—v/n — 2/5) (9)

Cpl/a 2

for n large enough. Thus, the probability that there exist ¢, j such that X;; < (1 - ﬂ) n
is less than

(;’) exp (—v—3/5)

which is less than one, when n is sufficiently large. Therefore, there exists a triple system
G on n vertices with codeg(G) > (1 — 1/n'/*)™2 without a copy of K®. o
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