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Abstract. Szemerédi’s Regularity Lemma is a powerful tool in graph theory. It asserts that all
large graphs admit bounded partitions of their edge sets, most classes of which consist of uniformly
distributed edges. The original proof of this result was non-constructive, and a constructive proof
was later given by Alon, Duke, Lefmann, Rödl and Yuster.

Szemerédi’s Regularity Lemma was extended to hypergraphs by various authors. Frankl and
Rödl gave one such extension in the case of 3-uniform hypergraphs, which was later extended to
k-uniform hypergraphs by Rödl and Skokan. W.T. Gowers gave another such extension, using a
different concept of regularity than that of Frankl, Rödl and Skokan. Here we give a constructive
proof of a regularity lemma for hypergraphs.

§1. Introduction

Szemerédi’s Regularity Lemma [25,26] is an important tool in combinatorics, with applications
ranging across combinatorial number theory, extremal graph theory, and theoretical computer
science (see [13,14] for surveys of applications). The Regularity Lemma hinges on the notion of
ε-regularity: a bipartite graph H “ pX Y Y,Eq is ε-regular if for every X 1 Ď X with |X 1| ą ε|X|

and for every Y 1 Ď Y with |Y 1| ą ε|Y |, we have
ˇ

ˇdHpX
1, Y 1q ´ dHpX,Y q

ˇ

ˇ ă ε ,

where dHpX 1, Y 1q “ |HrX 1, Y 1s|{p|X 1||Y 1|q is the density of the bipartite graph HrX 1, Y 1s induced
on the sets X 1 and Y 1. Szemerédi’s Regularity Lemma [26] is then stated as follows.

Theorem 1.1 (Szemerédi’s Regularity Lemma). For all ε ą 0 and integers t0 ě 1, there
exist integers T0 “ T0pε, t0q and N0 “ N0pε, t0q so that every graph G on N ą N0 vertices admits
a partition of its vertex set V pGq “ V1 Y ¨ ¨ ¨ Y Vt with t0 ď t ď T0 satisfying

(1) V pGq “ V1 Y ¨ ¨ ¨ Y Vt is equitable: |V1| ď ¨ ¨ ¨ ď |Vt| ď |V1| ` 1;
(2) V pGq “ V1 Y ¨ ¨ ¨ Y Vt is ε-regular: all but at most ε

`

t
2
˘

pairs pVi, Vjq with 1 ď i ă j ď t

are ε-regular.

A constructive proof of Theorem 1.1 was later given by Alon, Duke, Lefmann, Rödl and Yuster.
Their result shows that the ε-regular partition V pGq “ V1 Y ¨ ¨ ¨ Y Vt in Theorem 1.1 can be
constructed in time OpMpnqq, where Mpnq “ Opn2.3727q is the time needed to multiply two nˆn
matrices with 0-1-entries over the integers (see [27]). In [12], the running time of OpMpnqq was
improved to Opn2q.
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Szemerédi’s Regularity Lemma has been extended to k-uniform hypergraphs, for k ě 3, by
various authors. Frankl and Rödl [7] gave one such extension to the case of 3-uniform hypergraphs,
using a concept they called pδ, rq-regularity (see upcoming Definition 3.12). This regularity lemma
was extended to k-uniform hypergraphs, for arbitrary k, by Rödl and Skokan [21]. Gowers [8, 9]
also established a regularity lemma for k-uniform hypergraphs, but used a concept of regularity
known as deviation (see upcoming Definition 3.6). While the concepts of pδ, rq-regularity and
deviation are different, the corresponding Regularity Lemmas have a similar conclusion. Roughly
speaking, both lemmas guarantee that every (large) k-uniform hypergraph admits a bounded
partition of its edge set, where most classes of the partition consist of ‘regularly distributed’ edges.
Moreover, both Regularity Lemmas for hypergraphs admit a corresponding Counting Lemma (see
upcoming Theorems 6.1 and 6.2, and see also [16]). The Counting Lemma allows one to estimate
the number of fixed subhypergraphs of a given isomorphism type within the ‘regular partition’ the
regularity lemma provides. The combined application of the Regularity and the Counting Lemma
is known as the Regularity Method for hypergraphs (see [17,19, 20,23] for surveys of applications).

Here we establish an algorithmic Hypergraph Regularity Lemma (see upcoming Theorem 4.7).
Roughly speaking, we will show that, for every (large) k-uniform hypergraph Hpkq, a ‘regular
partition’ of Hpkq can, in fact, be constructed in time polynomial in |V pHpkqq|. Thus, combining
the work here together with an appropriate Counting Lemma provides an Algorithmic Regularity
Method for hypergraphs. (An algorithmic regularity method for 3-uniform hypergraphs was
established by Haxell, Nagle, and Rödl [10] (see also [15]).)

Let us recall the most important part in the proof of Alon et al. [1] of the algorithmic
version of Theorem 1.1: while it is co-NP-complete to decide whether or not a given bipartite
graph H “ pX Y Y,Eq is ε-regular, one can decide in polynomial time if H is ε-regular or if it
is not ε1-regular for a suitable 0 ă ε1 “ ε1pεq ă ε. (These events are not necessarily exclusive.)
Moreover, in the latter case, the proof in [1] constructs, in polynomial time, a ‘witness’ of the
ε1-irregularity of H. In particular, the key to this proof is to check if both of the following two
properties hold or not for a suitably chosen constant δ “ δpεq ą 0:

piq all but δ|X| vertices x P X satisfy degpxq “ pd˘ δq|Y |, and
piiq all but δ|X|2 pairs of distinct vertices x ‰ x1 P X satisfy degpx, x1q “ pd˘ δq2|Y |.

(The rest of the algorithm is based on the argument of Szemerédi [25,26]. Using the outcome of
the checks above, it either confirms that a given partition is ε-regular, or it finds its refinement.)
Now, in the context of hypergraphs, it turns out that a suitable generalization of piq and piiq
above is the concept of deviation, introduced by Gowers [8, 9]. As such, deviation is well-suited
for proving an algorithmic version of the hypergraph regularity lemma, and so we follow this
approach.

To prove the algorithmic regularity lemma for hypergraphs, we will proceed along the usual
lines. As in the proof of Szemerédi [25,26] for graphs, we will consider sequences of partitions Pi,
i ě 1, of a hypergraph Hpkq. For each Pi, i ě 1, we consider the so-called index of Pi, denoted
indHpkqpPiq, which measures the mean-square density of Hpkq on Pi. When the partition Pi

of Hpkq is irregular, we refine Pi, in the usual way, to produce Pi`1. It is well-known that
indHpkqpPi`1q will be non-negligibly larger than indHpkqpPiq, so that this refining process must
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terminate after constantly many iterations. Now, as in the proof of Alon et al. [1] for graphs, to
make the refinement Pi`1 of Pi constructive, one must be able to construct ‘witnesses’ of the
irregularity of Pi. The novel element of our work does precisely this, and in Section 3, we state the
‘Witness-Construction Theorem’ (Theorem 3.16). In Section 4, we state the Algorithmic Regularity
Lemma (Theorem 4.7), and in Section 5, we show that Theorem 3.16 implies Theorem 4.7.

The remainder of the paper is devoted to proving Theorem 3.16. For this proof, we will need
several technical lemmas. Among these are Gowers’ Counting Lemma (see Theorems 6.1 and 6.2),
which we present in Section 6. As well, we will need an ‘Extension Lemma’ (Theorem 6.4), which
is a derivative of the Counting Lemma, which we also present in Section 6. Finally, we need an
additional lemma, which we call the ‘Negative-Extension Lemma’ (Theorem 7.2), which we state
and prove in Section 7. Using these tools, we prove Theorem 3.16 in Section 8. At the end of the
paper, we include an Appendix for the proofs of a few facts we need along the way.

In order to formally state the Algorithmic Hypergraph Regularity Lemma (Theorem 4.7),
and the related results of Theorems 3.16, 6.1, 6.2, 6.4, and 7.2, we will need some rather
technical background concepts and notation. These background concepts originated in the
papers [7–9, 16,21], and have also appeared in, e.g. [2, 3, 11]. In the next section, we will attempt
to provide some intuitive discussion for these concepts.

Acknowledgment. The authors are indebted to the Referees for their detailed reading and con-
structive suggestions.

§2. Hypergraph Regularity: an Intuitive Introduction

There are several natural ways to define a concept of “regularity” for k-uniform hypergraphs.
Recall that in the Szemerédi Regularity Lemma, the primary structure which undergoes regular-
ization is the edge set of a graph G, and the resulting auxiliary structure is a partition of the
corresponding vertex set. More briefly, 2-tuples (edges of G) are regularized against 1-tuples
(vertices of G). For k-uniform hypergraphs Hpkq, one may regularize k-tuples (edges of Hpkq)
against 1-tuples (vertices of Hpkq) (see [4, 6]), but when k ě 3 a corresponding counting lemma
fails to be true.

To overcome the problem above, a more refined approach is to regularize k-tuples (edges
of Hpkq) against pk ´ 1q-tuples (of V “ V pHpkqq), which yields an auxiliary partition of all
pk ´ 1q-tuples of V “ V pHpkqq. However, in order to gain control on the classes of pk ´ 1q-tuples,
we impose regularity on them as well, which leads to a partition of all pk ´ 2q-tuples of V . This
eventually forces partitions of vertices, pairs, triples, . . . , pk ´ 1q-tuples of V . Blocks of the
resulting family P of partitions of V are called complexes (see Definition 3.2 below), which consist
of a family H “ tHpjqukj“1 of j-uniform hypergraphs, 1 ď j ď k. We now outline the main idea
of a complex, and the properties we seek for it: for each 2 ď j ď k,

paq for each J P Hpjq, and for each pj ´ 1q-tuple I Ă J , we have I P Hpj´1q;
pbq Hpjq is ‘regularly distributed’ over the set of all cliques Kpj´1q

j of Hpj´1q.
We now attempt to make the property in pbq somewhat more precise.

For the complex H above, fix 2 ď j ď k, and let KjpHpj´1qq denote the family of j-tuples
spanning a clique Kpj´1q

j in Hpj´1q. Then, the property in paq says that Hpjq Ď KjpHpj´1qq, and
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so we say Hpj´1q underlies Hpjq. Since Hpjq Ď KjpHpj´1qq ‰ ∅ (for sake of discussion), we define
the density of Hpjq w.r.t. Hpj´1q by dj “ dpHpjq|Hpj´1qq “ |Hpjq|{|KjpHpj´1qq|. In this case, we
could record all of the densities of H by the sequence d “ pd2, . . . , dkq, which we call the density
sequence of the complex H.

