
TURAN RELATED PROBLEMS FOR HYPERGRAPHS

BRENDAN NAGLE

EMORY UNIVERSITY. ATLANTA, GA. :?00:i2. USA
E-mail address: naglefflmathcs.emory.edu

ABSTRACT. For an /-uniform hypergraph 3- and an integer n, the
Turan number ex(n, F) for F on n vertices is denned to be the max-
imum size \Q\ of a hypergraph Q C [n]1 not containing a copy of F

C2\as a subhypergraph. For 1 = 1 and f = Kk , the complete graph
on k vertices, these numbers were determined by P. Turan. However,
for I > 2, and nearly any hypergraph F, the Turan problem of de-
termining the numbers ex(n,f) has proved to be very diff icult , and
very little about these numbers is known. In this survey, we discuss
recent results and open problems for triple systems which relate to
Turan numbers ex(n,f).

1. INTRODUCTION

In this survey, we discuss extremal problems for /-uniform hypergraphs
which relate to a classical problem of Turan. In Section 1, we review the
classical Turan problem. In Section 2, we discuss applications of a regularity
lemma of [FR] that relate to the Turan problem. In Section 3, we discuss
problems and results introduced by a question of Abassi that relate to the
classical problem of Turan.

For a natural number /, and a finite set V, any Q C [V]1 — {B C
V : \B\ = 1} is called an l-uniform hypergraph. We identify an /-uniform
hypergraph Q as the set of /-tuples of the vertex set V = V(C?)'of which it
is comprised. If / = 2, we speak about graphs, and if / = 3, we speak about
triple systems. As part of our basic notation in what follows, for an integer
n, we will use the notation [n] to denote the set {1,... ,n}.

A concept fundamental to all problems discussed in this paper is that of
forbidden subhyper-graphs. For a fixed /-uniform hypergraph F, we call an
/-uniform hypergraph Q an T-jrtt hypergraph if Q has no subhypergraph
isomorphic to T (J is a subhypergraph of Q if J C Q). For a fixed /-
uniform hypergraph T and an integer n, we define the Turan number for T
on n vertices, denoted by ex(n, T*), to be the largest size \Q\ of any .F-free
Q C [n]1. It is easy to show that for any fixed J7, lim,,-^ "fc^ exists.

\ i /
We thus set
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and refer to this limit as the Turan number for J-.
Turan's original problem was the following.

Problem 1.1. (Turan) For integers k, I, k > I > 2, and for the fixed
l-uniform hypergraph T = Kk = [k\l, the clique on k vertices, determine

, (K(i). _ ex(n,K(
k
l})

In the case of I = 2, Turan was able to find both the asymptotic requested
in \

above as well as a formula for ex(n, Kk ), for all positive integers n.

Theorem 1.2. (Turan [1940]) Let n and k be positive integers, n > k,
and let m and r be nonnegative integers satisfying that n = mk + r, where
0 < r < k- 1. Then

Consequently,

Furthermore, Turan showed that all A^j-free Q C [n]2 are isomorphic to
the complete fc-partite graph

where the partite sets {Vi, . . . ,14} satisfy that for each i e [k],

l-k\ < \vt\ < \-k]
Turan's problem is notoriously open. For the simplest nontrivial case

when / = 3 and k — 4, Turan conjectured that these Turan numbers should
be "nice". Specifically,

Conjecture 1.3. (Turan)

f"'2(5
2

m-3) i f n = 3m
Jm(5m'+am-i) i/n = 3m + 1 (1)
[ "»(m+l)(8m+2) i/n = 3m + 2

Consequently,

-(*f >) = § (2)

Conjecture 1.3 remains an open problem. While it is the simplest nontrivial
case of Turan's problem, Erdos offered $500 for its solution.

Note that for each positive integer n, ex(n, /Q ) is known to be at least
the conjectured value in (1) corresponding to that equivalence class of n
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modulo 3. We present the well known construction establishing this fact
for the case when n is of the form n — 3m. Let V'i, V-2, K3 be three partite
sets of size m, and set n = 3m. Define

Gi = {{vi,v\,v-2} :vi € ViX £ Vi,v-2 € V2} ,

Q2 = {{v-2,v2, i>:,} : v-2 6 V2,v'2 <E V2,v3 6 V3} ,

Gs = {{ua .ws .wi} : ^3 6 V3,v'3 € V3,vl € Vi},

£4 = {{vi,vz,v3} : vi € Vi,v2 6 Va.^s € K3},

and define

5 = Si U Q-2 U ̂ 3 U £4 (3)

It follows by the construction in (3) that Q is 1Q -free and that

\Q\ = ̂ f^ (4)

Thus, ex(n,K(*]) > m^5"'~3) when n is of the form n = 3m. Similar
/rt \

constructions establish that for all n, the conjectured value for ex(n,K\ )
in (1) corresponding to the equivalence class of n modulo 3 is indeed a lower
bound for ex(n, A',' ).