To define a notion of regularity for H, fix 2 ď j ď k, and fix Qpj´1q Ď Hpj´1q for which
KjpQpj´1qq ‰ ∅. We define

dpHpjq|Qpj´1qq “
|Hpjq XKjpQpj´1qq|

|KjpQpj´1qq|

to be the density of Hpjq w.r.t. Qpj´1q. Now, for δj ą 0, we say that Hpjq is δj-regular w.r.t. Hpj´1q

if, for any Qpj´1q Ď Hpj´1q satisfying |KjpQpj´1qq| ą δj |KjpHpj´1qq|, we have
ˇ

ˇ

ˇ
dpHpjq|Qpj´1qq ´ dpHpjq|Hpj´1qq

ˇ

ˇ

ˇ
ă δj . (1)

Then the concept of δj-regularity in (1) imposes control on the structure of the j-graph Hpjq

with respect to the underlying pj ´ 1q-graph Hpj´1q. Since we impose such control on each pair
pHpjq,Hpj´1qq, 2 ď j ď k, we write δ “ pδ2, . . . , δkq and say that the complex H is δ-regular to
mean that each pair pHpjq,Hpj´1qq, 2 ď j ď k, is δj-regular.

We have now outlined that complexes H of interest should be δ-regular, where δ “ pδ2, . . . , δkq,
with some density sequence d “ pd2, . . . , dkq. One of the principle difficulties arising in hypergraph
regularization concerns the relationship between d and δ. In particular, one has to face the
following hierarchy of constants:

dk " δk " dk´1 " δk´1 " ¨ ¨ ¨ " d3 " δ3 " d2 " δ2 ą 0. (2)

This leads to difficulties in applications. We consider an algorithm which will decide when a
hypergraph Hpkq is “sufficiently regular” in the sense of deviation (see DEVpδq in Definition 3.7),
which was introduced by Gowers [8, 9] and which is a natural generalization of piq and piiq from
the introduction. In the context of Alon et al. [1],

if DEVpδq fails to be true for the complex H, then the corresponding “witness of
irregularity” will not be a single Qpk´1q Ď Hpk´1q, but rather a family of them.

This leads to the concept of pδ, rq-regularity (see Definition 3.12) from [7,21].
For a complex H which fails to satisfy DEVpδq, constructing the witness of irregularity

consisting of an r-tuple of subhypergraphs Qpk´1q
j Ď Hpk´1q, 1 ď j ď r, is the main technical part

of our work.

§3. Deviation and the Witness-Construction Theorem

In this section, we define the concept of deviation (DEV) (cf. Definition 3.6), and we present
some conditions which are sufficient for implying the property of deviation. We also consider the
concept of r-discrepancy (r-DISC) (cf. Definition 3.12), and present a result that we call the
Witness-Construction theorem (cf. Theorem 3.16). For these purposes, we need some supporting
concepts.
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3.1. Background concepts: cylinders, complexes and density. We begin with some basic
concepts. For a set X and an integer j ď |X|, let

`

X
j

˘

denote the set of all (unordered) j-tuples
from X. When X “ r`s “ t1, . . . , `u, we sometimes write more simply r`sj “

`

r`s
j

˘

(which we
will be careful not to confuse with the `-fold product r`s ˆ ¨ ¨ ¨ ˆ r`s). Given pairwise disjoint
sets V1, . . . , V`, denote by KpjqpV1, . . . , V`q the complete `-partite, j-uniform hypergraph with
`-partition V1Y¨ ¨ ¨YV`, which consists of all j-tuples from V1Y¨ ¨ ¨YV` meeting each Va, 1 ď a ď `,
at most once. We now define the concept of a ‘cylinder’.

Definition 3.1 (cylinder). For integers ` ě j ě 1, an p`, jq-cylinder Hpjq with vertex `-partition
V pHpjqq “ V1 Y ¨ ¨ ¨ Y V` is any subhypergraph of KpjqpV1, . . . , V`q. When |V1| “ ¨ ¨ ¨ “ |V`| “ m,
we say Hpjq is an pm, `, jq-cylinder.

In the context of Definition 3.1, fix j ď i ď ` and Λi P r`s
i. We denote by HpjqrΛis “

Hpjq
“
Ť

λPΛi
Vλ

‰

the sub-hypergraph of the p`, jq-cylinder Hpjq induced on
Ť

λPΛi
Vλ. In this

setting, HpjqrΛis is an pi, jq-cylinder.
We now prepare to define the concept of a complex. For an integer i ě j, let KipHpjqq denote

the family of all i-element subsets of V pHpjqq which span complete subhypergraphs in Hpjq.
Given an p`, j ´ 1q-cylinder Hpj´1q and an p`, jq-cylinder Hpjq, we say Hpj´1q underlies Hpjq if
Hpjq Ď KjpHpj´1qq. In other words, for every J P Hpjq and for every I P

`

J
j´1

˘

, we have I P Hpj´1q.

Definition 3.2 (complex). For integers 1 ď k ď `, an p`, kq-complex H “ tHpjqukj“1 with vertex
partition V1 Y ¨ ¨ ¨ Y V` is a collection of p`, jq-cylinders, 1 ď j ď k, so that

(1) Hp1q “ V1 Y ¨ ¨ ¨ Y V` is an p`, 1q-cylinder, i.e., is an `-partition;
(2) for each 2 ď j ď k, we have that Hpj´1q underlies Hpjq, i.e., Hpjq Ď KjpHpj´1qq.

In some cases, we use the notation Hpkq to denote an p`, kq-complex tHpjqukj“1.

We now define concept of density.

Definition 3.3 (density). For integers 2 ď j ď `, let Hpjq be an p`, jq-cylinder and let Hpj´1q

be an p`, j ´ 1q-cylinder. If KjpHpj´1qq ‰ ∅, we define the density of Hpjq w.r.t. Hpj´1q as

dpHpjq|Hpj´1qq “

ˇ

ˇHpjq XKjpHpj´1qq
ˇ

ˇ

ˇ

ˇKjpHpj´1qq
ˇ

ˇ

.

If KjpHpj´1qq “ ∅, we define dpHpjq|Hpj´1qq “ 0.

3.2. Deviation. In this subsection, we define the concept of deviation (DEV), and present some
conditions which are sufficient for implying the property of deviation. To that end, we need some
supporting concepts.

Definition 3.4 (p`, jq-octohedron). Let integers 1 ď j ď ` be given. The p`, jq-octohedron
Opjq “ Opjq` is the complete `-partite j-uniform hypergraph KpjqpU1, . . . , U`q, where |U1| “ ¨ ¨ ¨ “

|U`| “ 2, i.e., it is the complete p2, `, jq-cylinder.

For an p`, jq-cylinder Hpjq, we are interested in ‘labeled partite-embedded’ copies of Opjq in
Hpjq.
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Definition 3.5 (labeled partite-embedding). Let Hpjq be an p`, jq-cylinder, with `-partition
V pHpjqq “ V1 Y ¨ ¨ ¨ Y V`, and let Opjq “ KpjqpU1, . . . , U`q be the p`, jq-octohedron. A labeled,
partite-embedding of Opjq in Hpjq is an edge-preserving injection ψ : U1 Y ¨ ¨ ¨ YU` Ñ V1 Y ¨ ¨ ¨ Y V`

so that ψpUiq Ď Vi for each 1 ď i ď `. We write EMBpOpjq,Hpjqq to denote the family of all
labeled partite-embeddings ψ of Opjq in Hpjq.

We now define the concept of deviation.

Definition 3.6 (deviation (DEV)). Let Hpjq be a pj, jq-cylinder with underlying pj, j ´ 1q-
cylinder Hpj´1q. Let Hpjq and Hpj´1q have common vertex j-partition V pHpjqq “ V pHpj´1qq “

V1Y¨ ¨ ¨YVj , and let d “ dpHpjq|Hpj´1qq. For δ ą 0, we say that pHpjq,Hpj´1qq has pd, δq-deviation,
written DEVpd, δq, if

ÿ

v1,v11PV1

¨ ¨ ¨
ÿ

vj ,v1jPVj

ź

!

ωpJq : J P Kpjq
`

tv1, v
1
1u, . . . , tvj , v

1
ju
˘

)

ď δ
ˇ

ˇEMBpOpj´1q,Hpj´1qq
ˇ

ˇ,

where for every v1, v
1
1 P V1, . . . , vj , v

1
j P Vj , and for each J P Kpjq

`

tv1, v
1
1u, . . . , tvj , v

1
ju
˘

,

ωpJq “

$

’

&

’

%

1´ d if J P Hpjq,
´d if J P KjpHpj´1qqr Hpjq,
0 if J R KjpHpj´1qq.

It is easy to extend Definition 3.6 from pj, jq-cylinders to p`, kq-complexes.

Definition 3.7. Let δ “ pδ2, . . . , δkq and d “ pdΛj
: Λj P r`sj , 2 ď j ď kq be sequences of positive

reals, and let p`, kq-complex H “ tHpjqukj“1 be given. We say the complex H has DEVpd, δq if,
for each 2 ď j ď h and Λj P r`sj , pHpjqrΛjs,Hpj´1qrΛjsq has DEVpdΛj

, δjq.

For future reference, we present some easy sufficient conditions for the property of deviation
(cf. Definition 3.6). For that, we need the following generalization of Definition 3.5.

Definition 3.8 (labeled partite-embedding). Let Hpjq and Hpj´1q be given as in Defini-
tion 3.6, and let Spjq Ď Opjq “ KpjqpU1, . . . , Ujq be an arbitrary p2, j, jq-cylinder. We call an
injection ψ : U1 Y ¨ ¨ ¨ Y Uj Ñ V1 Y ¨ ¨ ¨ Y Vj a labeled partite-embedding of Spjq in pHpjq,Hpj´1qq if
it satisfies the following conditions:

(1) ψ is a labeled partite-embedding of Opj´1q “ Kpj´1qpU1, . . . , Ujq in Hpj´1q;
(2) for each J P Opjq “ KpjqpU1, . . . , Ujq, we have

J P Spjq ùñ ψpJq P Hpjq.

We call ψ a labeled, partite-induced embedding of Spjq in pHpjq,Hpj´1qq if it satisfies (1) and (2)
above, together with
p21q for each J P Opjq “ KpjqpU1, . . . , Ujq, we have

J P Spjq ðñ ψpJq P Hpjq.

We write EMBpSpjq, pHpjq,Hpj´1qqq to denote the family of all labeled partite-embeddings ψ of
Spjq in pHpjq,Hpj´1qq. We write EMBindpSpjq, pHpjq,Hpj´1qqq to denote the family of all labeled,
partite-induced embeddings ψ of Spjq in pHpjq,Hpj´1qq.
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We now consider the following two properties.

Definition 3.9 (COUNTemb,COUNTind). Let Hpjq and Hpj´1q be given as in Definition 3.8,
where d “ dpHpjq|Hpj´1qq. For δ ą 0, we say that pHpjq,Hpj´1qq has COUNTembpd, δq if the
following condition holds: for every p2, j, jq-cylinder ∅ Ď Spjq Ď Opjq “ KpjqpU1, . . . , Ujq, we have

ˇ

ˇEMBpSpjq, pHpjq,Hpj´1qqq
ˇ

ˇ “ p1˘ δqd|Spjq|
ˇ

ˇEMBpOpj´1q,Hpj´1qq
ˇ

ˇ. (3)

(Note that when Spjq “ ∅, it always holds that
ˇ

ˇEMBp∅, pHpjq,Hpj´1qqq
ˇ

ˇ “ p1˘ δqd0ˇ
ˇEMBpOpj´1q,Hpj´1qq

ˇ

ˇ, (4)

since every labeled partite-embedding ψ of ∅ in Hpjq is, equivalently, a labeled partite-embedding
of Opj´1q in Hpj´1q.) We say that pHpjq,Hpj´1qq has COUNTindpd, δq if the following condition
holds: for every p2, j, jq-cylinder ∅ Ď Spjq Ď Opjq “ KpjqpU1, . . . , Ujq,

ˇ

ˇEMBindpSpjq, pHpjq,Hpj´1qqq
ˇ

ˇ “ p1˘ δqd|Spjq|p1´ dq2j´|Spjq|ˇ
ˇEMBpOpj´1q,Hpj´1qq

ˇ

ˇ.

The following fact will be useful later in this paper. The proof is easy, and we give it in the
Appendix.

Fact 3.10. Suppose Hpjq and Hpj´1q are given as in Definition 3.9, where d “ dpHpjq|Hpj´1qq ą 0,
and let δ ą 0 be given. Suppose, moreover, that |EMBpOpj´1q,Hpj´1qq| “ Ωpn2j

q, where |Vi| “
Θpnq for all i P rjs.

(1) pHpjq,Hpj´1qq has COUNTembpd, δq if, and only if, pHpjq,Hpj´1qq has COUNTindpd, δq;
(2) If pHpjq,Hpj´1qq has COUNTembpd, δq, then pHpjq,Hpj´1qq has DEVpd, δq.

3.3. Discrepancy, and the Witness-Construction Theorem. In this subsection, we define
the concept of r-discrepancy (r-DISC), and present the Witness-Construction Theorem (cf. The-
orem 3.16). We begin with the following extension of the concept of density (cf. Definition 3.3).

Definition 3.11 (r-density). Let Hpjq and Hpj´1q be given as in Definition 3.3, and let integer
r ě 1 be given. Let Qpj´1q

1 , . . . ,Qpj´1q
r Ď Hpj´1q satisfy

Ť

iPrrsKjpQpj´1q
i q ‰ ∅. We define the

r-density of Hpjq w.r.t. Qpj´1q
1 , . . . ,Qpj´1q

r as

dpHpjq|Qpj´1q
1 , . . . ,Qpj´1q

r q “

ˇ

ˇHpjq X
Ť

iPrrsKjpQpj´1q
i q

ˇ

ˇ

ˇ

ˇ

Ť

iPrrsKjpQpj´1q
i q

ˇ

ˇ

.

We now define the concept of r-discrepancy.

Definition 3.12 (r-discrepancy (r-DISC)). Let Hpjq and Hpj´1q be given as in Definition 3.3,
where d “ dpHpjq|Hpj´1qq. For δ ą 0 and an integer r ě 1, we say that pHpjq,Hpj´1qq has
pd, δ, rq-discrepancy, written DISCpd, δ, rq, if for any collection Qpj´1q

1 , . . . ,Qpj´1q
r Ď Hpj´1q,

ˇ

ˇ

ď

iPrrs

KjpQpj´1q
i q

ˇ

ˇ ą δ|KjpHpj´1qq| ùñ
ˇ

ˇdpHpjq|Qpj´1q
1 , . . . ,Qpj´1q

r q ´ d
ˇ

ˇ ă δ. (5)

For brevity, we sometimes refer to pd, δ, rq-discrepancy as r-discrepancy, and sometimes write
DISCpd, δ, rq as r-DISC.

We proceed with the following remark.
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Remark 3.13. Note that 1-discrepancy is usually referred to as discrepancy, and 1-DISC is
usually denoted by DISC (cf. [15]). l

We will also need the following concept, related to Definition 3.12.

Definition 3.14 (r-witness). Let Hpjq and Hpj´1q be given as in Definition 3.12, where d “
dpHpjq|Hpj´1qq. Suppose that pHpjq,Hpj´1qq does not have DISCpd, δ, rq, for some δ ą 0 and
integer r ě 1. We call any collection Qpj´1q

1 , . . . ,Qpj´1q
r Ď Hpj´1q for which

ˇ

ˇ

ď

iPrrs

KjpQpj´1q
i q

ˇ

ˇ ą δ|KjpHpj´1qq| but
ˇ

ˇdpHpjq|Qpj´1q
1 , . . . ,Qpj´1q

r q ´ d
ˇ

ˇ ě δ.

an r-witness of  DISCpd, δ, rq.

We finally present the Witness-Construction Theorem, which concerns a pk, kq-complex H
satisfying the following setup.

Setup 3.15. Let H “ Hpkq “ tHpjqukj“1 be a pk, kq-complex, where Hp1q “ V1 Y ¨ ¨ ¨ Y Vk has
n ď |Vi| ď n` 1 for all i P rks. Let

dk “
`

dΛj
: Λj P rksj , 2 ď j ď k

˘

satisfy that, for each 2 ď j ď k and for each Λj P rksj ,

dΛj
“ dpHpjqrΛjs|Hpj´1qrΛjsq.

Note, in particular, that drks “ dpHpkq|Hpk´1qq. We call dk the density sequence for Hpkq. Write

Hpk´1q “ tHpjqu
k´1
j“1 and dk´1 “

`

dΛj
: Λj P rksj , 2 ď j ď k ´ 1

˘

,

so that dk´1 is the density sequence for Hpk´1q.

The Witness-Construction Theorem is now given as follows.

Theorem 3.16 (Witness-Construction Theorem). Let integer k ě 2 be fixed. For all
dk, δk ą 0, there exists δ1k ą 0 so that for all dk´1 ą 0, there exists δk´1 ą 0 so that, . . . , for all
d2 ą 0, there exist δ2 ą 0, positive integer r0, and positive integer n0 so that the following holds.

Set δk´1 “ pδ2, . . . , δk´1q. Let H “ Hpkq be a pk, kq-complex with density sequence dk, as
given as in Setup 3.15, where n ě n0. Suppose dk satisfies that, for each 2 ď j ď k and for each
Λj P rksj, dΛj

ě dj. Assume that
(1) Hpk´1q has DEVpdk´1, δk´1q, but that
(2) pHpkq,Hpk´1qq does not have DEVpdrks, δkq.

Then, there exists an algorithm which constructs, in time Opn3kq, an r-witness Qpk´1q
1 , . . . ,

Qpk´1q
r Ď Hpk´1q of  DISCpdrks, δ1k, rq, for some r ď r0.

Remark 3.17. In Theorem 3.16, one has ‘dueling’ constants δk, δ1k ą 0 only for the k-uniform
hypergraph Hpkq P Hpkq. Indeed, the hypothesis of Theorem 3.16 assumes that the pk, k ´ 1q-
complex Hpk´1q “ tHp1q, . . . ,Hpk´1qu enjoys DEVpdk´1, δk´1q. In the same hypothesis, the
parameter δk measures the ‘non-deviation’ of pHpkq,Hpk´1qq, while in the conclusion the parameter
δ1k measures the corresponding ‘non-discrepancy’ of pHpkq,Hpk´1qq. l
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§4. Algorithmic Hypergraph Regularity Lemma

In this section, we state an Algorithmic Hypergraph Regularity Lemma (see Theorem 4.7,
below) for the property of deviation. To state this lemma, we still need some more concepts.

4.1. Families of partitions. Theorem 4.7 provides a well-structured family of partitions P “

tPp1q, . . . ,Ppk´1qu of vertices, pairs, . . . , and pk ´ 1q-tuples of a given vertex set. We will define
the properties of P in upcoming Definitions 4.1 and 4.2, but we first need to establish some
notation and concepts.

We first discuss the structure of these partitions inductively, following the approach of [16]. Let
k be a fixed integer and V be a set of vertices. Let Pp1q “ tV1, . . . , V|Pp1q|u be a partition of V .
For every 1 ď j ď |Pp1q|, let CrossjpPp1qq “ KpjqpV1, . . . , V|Pp1q|q be the family of all crossing
j-tuples J , i.e., the set of j-tuples which satisfy |J X Vi| ď 1 for every 1 ď i ď |Pp1q|.

Suppose that partitions Ppiq of CrossipPp1qq have been defined for all 1 ď i ď j ´ 1. Then
for every I P Crossj´1pPp1qq, there exists a unique class Ppj´1q “ Ppj´1qpIq PPpj´1q so that I P
Ppj´1q. For every J P CrossjpPp1qq, we define the polyad of J by P̂pj´1qpJq “

Ť
 

Ppj´1qpIq : I P
rJsj´1(. Define the family of all polyads P̂pj´1q “

 

P̂pj´1qpJq : J P CrossjpPp1qq
(

, which we
view as a set (as opposed to a multiset, since P̂pj´1qpJq “ P̂pj´1qpJ 1q may hold for J “ J 1).
To simplify notation, we often write the elements of P̂pj´1q as P̂pj´1q P P̂pj´1q (dropping the
argument J).

Observe that tKjpP̂pj´1qq : P̂pj´1q P P̂pj´1qu is a partition of CrossjpPp1qq. The structural
requirement on the partition Ppjq of CrossjpPp1qq is

Ppjq ă tKjpP̂pj´1qq : P̂pj´1q P P̂pj´1qu , (6)

where ‘ă’ denotes the refinement relation of set partitions. Note that (6) inductively implies that

PpJq “
 

P̂piqpJq
(j´1
i“1 , where P̂piqpJq “

ď

 

PpiqpIq : I P rJsi
(

, (7)

is a pj, j ´ 1q-complex (since each P̂piqpJq is a pj, iq-cylinder). We may now give Definitions 4.1
and 4.2.