Note that due to (4),

ex(/v.|3)) > | = .555....

holds. However, we note that the construction above is not unique in
achieving this lower bound. First alternative constructions were shown by
Brown in [B], and subsequently in [K], Kostochka showed thaft there are
2m~2 such hypergraphs on 3m vertices.

The difficulty remaining in showing the equality in (2) is therefore in
showing the upper bound ex(K\ ) < |. The best known upper bound for

ex(K\ ) was given by Giraud (unpublished) and commented on in [De].

Theorem 1.4. (Giraud [1989])

Like Conjecture 1.3, Turan conjectured that other Turan numbers also
had a "nice" answer. For example,

Conjecture 1.5. (Turan)

e*(*JS)) = \

Additionally, the following open Turan type problem in [FF] should be
easier than Conjecture 1.3.
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Conjecture 1.6. (Frankl, Fiiredi) Let A'|!)-e be the triple system given
by 3 triples on 4 vertices. Then

o

Over the following two sections, we consider two general problems which
relate to the problem of determining ex^) for various fixed /-uniform hy-
pergraphs T. In section 2, we present results and problems from [EFR] and
recent results from [NR]. In section 3, we formulate some open problems
and review related results from [CN] and [KRS].

2. A PROBLEM CONCERNING FORBIDDING FAMILIE£

We begin this section by considering an extremal problem for /-uniform
hypergraphs concerning forbidden subhypergraphs. We start with the fol-
lowing definition.

Definition 2.1. For a fixed /-uniform hypergraph T, let

Fai-bn(F) = {G C [n}' : Q is J

and set
= \Farbn(T}\

Thus, Forbn(F) is the family of all /-uniform hypergraphs on vertex set [n]
which do not contain a copy of T as a subhypergraph, and Fn(^F) counts
the number of such hypergraphs. Concerning the case when / = 2, the
following result of [EFR] implies that for all non-bipartite graphs f, the
problem of determining Fn (f) asymptotically is equivalent to determining

Theorem 2.2. (Erdos, Frankl, Rodl [1986]) Suppose T is a fixed graph
satisfying \(F) > 2. Then,

1» (5)

where o(l) -» 0 as n -> oo.

We note that Theorem 2.2 is proved using Szemeredi's Regularity Lemma
(c.f. [KS]). The proof is complicated, and we do not give it here.

It is remarked in [EFR] that (5) likely holds for bipartite graphs F as
well, but this is not known even for T = €4, the cycle on 4 vertices. For this
case, the best known upper bound 2cn is due to Kleitman and Winston
[KW].

The following extension of Theorem 2.2 for the case when / = 3 was
recently obtained in [NR].
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Theorem 2.3. (Nagle, Rodl [1999]) Suppose T is an arbitrary fixed
triple system. Th.cn,

where ^~^- -> 0 as n -> oo.

Similar to the assumption that graph F be non-bipartite in Theorem 2.2,
we will assume for the following corollary that the fixed triple system F
is not 3-partite (i.e. that for any partition of the vertices V(F) of F into
3 classes \\, \'->, \';\, there exists a triple / 6 F and i € [3] such that
I /^ 1'i| •> 2). By an old result of Erdos in [E], a triple system F is 3-partite
if and only if e.r(F) = 0. Thus, we have the following corollary to Theorem
2.3.

Corollary 2.4. Suppose T is a fixed triple system which is not 3-partite.
Then,

l» (6)

where o(l) -> 0 as n -> oo.

We note that Corollary 2.-1 implies that, as in the case for graphs, the
problem of determining Fn(J-) asymptotically for non 3-partite triple sys-
tems T is equivalent to determining ex(T). We remark that Theorem 2.3 is
proved using The Hypergraph Regularity Lemma of [FR] (see klso [NR1])
in conjunction with the The Counting Lemma of [NR1]. The proof is com-
plicated, and we encourage the Reader to see [NR].

We discuss a problem related to Theorem 2.4. We need, however, to
first state the following definition. For two /-uniform hypergraphs F\, JF2,
a function if> : \'(J-"i) —> V(F->) is called a homomorphism if for each
{ i > i , . . . ,vi} € J"i, {'if>(n\),... ,il>(vi)} € F-2. The following problem was
raised iu [EFR].

Problem 2.5. Let J-\ be an l-uni/orm hypergraph, and let }-^ be any ho-
momorphic image of T\. /.s is true that for any e > 0, there exists no =
n0(7"i, ?"•>,() so that for any Q € Forbn(T\), n > n0, there exists Q' C Q,
\G'\ < en3, so that Q \ Q' e Forbn(^)?

They also provide the following theorem partially answering Problem 2.5.

Theorem 2.6. (Erdos, Frankl, Rodl [1986]) Problem 2.5 is true for
1 = 2.