Definition 4.1 (a-family of partitions). Let V be a set of vertices, and let k ě 2 be a fixed
integer. Let a “ pa1, . . . , ak´1q be a sequence of positive integers. We say P “ Ppk ´ 1,aq “
tPp1q, . . . ,Ppk´1qu is an a-family of partitions on V , if it satisfies the following:

(a ) Pp1q is a partition of V into a1 classes,
(b ) Ppjq is a partition of CrossjpPp1qq refining tKjpP̂pj´1qq : P̂pj´1q P P̂pj´1qu where, for

every P̂pj´1q P P̂pj´1q, |tPpjq P Ppjq : Ppjq Ď KjpP̂pj´1qqu| “ aj .
Moreover, we say P “ Ppk ´ 1,aq is t-bounded, if maxta1, . . . , ak´1u ď t.

4.2. Properties of families of partitions. In this subsection, we describe some properties we
would like an a-family of partitions P “ Ppk ´ 1,aq to have.

Definition 4.2 (pη, δ,ěD,aq-family). Let V be a set vertices, let η ą 0 be fixed, and let k ě 2
be a fixed integer. Let δ “ pδ2, . . . , δk´1q and D “ pD2, . . . , Dk´1q be sequences of positives, and
let a “ pa1, . . . , ak´1q be a sequence of positive integers.
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We say an a-family of partitions P “ Ppk´ 1,aq on V is an pη, δ,ěD,aq-family if it satisfies
the following conditions:

(a ) Pp1q “ tVi : i P ra1su is an equitable vertex partition, i.e., t|V |{a1u ď |Vi| ď r|V |{a1s for
i P ra1s;

(b )
ˇ

ˇrV sk r CrosskpPp1qq
ˇ

ˇ ď η|V |k;
(c ) all but η|V |k many k-tuples K P CrosskpPp1qq satisfy that for each 2 ď j ď k ´

1, and for each J P
`

K
j

˘

, the pair pPpjqpJq, P̂pj´1qpJqq has DEVpdJ , δjq, where dJ “
dpPpjqpJq|P̂pj´1qpJqq ě Dj .

Note that in an pη, δ,ěD,aq-family of partitions P on V , properties (b) and (c) above imply
that all but 2η|V |k many k-tuples K P rV sk belong to CrosskpPp1qq and satisfy that, for each
2 ď j ď k ´ 1, and for each J P

`

K
j

˘

, the pair pPpjqpJq, P̂pj´1qpJqq has DEVpdJ , δjq, where
dJ “ dpPpjqpJq|P̂pj´1qpJqq ě Dj .

For future reference, we also define the following concept, related to property (c) in Definition 4.2.

Definition 4.3 (pδ,ěDq-typical polyad). Suppose P “ Ppk´1,aq is an pη, δ,ěD,aq-family
of partitions on a vertex set V , where δ “ pδ2, . . . , δk´1q and D “ pD2, . . . , Dk´1q. We say a
polyad P̂pk´1q P P̂pk´1q is pδ,ěDq-typical if

paq KkpP̂pk´1qq ‰ ∅, and fixing any K P KkpP̂pk´1qq, if
pbq the corresponding pk, k ´ 1q-complex PpKq (cf. (7)) satisfies that, for each 2 ď j ď

k ´ 1, and for each J P
`

K
j

˘

, the pair pPpjqpJq, P̂pj´1qpJqq has DEVpdJ , δjq, where
dJ “ dpPpjqpJq|P̂pj´1qpJqq ě Dj .

Remark 4.4. Note that property pcq of Definition 4.2 can be re-written as
ÿ

!ˇ

ˇ

ˇ
KkpP̂pk´1qq

ˇ

ˇ

ˇ
: P̂pk´1q P P̂pk´1q is not pδ,ěDq-typical

)

ď η|V |k.

l

Note that in an pη, δ,ěD,aq-family P “ tPp1q, . . . ,Ppk´1qu (cf. Definition 4.2), the vertices,
pairs, . . . , and pk ´ 1q-tuples of V are under regular control. The following definition describes
how the family P will control the edges of a hypergraph Hpkq, where V “ V pHpkqq.

Definition 4.5 (pHpkq,Pq has DEVpδkq). Let δk ą 0 be given. For a k-graph Hpkq and an
a-family of partitions P “ Ppk ´ 1,aq on V “ V pHpkqq, we say pHpkq,Pq has DEVpδkq if
ˇ

ˇ

ď

 

KkpP̂pk´1qq : P̂pk´1q P P̂pk´1q satisfies that

pHpkq, P̂pk´1qq does not have DEV
`

dpHpkq
ˇ

ˇP̂pk´1qq, δk
˘(
ˇ

ˇ ď δk|V |
k.

Before we state the algorithmic hypergraph regularity lemma, we say a word about some
notation we use in it.

Remark 4.6. Let D “ pD2, . . . , Dk´1q P p0, 1sk´1 be a sequence, and for each 2 ď i ď k ´ 1,
let δi : p0, 1sk´i Ñ p0, 1q be a function (of k ´ i many p0, 1s variables), where we write δ “
pδ2, . . . , δk´1q. We shall use the notation

δpDq “ pδipDi, . . . , Dk´1q : 2 ď i ď k ´ 1q
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to denote the sequence of function values whose ith coordinate, 2 ď i ď k´ 1, is δipDi, . . . , Dk´1q.
We consider this concept since, in most applications of Theorem 4.7, one needs the value δi to be
sufficiently small not only w.r.t. Di, but also Di`1, . . . , Dk´1. l

We now state the algorithmic hypergraph regularity lemma.

Theorem 4.7 (Algorithmic Hypergraph Regularity Lemma). Let k ě 2 be a fixed integer,
and let η, δk ą 0 be fixed positives. For each 2 ď i ď k ´ 1, let δi : p0, 1sk´i Ñ p0, 1q be a function,
and set δ “ pδ2, . . . , δk´1q. Then, there exist t, n0 P N so that the following holds.

For every k-uniform hypergraph Hpkq with |V pHpkqq| “ n ě n0, one may construct, in time
Opn3kq, a family of partitions P “ Ppk ´ 1,aPq of V pHpkqq with the following properties:

(i ) P is a t-bounded pη, δpDq,ěD,aPq-family on V pHpkqq (cf. Remark 4.6);
(ii ) pHpkq,Pq has DEVpδkq.

We proceed with the following remark.

Remark 4.8. Similarly as in Szemerédi [25,26] for graphs, it is well-known that one can prove a
hypergraph regularity lemma which ‘regularizes’ not one, but multiple hypergraphs Hpkq

1 , . . . ,Hpkq
s

(on a common vertex set V ) simultaneously. More precisely, in the context of Theorem 4.7,
the t-bounded pη, δpDq,ěD,aPq-family above will satisfy that, for each 1 ď i ď s, the pair
pHpkq

i ,Pq has DEVpδkq, where t “ tps, k, η, δk, δq and |V | ě n0 “ n0ps, k, η, δk, δq.
We shall prove Theorem 4.7 by induction on k ě 2. To avoid formalism, we shall prove the

case s “ 1, but our induction hypothesis will assume the general case. l

Remark 4.9. We do not expect the running time Opn3kq in the conclusion Theorem 4.7 to be
optimal. For example, a similar algorithm for 3-uniform hypergraphs was proven by Haxell et
al. [10], which ran in time Opn6q (as opposed to Opn9q).

§5. Proof of Theorem 4.7

The proof of Theorem 4.7 is by induction on k ě 2. The induction begins with k “ 2 as a
known base case. Indeed, Alon et al. [1] proved an algorithmic version of the Szemerédi Regularity
Lemma, which gives Theorem 4.7 (k “ 2) with DEV replaced by DISC (and with faster running
time). Gowers [8,9] proved that DEV and DISC are equivalent properties when k “ 2 so the
base case of Theorem 4.7 holds. We assume Theorem 4.7 holds through k ´ 1 ě 2, and prove it
for k ě 3. To that end, we need a few supporting considerations.

5.1. Supporting material. Suppose Hpkq is a k-uniform hypergraph with vertex set V “

V pHpkqq, where |V | “ n. Let P “ Ppk ´ 1,aq be an a-family of partitions on V . We define the
index of P w.r.t. Hpkq as

indHpkqpPq “
1
nk

ÿ

!

d2pHpkq|P̂pk´1qq
ˇ

ˇKkpP̂pk´1qq
ˇ

ˇ : P̂pk´1q P P̂pk´1q
)

.

Clearly,
0 ď indHpkqpPq ď 1. (8)

The proof of Theorem 4.7 is similar to that of Szemerédi [25,26], where we will use the following
so-called Index-Pumping Lemma (Lemma 5.1 below). To introduce this lemma, let Hpkq be
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a k-uniform hypergraph with vertex set V “ V pHpkqq, where |V | “ n. Since this proof is by
induction on k, suppose we already have a ‘regular partition’ P “ Ppk ´ 1,aq of V up through
k ´ 1. More precisely,

‚ let P “ Ppk ´ 1,aq be an arbitrary t-bounded, pη, δpDq,ěD,aq-family on V .

We now test how Hpkq behaves on P. In particular, we test whether pHpkq,Pq has DEVpδkq,
which we may do in time Opn2kq. Indeed,

‚ for each polyad P̂pk´1q P P̂pk´1q, we test (by using Definition 3.6) whether or not
pHpkq, P̂pk´1qq has DEVpdP̂pk´1q , δkq, where dP̂pk´1q “ dpHpkq|P̂pk´1qq.

We arrive at two cases.

Case 1. Suppose we find that most polyads P̂pk´1q P P̂pk´1q satisfy that pHpkq, P̂pk´1qq has
DEVpdP̂pk´1q , δkq. Then we stop, and P is the partition we seek in Theorem 4.7.

Case 2. Suppose we find many polyads P̂pk´1q P P̂pk´1q for which the pair (Hpkq, P̂pk´1qq fails
to have DEVpdP̂pk´1q , δkq. Then, for each such P̂pk´1q P P̂pk´1q,

‚ Theorem 3.16 builds (in time Opn3kqq an rP̂pk´1q-witness ~Qpk´1q
P̂pk´1q “ tQ

pk´1q
1 , . . . ,Qpk´1q

rP̂pk´1q u

of  DISCpdP̂pk´1q , rδk, rP̂pk´1qq,

where rδk “ rδkpδkq ą 0 depends on δk, and where rP̂pk´1q ď rpDq, where rpDq depends on D.
Now,

‚ Lemma 5.1 (below) constructs, in time Opnk´1q, a new partition P 1 from P and the
witnesses ~Qpk´1q

P̂pk´1q , over those polyads P̂pk´1q P P̂pk´1q failing to have DEVpdP̂pk´1q , δkq,
where

indHpkqpP̂
1q ě indHpkqpPq `

rδ4
k

2 .

We now state the Index-Pumping Lemma precisely.

Lemma 5.1 (Index-Pumping Lemma). Fix an integer k ě 2, and let ν, rδk ą 0 be fixed. For
each 2 ď i ď k ´ 1, let δi : p0, 1sk´i Ñ p0, 1q be a function, where we set δ “ pδ2, . . . , δk´1q.
Let r : p0, 1sk´2 Ñ N be an arbitrary function. Let Dold “ pDold

2 , . . . , Dold
k´1q P p0, 1sk´2 and

aold “ pa
old
1 , . . . , aold

k´1q P Nk´1 be fixed. Then, there exist Dnew “ pD
new
2 , . . . , Dnew

k´1q P p0, 1sk´2,
anew “ pa

new
1 , . . . , anew

k´1q P Nk´1, and n0 P N so that the following holds.
Suppose Hpkq is a k-uniform hypergraph with vertex set V “ V pHpkqq, where |V | “ n ě n0.

Suppose Pold “ Poldpk ´ 1,aq is a told-bounded pν, δpDoldq,ěDold,aoldq-family on V , where
told “ maxtaold

1 , . . . , aold
k´1u and where δpDoldq “

`

δipD
old
i , . . . , Dold

k´1q
˘k´1
i“2 . Suppose that P̂

pk´1q
˚ Ď

P̂pk´1q is a given collection of polyads satisfying the following properties:

(1) @ P̂pk´1q P P̂
pk´1q
˚ , one is given an rP̂pk´1q-witness ~Qpk´1q

P̂pk´1q of  DISCpdP̂pk´1q , rδk, rP̂pk´1qq,
where rP̂pk´1q ď rpDoldq “ rpDold

2 , . . . , Dold
k´1q;

(2)
ÿ

!

ˇ

ˇKkpP̂pk´1qq
ˇ

ˇ : P̂pk´1q P P̂
pk´1q
˚

)

ě rδkn
k.

Then,
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paq there exists a tnew-bounded pν, δpDnewq,ěDnew,anewq-family Pnew “ Pnewpk ´ 1,anewq

on V for which

indHpkqpPnewq ě indHpkqpPoldq `
rδ4
k

2 ,

where tnew “ maxtanew
1 , . . . , anew

k´1u and where δpDnewq “
`

δipD
new
i , . . . , Dnew

k´1q
˘k´1
i“2 .

pbq Moreover, there exists an algorithm which, in time Opnk´1q, constructs the partition Pnew

above from Pold and the given collection of witnesses t ~Qpk´1q
P̂pk´1q : P̂pk´1q P P̂

pk´1q
˚ u.

Lemma 5.1 is essentially given as Lemma 8.3 of [21] and Lemma 6.3 of [9]. The proof of
Lemma 5.1 is given in [9, 21], but with no focus to being algorithmic. We shall not give a formal
proof of Lemma 5.1, but we will sketch a proof to indicate how its algorithmic part is obtained.

Indeed, the approach in [21] is similar to Szemerédi’s [25,26]. Consider the Venn diagram of
the intersections of the rP̂pk´1q-witnesses ~Qpk´1q

P̂pk´1q , over P̂pk´1q P P̂
pk´1q
˚ . By Statement (1) in the

hypothesis of Lemma 5.1, these witnesses are given to us. (In [21], these witnesses are assumed
to exist, but here, we will build them with Theorem 3.16.) This Venn diagram has at most

2|P̂
pk´1q
˚ |rpDoldq

regions (this number is independent of n), where each region is a pk ´ 1, k ´ 1q-cylinder. This
Venn diagram defines a refinement P 1

old of Pold, so that P 1
old is itself a partition. The index of

P 1
old will be larger than that of Pold on account of the fact that, in Statement (2), we assumed

many k-tuples were lost to polyads P̂pk´1q P P̂
pk´1q
˚ . The pk ´ 1, k ´ 1q-cylinders of P 1

old may
not have DEVpδkq, so we apply Theorem 4.7 to each (where we assume, by induction on k, that
Theorem 4.7 is algorithmic for k´ 1 (cf. Remark 4.8)). This process produces the partition Pnew,
where it is well-known that, as a refinement of P 1

old, we have indHpkqpPnewq ě indHpkqpP
1
oldq.

For the formal details of this outline, see [9, 21].

5.2. Proof of Theorem 4.7. The proof of Theorem 4.7 was discussed informally when we
introduced the Index-Pumping Lemma. Here, we proceed with the formal details.

Let η, δk ą 0 be given. For each 2 ď i ď k ´ 1, let δi : p0, 1sk´i Ñ p0, 1q be a function, and set
δ “ pδ2, . . . , δk´1q. We begin our argument by defining some auxiliary parameters.

5.2.1. Auxiliary parameters for Theorem 4.7. In all that follows, set

dk “ δ̄k “ ν “
1
3 mintδk, ηu and t0 “ r2{νs. (9)

Let
rδk “ δ1k,Thm.3.16pdk, δ̄kq (10)

be the constant guaranteed by the Witness-Construction Theorem (Theorem 3.16). More generally,
recall that Theorem 3.16 has the following quantification:

@ k, dk, δk, D δ
1
k : @ dk´1, D δk´1 : . . .@ d2, D δ2, r0, n0 : . . .

This means that for each 2 ď i ď k ´ 1, the constant δi (which is guaranteed to exist by
Theorem 3.16) depends on dj , for all i ď j ď k ´ 1 (which were given earlier). In other words,
Theorem 3.16 guarantees the existence of the following function

δi,Thm.3.16pdk, xk´1, . . . , xiq : tdku ˆ p0, 1sk´i´1 Ñ p0, 1q (11)
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where xk´1 “ dk´1, . . . , xi “ di P p0, 1s are variables. Similarly, with variables xk´1 “

dk´1, . . . , x2 “ d2 P p0, 1s, let

r0pdk, xk´1, . . . , x2q : tdku ˆ p0, 1sk´2 Ñ N (12)

be the function guaranteed by the Theorem 3.16. We shall assume, w.l.o.g., that for each
2 ď i ď k ´ 1 and for every xk´1, . . . , xi P p0, 1s, we have

δipxk´1, . . . , xiq ď δi,Thm.3.16pdk, xk´1, . . . , xiq. (13)

Indeed, for otherwise, we would replace the given function δi with the function δi,Thm.3.16 and
produce a partition P which is ‘more regular’ than was sought. In what follows, we set
δ “ pδ2, . . . , δkq, and we emphasize that, in what follows,

k, ν, rδk, δ, and r are fixed (as a result of (9)–(13)). (14)

It remains to define the promised integer t. Similarly as in the proof of Szemerédi [25, 26],
this integer will be determined by an iterative procedure using the Index-Pumping Lemma
(Lemma 5.1). To that end, recall that Lemma 5.1 has the following quantification:

@ k, ν, rδk, δ, r,Dold,aold, DDnew,anew, n0 : . . .

We apply Lemma 5.1 with the fixed choices k, ν, rδk, δ, and r from (14) so that Lemma 5.1 defines
functions

DnewpDold,aoldq “Dnewpν, rδk, δ, r “ r0,Dold,aoldq P p0, 1sk´2,

and anewpDold,aoldq “ anewpν, rδk, δ, r “ r0,Dold,aoldq P Nk´1, (15)

where Dold P p0, 1sk´2 and aold P Nk´1 are sequences of variables. (Henceforth, we make the
abbreviations D “Dnew and a “ anew.) Now, we successively define sequences Dpiq P p0, 1sk´2

and apiq P Nk´1, as follows. With t0 given in (9), set

Dp1q “ pd2 “ 1, . . . , dk´1 “ 1q and ap1q “ pa
p1q
1 “ t0, a

p1q
2 “ 1, . . . , ap1qk´1 “ 1q. (16)

For i ě 2, set (cf. (15))

Dpiq “DpDpi´1q,api´1qq “ pd
piq
2 , . . . , d

piq
k´1q,

apiq “ apDpi´1q,api´1qq “
´

a
piq
1 , . . . , a

piq
k´1

¯

,

and ti “ max
!

a
piq
1 , . . . , a

piq
k´1

)

(17)

(recall the functions given in (15)). Set (cf. (10))

t “ max
1ďiďistop

ti, where istop “

[

2
rδ4
k

_

. (18)

This concludes the description of parameters we need to prove Theorem 4.7.
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5.2.2. The argument (algorithm) for Theorem 4.7. Let Hpkq be a k-uniform hypergraph with
vertex set V “ V pHpkqq, where we assume n “ |V | is sufficiently large. Our goal is to construct,
in time Opn3kq, a family of partitions P “ Ppk ´ 1,aPq of V which is t-bounded (cf. (18)),
which is an pη, δpDq,ěD,aq-family, where pHpkq,Pq has DEVpδkq, and where the sequences D
and a will be given by Dpiq and apiq (cf. (16) and (17)), resp., for some 1 ď i ď istop (cf. (18)).

To begin, let V “ V1 Y ¨ ¨ ¨ Y Vt0 (cf. (9)) be a vertex partition satisfying tn{t0u ď |Vh| ď rn{t0s,
for each 1 ď h ď t0. Let P1 “ tP

p1q
1 , . . . ,P

pk´1q
1 u be an initial family of partitions, where for

each 2 ď j ď k´1, the partition P
pjq
1 consists of the

`

t0
j

˘

many pj, jq-cylinders KpjqpVh1 , . . . , Vhj
q,

where 1 ď h1 ă ¨ ¨ ¨ ă hj ď t0. Then, P1 is a t0-bounded pν, δpDp1qq,ěDp1q,ap1qq-family of
partitions (cf. (16)). Indeed, all but

t0

ˆ

rn{t0s

2

˙

nk´2 ă
nk

t0

p9q
ă νnk

many k-tuples K P
`

V
k

˘

belong to CrosskpP
p1q
1 q, and every K P CrosskpP

p1q
1 q satisfies that,

for every 2 ď j ď k ´ 1, and for every J P
`

K
j

˘

, the pair pPpjqpJq, P̂pj´1qpJqq has DEVp1, 0q
(cf. Conditions (a)–(c) of Definition 4.2).

For an integer 1 ď i ă istop (cf. (18)), assume P1, . . . ,Pi are constructed families of partitions
of V , where

Pi “ Pipk ´ 1,aiq is a ti-bounded pν, δpDpiqq,ěDpiq,apiqq-family, (19)

for Dpiq, apiq and ti given in (16)–(17). We proceed with the following Steps 1–4.

Step 1. Identify, in time Opn2kq, the sets

P̂
pk´1q
i, DEV “

!