Recently, in [NR], the following was proved.

Theorem 2.7. (Nagle, Rodl [1999]) Problem 2.5 is true for 1=3.

We note that Theorem 2.6 was proved using Szemeredi's Regularity
Lemma, and similarly, Theorem 2.7 was proved using The Hypergraph

123



Regularity Lemma of [FR], and The Counting Lemma of [NR1]. The proof
of Theorem 2.7 is similar to the proof of Theorem 2.3.

Theorem 2.7 has the following corollary.

Corollary 2.8. For any triple system f\, and any homomorphic image F%
ofTi,

ex(n,F->) > ex(n,T^ -o(n3) (7)

In [NR2], we pose the following problem concerning the possibility of equal-
ity holding in (7). In this problem, we use the term that a triple system
J- is irreducible to mean that every pair of vertices of J- is contained in a
triple of f'.

Problem 2.9. For any nan 3-partite triple system T\, does there exist an
irreducible homomorphic image TI such that

(8)

If equality were to hold in (8), it would provide a generalization for triple
systems of the classical Erdos-Stone Theorem for graphs. Recall their the-
orem states the following (c.f. [ES]).

Theorem 2.10. (Erdos, Stone [1946]) For any graph T with x(F) =
r>2,

e.r(n,F) = ex(n, A'<3))(1 + o(l))

Since complete graphs are precisely irreducible (in the sense that every
pair of vertices is contained in an edge), K% is an irreducible homomorphic
image of any graph T with x(J~) = r.

3. PAIR DEGREE TURAN PROBLEMS

In this section, all problems will concern triple systems. Before discussing
these problems, we will need the following definition.

Definition 3.1. For a triple system Q and two vertices u,v £ V(Q), let

codeg({u,v}) = \{g £ Q : {u,v} C g}\

and set
codeg(g) = min {codeg({u,v}) : {u,v} & [V(G)}2}

The following problem was raised by S. Abassi in [A],

Problem 3.2. For every n = 0 (mod 4), ifG ^ [n]3 satisfies codeg(Q] > |,
/ o\

does Q admit a covering by vertex disjoint copies of K4 ?

In [CN], Problem 3.2 was answered negatively by the following theorem.
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Theorem 3.3. (Czygrinow, Nagle [1999]) For every e > 0, there exists
"o = no(f) so that for nil n > nn. there exists a triple system Q C [n]3

satisfying the follininni/ properties:

i. codeg(Q) > (f - f) n,

I o\

ii. Every collection of vertex disjoint copies of K\ contained in Q leaves
at least en vertices uncovered.

The proof of Theorem 3.3 is not difficult, but we do not give it here. We
encourage the Reader to see the paper [CM].

Note that Theorem 3.3 ran not be strengthened to assert that there
exists triple systems Q satisfying the condition in i. but which contain no
copies of /\".(,f). Indeed, by the condition in i., we are guarenteed that

(\ - ̂  «(") < codeg({u,v}) = 3|<5|, (9)
{u,i.}e[v(C)]a

hence it follows from Theorem 1.4 that for sufficiently large n, '

So in particular, the condition in i. guarantees the existence of at least one
copy of #4 .

Problem 3.2, while not true, suggests the following problem: Do the
conditions of Problem ,'i.2 gnare.nt.ee that Q contains even 1 copy of /Q ?
This problem is still open, and appears to be difficult. We discuss this
problem more generally below. Before doing so, we require the following
definition.

Definition 3.4. For a fixed triple system J - , define

c(^) = inf {r. : For all triple systems Q, codeg(Q) > c\V(Q)\ => 7 C Q}

Similar to the calculations in (9) and (10), one can conclude the following
easy upper bound for c(F] for all T

Analogously to Conjectures 1.3 and 1.6, one can make the following
conjectures.

Conjecture 3.5. Is it true that
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Conjecture 3.6. Let A",j3' - c be that, triple system given by 3 triples on 4
points. Is it true that

Note that similarly to Conjectures 1.3 and 1.6, the lower bounds are known.
They follow from constructions considered by Erdos, Hajnal, Sos and Si-
nionovits and also by Rodl (c.f. [El], [R]).

In [KRS], the authors were able to show a statement related to the
upper bound of r(A'., - e) which solved a Turan- Ramsey problem. If a
triple system Q satisfies codr<j(Q) > | undone assumes that the triples of £
assume a very regular distribution (i.e. as though they had been generated

t n »

"randomly") with positive density, then Q must contain a copy of K\ - e.
For more information on their statement, see [KRS]. On the dther hand,
concerning the same problem for the triple system K\ , we note here that
even under the similar conditions that Q satisfies codeg(Q) > | and the
triples of Q assume a very regular distribution with positive density (as in
[KRS]), it is still not known whether Q must contain a copy of A',, .
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