P̂pk´1q P P̂
pk´1q
i : pHpkq, P̂pk´1qq does not have DEVpdpHpkq|P̂pk´1qq, δ̄kq

)

,

P̂
pk´1q
i,typ “

!

P̂pk´1q P P̂
pk´1q
i : P̂pk´1q is pδpDpiqq,ěDpiqq-typical (cf. Definition 4.5)

)

,

P̂
pk´1q
i,atyp “

!

P̂pk´1q P P̂
pk´1q
i : P̂pk´1q is not pδpDpiqq,ěDpiqq-typical

)

.

Identify, in time Opnkq, the sets (cf. (9))

P̂
pk´1q
i,dense “

!

P̂pk´1q P P̂
pk´1q
i : dpHpkq|P̂pk´1qq ě dk

)

, P̂
pk´1q
i,sparse “ P̂

pk´1q
i r P̂

pk´1q
i,dense.

Identify, in time Op1q, the set

P̂
pk´1q
i,˚ “ P̂

pk´1q
i, DEV X P̂

pk´1q
i,typ X P̂

pk´1q
i,dense. (20)

(The last identification uses that |P̂pk´1q
i | “ Op1q.)

Step 2. Compute the sum

Si “
ÿ

!ˇ

ˇ

ˇ
KkpP̂pk´1qq

ˇ

ˇ

ˇ
: P̂pk´1q P P̂

pk´1q
i,˚

)

.

(Since Si “ Opnkq has Oplognq many digits, Step 2 is done in time Oplognq.) If Si ě δ̄kn
k

(cf. (9)), we proceed to Step 3. If Si ă δ̄kn
k, then we stop, and the promised partition is P “ Pi.

Indeed, since
P̂
pk´1q
i, DEV Ď P̂

pk´1q
i,˚ Y P̂

pk´1q
i,atyp Y P̂

pk´1q
i,sparse,
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we have (cf. Remark 4.4)
ÿ

!ˇ

ˇ

ˇ
KkpP̂pk´1qq

ˇ

ˇ

ˇ
: P̂pk´1q P P̂

pk´1q
i, DEV

)

ď Si `
ÿ

!ˇ

ˇ

ˇ
KkpP̂pk´1qq

ˇ

ˇ

ˇ
: P̂pk´1q P P̂

pk´1q
i,atyp

)

`
ÿ

!ˇ

ˇ

ˇ
KkpP̂pk´1qq

ˇ

ˇ

ˇ
: P̂pk´1q P P̂

pk´1q
i,sparse

)

ă δ̄kn
k ` ηnk ` dkn

k
p9q
ă δkn

k,

so that P “ Pi has property DEVpδkq (cf. Definition 4.3). Moreover, since Pi is a ti-bounded
pν, δpDpiqq,ěDpiq,apiqq-family, with ν ă η (cf. (9)), then it is also an pη, δpDpiqq,ěDpiq,apiqq-
family (cf. (9)), as desired.

Step 3. If Si ě δ̄kn
k, then we will apply Theorem 3.16 to each P̂pk´1q P P̂

pk´1q
i,˚ . We first verify

that the hypothesis of Theorem 3.16 will be satisfied. To that end, fix P̂pk´1q P P̂
pk´1q
i,˚ , and let

P be the corresponding pk, k ´ 1q-complex (cf. (7)). In the context of Theorem 3.16, P plays the
role of Hpk´1q, and pHpkq XKkpP̂pk´1qqq YP plays the role of Hpkq. Since

P̂pk´1q P P̂
pk´1q
i,˚

p20q
Ď P̂

pk´1q
i,typ ,

we have that P is pδpDpiqq,ěDpiqq-typical, or in other words (cf. Definition 4.3), P has
DEVpdP̂pk´1q , δpD

piqqq for some density sequence dP̂pk´1q which is coordinate-wise at least Dpiq.
Since

P̂pk´1q P P̂
pk´1q
i,˚

p20q
Ď P̂

pk´1q
i, DEV X P̂

pk´1q
i,dense,

we have that pHpkq, P̂pk´1qq does not have DEVpdpHpkq|P̂pk´1qq, δ̄kq, where dpHpkq|P̂pk´1qq ě dk.
Moreover, we have chosen the constants dk, δ̄k and rδk (cf. (9) and (10)) and the functions δpDpiqq

and
r0pD

piqq “ r0pdk, d
piq
k´1, . . . , d

piq
2 q

(cf. (11)–(13)) appropriately for an application of Theorem 3.16. Thus, the hypothesis of
Theorem 3.16 is satisfied, and so Theorem 3.16 constructs, in time Opn3kq, an rP̂pk´1q-witness
~Qpk´1q

P̂pk´1q , given by
Qpk´1q

1,P̂pk´1q , . . . ,Q
pk´1q
rP̂pk´1q ,P̂pk´1q Ď P̂pk´1q, (21)

of  DISCpdpHpkq, P̂pk´1qq, rδk, rP̂pk´1qq, where rP̂pk´1q ď r0pD
piqq. Repeat the application of

Theorem 3.16 over all P̂pk´1q P P̂
pk´1q
i,˚ .

Step 4. If Si ě δ̄kn
k, then we will apply Lemma 5.1 to the family of partitions Pi and the

collection of witnesses ~Qpk´1q
P̂pk´1q , over all P̂pk´1q P P̂

pk´1q
i,# . We first verify that the hypothesis of

Lemma 5.1 will be satisfied. Indeed, by our induction hypothesis in (19), Pi is a constructed
ti-bounded pν, δpDpiqq,ěDpiq,apiqq family of partitions. Assumption (1) of Lemma 5.1 is satisfied
because the set P̂

pk´1q
i,˚ was constructed in Step 1 (cf. (20)), and for each P̂pk´1q P P̂

pk´1q
i,˚ , a

corresponding rP̂pk´1q-witness ~Qpk´1q
P̂pk´1q was constructed in Step 3 (cf. (21)). Assumption (2) of

Lemma 5.1 is satisfied because we assume Si ě δ̄kn
k, and so

Si “
ÿ

!
ˇ

ˇ

ˇ
KkpP̂pk´1qq

ˇ

ˇ

ˇ
: P̂pk´1q P P̂

pk´1q
i,˚

)

ě δ̄kn
k
p10q
ě rδkn

k.
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Thus, Lemma 5.1 constructs, in time Opnk´1q, a ti`1-bounded pν, δpDpi`1qq,ěDpi`1q,api`1qq

family of partitions Pi`1, where ti`1, Dpi`1q, and api`1q are given in (17), for which

indHpkqpPi`1q ě indHpkqpPiq `
rδ4
k

2 .

Return to Step 1 with the newly constructed family Pi`1.

From (8), we may repeat Steps 1–4 above at most istop “ t2{rδ4
ku times (cf. (18)), which proves

Theorem 4.7.

§6. Counting and Extension Lemmas

In this section, we present Counting and Extension Lemmas for regular complexes. All results
in this section can be derived, in a standard way, from the following Counting Lemma for cliques
due to Gowers [8, 9],

Theorem 6.1 (Clique Counting Lemma, Gowers). Let integers ` ě k ě 2 be fixed. For all
µ, dk ą 0, there exists δk ą 0 so that for all dk´1 ą 0, there exists δk´1 ą 0 so that, . . . , for all
d2 ą 0, there exists δ2 ą 0 and positive integer n0 so that the following holds.

Set δ “ pδ2, . . . , δkq, and let d “ pdΛj
: Λj P r`s

j , 2 ď j ď `q be a sequence satisfying, for
each 2 ď j ď k, dΛj

ě dj for all Λj P r`s
j. Let H “ tHpjqukj“1 be an p`, kq-complex, where

Hp1q “ V1 Y ¨ ¨ ¨ Y V` has n0 ď n ď |Vi| ď n ` 1 for each 1 ď i ď `. If H has DEVpd, δq, then
Hpkq P H has

ˇ

ˇK`pHpkqq
ˇ

ˇ “ p1˘ µq
k
ź

j“2

ź

ΛjPr`sj

dΛj
ˆ n`

many cliques Kpkq
` .

We now present a version of Theorem 6.1 which allows us to count copies of the p`, kq-octohedron
Opkq “ KpkqpU1, . . . , U`q, |U1| “ ¨ ¨ ¨ “ |U`| “ 2, within an p`, kq-complex H.

Theorem 6.2 (Octohedral Counting Lemma). Let integers ` ě k ě 2 be fixed. For all
µ, dk ą 0, there exists δk ą 0 so that for all dk´1 ą 0, there exists δk´1 ą 0 so that, . . . , for all
d2 ą 0, there exists δ2 ą 0 and positive integer n0 so that the following holds.

Set δ “ pδ2, . . . , δkq, and let d “ pdΛj
: Λj P r`s

j , 2 ď j ď kq be a sequence satisfying that
for all 2 ď j ď k and Λj P r`s

j, dΛj
ě dj. Let H “ tHpjqukj“1 be an p`, kq-complex, where

Hp1q “ V1 Y ¨ ¨ ¨ Y V` has n0 ď n ď |Vi| ď n` 1, 1 ď i ď `. If H has DEVpd, δq, then Hpkq P H
has

ˇ

ˇEMBpOpkq,Hpkqq
ˇ

ˇ “ p1˘ µq
k
ź

j“2

ź

ΛjPr`sj

d2j

Λj
ˆ n2`

many labeled partite-isomorphic copies of the p`, kq-octohedron Opkq “ KpkqpU1, . . . , U`q.

We next present a type of extension lemma (cf. Lemma 6.4), which we will describe in terms
of the following auxiliary graph Γ.
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Definition 6.3. For integers ` ě k ě 2, let H “ tHpjqukj“1 be an p`, kq-complex, and let Opkq

be the p`, kq-octohedron. We define the octohedral-incidence graph ~Γ “ ~Γk,`pHq of H as follows.
Set V p~Γq “ K`pHpkqq. For L,L1 P V pΓq, put tL,L1u P ~Γ if, and only if, there exists a labeled
partite-embedding ψ of Opkq in H with imψ “ LYL1, i.e., LYL1 induces a copy of Opkq in Hpkq.

We now state the Octohedral Extension Lemma.

Theorem 6.4 (Octohedral Extension Lemma). Fix integers ` ě k ě 2. For all ζ, dk ą 0,
there exists δk ą 0 so that for all dk´1 ą 0, there exists δk´1 ą 0 so that, . . . , for all d2 ą 0, there
exist δ2 ą 0 and positive integer n0 so that the following holds.

Set δ “ pδ2, . . . , δkq, and let d “ pdΛj
: Λj P r`s

j , 2 ď j ď kq be a sequence satisfying that, for
all 2 ď j ď k and for all Λj P r`s

j, dΛj
ě dj. Let H “ tHpjqukj“1 be an p`, kq-complex, where

Hp1q “ V1 Y ¨ ¨ ¨ Y V` has n0 ď n ď |Vi| ď n ` 1 for each i P r`s. If H has DEVpd, δq and if
Γ “ Γk,`pHq is the octohedral-incidence graph of H (cf. Definition 6.3), then

(1) all but ζ|K`pHpkqq| cliques L P K`pHpkqq satisfy

degΓpLq “ p1˘ ζq
k
ź

j“2

ź

ΛjPr`sj

d2j´1
Λj

ˆ n`;

(2) all but ζ|K`pHpkqq|2 pairs of cliques L ‰ L1 P K`pHpkqq satisfy

degΓpL,L
1q “ p1˘ ζq

k
ź

j“2

ź

ΛjPr`sj

d2¨2j´3
Λj

ˆ n`.

§7. The Negative-Extension Lemma

In the previous section, we stated Counting and Extension Lemmas corresponding to when a
complex H has the deviation property DEV. In this section, we explore what happens when the
property of deviation fails to hold. We give our main result as Theorem 7.2, which we call the
Negative-Extension Lemma. We first motivate this result.

Suppose Hpkq is a pk, kq-cylinder with underlying pk, k ´ 1q-cylinder Hpk´1q, where d “

dpHpkq|Hpk´1qq ą 0. For δ ą 0, suppose that pHpkq,Hpk´1qq does not have DEVpd, δq. State-
ment (2) of Fact 3.10 then guarantees that pHpkq,Hpk´1qq does not have COUNTembpd, δq. As
such, by Definition 3.9 (recall (3) and (4)), there exists some ∅ ‰ Spkq Ď Opkq “ KpkqpU1, . . . , Ukq

so that
ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ ‰ p1˘ δqd|Spkq|
ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ. (22)

The Negative-Extension Lemma (Theorem 7.2) will conclude that, as a result of (22), there
are ‘many’ k-tuples K P KkpHpk´1qq which ‘belong’ to some unusual number of labeled partite
embeddings of Spkq in Hpkq. To make our plan precise, we need some supporting concepts.

7.1. Supporting concepts, and the Negative-Extension Lemma. We use the following
notation. For a pk, kq-complex H “ tHpjqukj“1, and for an integer 1 ď i ď k, let Hpiq def

“ tHpjquij“1.
Note that Hpiq is a pk, iq-complex. Now, let

Γi “ Γi,kpHpiqq (23)
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be the octohedral-incidence graph (cf. Definition 6.3) of Hpiq. Clearly,

Γk Ď Γk´1 Ď ¨ ¨ ¨ Ď Γ2. (24)

We also use the following variant of the octohedral-incidence graph Γk, which accommodates
arbitary subhypergraphs ∅ Ď Spkq Ď Opkq “ KpkqpU1, . . . , Ukq.

Definition 7.1 (incidence digraph, anchor). Fix a p2, k, kq-cylinder ∅ Ď Spkq Ď Opkq “
KpkqpU1, . . . , Ukq. Fix a k-tuple A “ ta1, . . . , aku, where for each i P rks, ai P Ui. Let
Hpkq “ tHpjqukj“1 be a pk, kq-complex. We define the pSpkq, Aq-incidence digraph ~ΓApSpkqq “
~ΓApSpkq,Hpkqq of Hpkq as follows. Set V p~ΓApSpkqqq “ KkpHpk´1qq. For K,K 1 P V p~ΓApSpkqqq,
put pK,K 1q P ~ΓApSpkqq if, and only if, there exists a labeled partite-embedding ψ of Spkq in
pHpkq,Hpk´1qq (cf. Definition 3.8) so that ψpAq “ K and imψ “ K YK 1. We will say that A is
the anchor of ~ΓApSpkqq, and we will write Ā “ pU1 Y ¨ ¨ ¨ Y UkqrA.

When working with the pSpkq, Aq-incidence digraph ~ΓApSpkqq “ ~ΓApSpkq,Hq of a pk, kq-complex
H, we use the following standard notation. For K,K 1 P V p~Γq, we write

N~ΓApSpkqqpKq “
!

K2 P V p~ΓApSpkqqq : pK,K2q P ~ΓApSpkqq
)

,

N~ΓApSpkqqpK,K
1q “ N~ΓApSpkqqpKq XN~ΓApSpkqqpK

1q,

deg~ΓApSpkqqpKq “
ˇ

ˇ

ˇ
N~ΓApSpkqqpKq

ˇ

ˇ

ˇ
and deg~ΓApSpkqqpK,K

1q “

ˇ

ˇ

ˇ
N~ΓApSpkqqpK,K

1q

ˇ

ˇ

ˇ
. (25)

Note that all neighborhoods and degrees defined above are out-neighborhoods and out-degrees.
We now consider the following statement EXT, which considers a hypergraph ∅ ‰ Spkq Ď Opkq,

an anchor A for which Ā P Spkq (cf. Definition 7.1), and a pk, kq-complex Hpkq.

EXTApSpkqq “ EXTApSpkq, ξ,Hpkqq. Fix ∅ ‰ Spkq Ď Opkq “ KpkqpU1, . . . , Ukq, and fix an
anchor A for which Ā P Spkq(cf. Definition 7.1). Let ξ ą 0 be given, and let Hpkq “ tHpjqukj“1 be
a pk, kq-complex with drks “ dpHpkq|Hpk´1qq ą 0. Then, the following condition holds:

(1) If A P Spkq, then all but ξ|Hpkq| edges H P Hpkq satisfy the following implication:

If deg~ΓApSpkqrtĀuqpHq ą ξ degΓk´1pHq,

then deg~ΓApSpkqqpHq “ p1˘ ξqdrks deg~ΓApSpkqrtĀuqpHq;

(2) If A R Spkq, then all but ξ|KkpHpk´1qq| cliques K P KkpHpk´1qq satisfy the following
implication:

If deg~ΓApSpkqrtĀuqpKq ą ξ degΓk´1pKq,

then deg~ΓApSpkqqpKq “ p1˘ ξqdrks deg~ΓApSpkqrtĀuqpKq.

For future purposes, it will be convenient to have a compact presentation of the statement
EXTApSpkqq “ EXTApSpkq, ξ,Hpkqq (see (28) below). To that end, let

Apkq “ ApkqpSpkq, A,Hpkqq “

#

Hpkq if A P Spkq,
KkpHpk´1qq if A R Spkq.

(26)
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In the language of Apkq, we will combine Conditions (1) and (2) of EXTApSpkqq into one
presentation, as follows. Set

Apkqbad “ ApkqbadpS
pkq, A, ξ,Hpkqq “

!

K P Apkq : deg~ΓApSpkqrĀqpKq ą ξ degΓk´1pKq

but deg~ΓApSpkqqpKq ‰ p1˘ ξqdrks deg~ΓApSpkqrĀqpKq
)

. (27)

Then,
EXTApSpkq, ξ,Hpkqq is true ðñ |Apkqbad| ă ξ|Apkq|. (28)

We now state the main result of the section, the Negative-Extension Lemma.

Theorem 7.2 (The Negative-Extension Lemma). Let integer k ě 2 be fixed. For all
dk, δk ą 0, there exists ξ ą 0 so that for all dk´1 ą 0, there exists δk´1 ą 0 so that, . . . , for all
d2 ą 0, there exist δ2 ą 0 and positive integer n0 so that the following holds.

Set δk´1 “ pδ2, . . . , δk´1q. Let H “ Hpkq be a pk, kq-complex with density sequence dk, as
given in Setup 3.15, where n ě n0. Suppose dk satisfies that, for each 2 ď j ď k, dΛj

ě dj for all
Λj P rksj. Assume that

(1) Hpk´1q has DEVpdk´1, δk´1q, but that
(2) pHpkq,Hpk´1qq does not have DEVpdrks, δkq.

Then, there exists a hypergraph ∅ ‰ Spkq Ď Opkq “ KpkqpU1, . . . , Ukq so that, whenever an anchor
A satisfies Ā P Spkq, the statement EXTApSpkq, ξ,Hpkqq is false. In other words, the hypergraphs
Apkq “ pSpkq, A,Hpkqq and Apkqbad “ ApkqbadpSpkq, A, ξ,H

pkqq satisfy |Apkqbad| ě ξ|Apkq|.

We proceed to define the constants for Theorem 7.2.

7.2. The constants of Theorem 7.2. Let k ě 2 be a fixed integer, and let dk, δk ą 0 be given.
We define the constant ξ promised by Theorem 7.2 by

ξ “
1

100k2k δkd
2k

k . (29)

Let dk´1 ą 0 be given. We formally define the constant δk´1 in upcoming (31), but we first
motivate how we choose it. To that end, define auxiliary constants (cf. (29))

µ “ 1{2 and ζk´1 “ ξdk2k´1
k´1 . (30)

Recall from the hypothesis of Theorem 7.2 that we will be working with a pk, k ´ 1q-complex
Hpk´1q “ tHpjqu

k´1
j“2 which has DEVpdk´1, δk´1q, where the constants dk´2, . . . , d2 of dk´1 and

the constants δk´1, . . . , δ2 of δk´1 will be disclosed below. For such a complex Hpk´1q, we want
δk´1 ą 0 to be small enough so that the following conditions are satisfied (cf. (30)):

(a) we can estimate |KkpHpk´1qq| within an error of 1˘ µ;
(b) we can estimate |EMBpOpk´1q,Hpk´1qq| within an error of 1˘ µ;
(c) all but ζk´1|KkpHpk´1qq| cliques K P KkpHpk´1qq satisfy

degΓk´1pKq “ p1˘ ζk´1q
k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk.
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To guarantee that (a), (b), and (c) above are satisfied, we need δk´1 ą 0 to be small enough to
enable applications of Theorems 6.1, 6.2, and 6.4. With dk´1 given above, and with µ “ 1{2
from (30), let

δThm.6.1, k ´ 1 “ δThm.6.1p` “ k, k ´ 1, µ “ 1{2, dk´1q ą 0

and δThm.6.2, k ´ 1 “ δThm.6.2p` “ k, k ´ 1, µ “ 1{2, dk´1q ą 0

be the constants guaranteed by Theorems 6.1 and 6.2. With dk´1 given above, and with ζk´1

from (30), let
δThm.6.4, k ´ 1 “ δThm.6.4p` “ k, k ´ 1, ζ “ ζk´1, dk´1q ą 0

be the constant guaranteed by Theorem 6.4. Now, set

δk´1 “ min tδThm.6.1, k ´ 1, δThm.6.2, k ´ 1, δThm.6.4, k ´ 1u (31)

which concludes our definition of the promised constant δk´1.
Inductively, assume dk´1, δk´1, . . . , di, δi, di´1 have been disclosed, for a fixed integer i satisfying

3 ď i ď k ´ 1. Moreover, assume that we have defined auxiliary constants (cf. (30))

ζk´1 “ ξdk2k´1
k´1 , ζk´2 “ ξd

p k
k´1q2

k´1

k´1 d
p k

k´2q2
k´2

k´2 , . . . ζi´1 “ ξ
k´1
ź

j“i´1
d
pk

jq2
j

j . (32)

We define δi´1 similarly to how we defined δk´1 (cf. (31)). In particular, we want δi´1 ą 0 to be
small enough so that (a) and (b) above are satisfied with µ “ 1{2. These tasks are handled by
Theorems 6.1 and 6.2, which have the following common quantification of constants:

@µ, @dk´1, Dδk´1 : . . .@di´1, Dδi´1 : . . .

With µ “ 1{2 from (30), and with dk´1, δk´1, . . . , di´1 inductively disclosed above, let

δThm.6.1, i´ 1 “ δThm.6.2p` “ k, k ´ 1, µ “ 1{2, dk´1, δk´1, . . . , di, δi, di´1q ą 0

and δThm.6.2, i´ 1 “ δThm.6.2p` “ k, k ´ 1, µ “ 1{2, dk´1, δk´1, . . . , di, δi, di´1q ą 0

be the constants guaranteed by Theorems 6.1 and 6.2. We also want δi´1 ą 0 to be small enough
so that (c) above is satisfied with ζk´1 from (30). Moreover, we want δi´1 ą 0 to be small enough
so that the following sequence (c1) of conditions is satisfied (cf. (32)):

(c1) ‚ all but ζk´1|KkpHpk´1qq| cliques K P KkpHpk´1qq satisfy

degΓk´1pKq “ p1˘ ζk´1q
k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk;

‚ all but ζk´2|KkpHpk´2qq| cliques K P KkpHpk´2qq satisfy

degΓk´2pKq “ p1˘ ζk´2q
k´2
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk;

...
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‚ all but ζi´1|KkpHpi´1qq| cliques K P KkpHpi´1qq satisfy

degΓi´1pKq “ p1˘ ζi´1q
i´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk.

To guarantee that the sequence (c1) of conditions above will be satisfied, we fix an integer h
satisfying i´ 1 ď h ď k´ 1, and we appeal to Theorem 6.4, which has the following quantification
of constants:

@ζ, @dh, Dδh : @dh´1, Dδh´1 : . . .@di´1, Dδi´1 : . . .
With dh, δh, . . . , di´1, δi´1 inductively disclosed above, and with ζ “ ζh from (32), let

δThm.6.4, i´ 1, h “ δThm.6.4p` “ k, h, ζ “ ζh, dh, δh, . . . , di, δi, di´1q

be the constant guaranteed by Theorem 6.4. Set

δThm.6.4, i´ 1 “ min tδThm.6.4, i´ 1, h : i´ 1 ď h ď k ´ 1u .

Finally, set
δi´1 “ min tδThm.6.1, i´ 1, δThm.6.2, i´ 1, δThm.6.4, i´ 1u . (33)

We continue this way until δ2 is reached. This concludes our definitions of the constants.

7.3. The argument for Theorem 7.2. Set δk´1 “ pδ2, . . . , δk´1q, where each δj , 2 ď j ď k´1,
was defined in (33). Let Hpkq be a pk, kq-complex with density sequence dk, as given in Setup 3.15,
where n ě n0. Suppose dk satisfies that, for each 2 ď j ď k, dΛj

ě dj for all Λj P rksj , where dj
was given above. Suppose that Hpk´1q has DEVpdk´1, δk´1q, but that pHpkq,Hpk´1qq does not
have DEVpdrks, δkq. Theorem 7.2 promises a hypergraph ∅ ‰ Spkq Ď Opkq “ KpkqpU1, . . . , Ukq so
that, for any anchor A for which Ā P Spkq (cf. Definition 7.1), the statement EXTApSpkq, ξ,Hpkqq

is false. We begin our argument by defining the promised hypergraph Spkq.

7.3.1. Defining the hypergraph Spkq. First, we appeal to (22), and take any hypergraph ∅ ‰

Spkq Ď Opkq for which
ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ ‰ p1˘ δkqd
|Spkq|
rks

ˇ

ˇEMBpOpkq,Hpk´1qq
ˇ

ˇ. (34)

Indeed, Assumption (2) of our hypothesis says that pHpkq,Hpk´1qq does not have DEVpdrks, δkq.
As such, Statement (2) of Fact 3.10 gives that pHpkq,Hpk´1qq does not have COUNTembpdrks, δkq.
Thus, some ∅ ‰ Spkq Ď Opkq satisfying (34) is guaranteed to exist by Definition 3.9.

Second, take ∅ ‰ Spkqmin Ď Spkq to be an edge-minimal subhypergraph for which
ˇ

ˇEMBpSpkqmin, pH
pkq,Hpk´1qqq

ˇ

ˇ ‰

ˆ

1˘ δk

2|Spkq|´|S
pkq
min|

˙

d
|Spkqmin|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ. (35)

(Note that in (35), we require the error δk{2|S
pkq|´|Spkqmin| to decrease as |Spkqmin| decreases.) Note

that Spkqmin must exist, because Spkq itself satisfies (34). Note also that Spkqmin ‰ ∅, because
ˇ

ˇEMBp∅, pHpkq,Hpk´1qqq
ˇ

ˇ “ p1˘ 0qd0
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ.

Since Spkqmin ‰ ∅ is edge-minimal w.r.t. (35), we have that, for each e P Spkqmin,
ˇ

ˇEMBpSpkqmin r teu, pHpkq,Hpk´1qqq
ˇ

ˇ “

ˆ

1˘ δk

2|Spkq|´|S
pkq
min|`1

˙

d
|Spkqmin|´1
rks

ˇ

ˇEMBpOpkq,Hpk´1qq
ˇ

ˇ. (36)
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For simplicity of notation, we shall write

δ1k :“ δk

2|Spkq|´|S
pkq
min|

and Spkq :“ Spkqmin. (37)

Then, we may rewrite (35) as
ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ ‰ p1˘ δ1kqd
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ, (38)

and we may rewrite (36) as, for each e P Spkq,
ˇ

ˇEMBpSpkq r teu, pHpkq,Hpk´1qqq
ˇ

ˇ “

ˆ

1˘ δ1k
2

˙

d
|Spkq|´1
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ. (39)

This concludes our definition of the promised hypergraph Spkq.
We pause to say a word about the inequality in (38). We have that either
ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ ă p1´ δ1kqd
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ,

or
ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ ą p1` δ1kqd
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ.

In our proof, it will be symmetric to handle either situation above. Since both cases can be
handled similarly, we will w.l.o.g. assume that the latter holds:

ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ ą p1` δ1kqd
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ. (40)

We proceed to develop a proof by contradiction. Assume the hypergraph Spkq from (40) doesn’t
have the desired property of Theorem 7.2. In particular, assume that there exists an anchor A,
where Ā P Spkq, for which the statement EXTApSpkq, ξ,Hpkqq is true. With this assumption, we
will prove the following.

Claim 7.3. Assuming the statement EXTApSpkq, ξ,Hpkqq is true for some Ā P Spkq, we have
ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ ď

ˆ

1` 3
4δ
1
k

˙

d
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ.

Now, the bound in Claim 7.3 is a direct contradiction with the bound in (40). Thus, it must
be the case that for any anchor A, where Ā P Spkq, the statement EXTApSpkq, ξ,Hpkqq is false,
as promised by Theorem 7.2. Thus, to complete the proof of Theorem 7.2, it only remains to
prove Claim 7.3.

7.4. Proof of Claim 7.3. Assume that the statement EXTApSpkq, ξ,Hpkqq is true for some
anchor A with Ā P Spkq.

Recall that in (26)–(28), we abbreviated the truth of the statement EXTApSpkq, ξ,Hpkqq in
terms of the following hypergraphs Apkq and Apkqbad:

Apkq “ ApkqpSpkq, A,Hpkqq “

#

Hpkq if A P Spkq,
KkpHpk´1qq if A R Spkq,

Apkqbad “ ApkqbadpS
pkq, A, ξ,Hpkqq “

!

K P Apkq : deg~ΓApSpkqrĀqpKq ą ξ degΓk´1pKq

but deg~ΓApSpkqqpKq ‰ p1˘ ξqdrks deg~ΓApSpkqrĀqpKq
)

.
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Recall from (28) that our assumption that EXTApSpkq, ξ,Hpkqq is true is equivalent to

|Apkqbad| ă ξ|Apkq| ď ξ|KkpHpk´1qq|. (41)

Define also the sets

Apkqgood “ ApkqgoodpS
pkq, A, ξ,Hpkqq “

!

K P Apkq : deg~ΓApSpkqrĀqpKq ą ξ degΓk´1pKq

and deg~ΓApSpkqqpKq “ p1˘ ξqdrks deg~ΓApSpkqrĀqpKq
)

, (42)

and

Apkq0 “ Apkq0 pSpkq, A, ξ,Hpkqq “

!

K P Apkq : deg~ΓApSpkqrĀqpKq ď ξ degΓk´1pKq
)

. (43)

Note that
Apkq “ Apkqgood YApkqbad YApkq0 (44)

is a partition.
Using the partition Apkq “ Apkqgood YApkqbad YApkq0 from (44), observe that (recall Definition 3.8)
ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ “
ÿ

KPApkq
deg~ΓApSpkqqpKq

p44q
“

ÿ

KPApkqgood

deg~ΓApSpkqqpKq `
ÿ

KPApkqbad

deg~ΓApSpkqqpKq `
ÿ

KPApkq0

deg~ΓApSpkqqpKq. (45)

We now bound each of the sums above.
First, using the definition of Apkqgood in (42), we have
ÿ

KPApkqgood

deg~ΓApSpkqqpKq ď p1` ξqdrks
ÿ

KPApkq
deg~ΓApSpkqrtĀuqpKq

“ p1`ξqdrks
ˇ

ˇEMBpSpkqrtĀu, pHpkq,Hpk´1qqq
ˇ

ˇ

p39q
ď p1`ξq

ˆ

1` δ1k
2

˙

d
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ

ď

ˆ

1` 2ξ ` δ1k
2

˙

d
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ

p29q, p37q
ď

ˆ

1` 2δ1k
3

˙

d
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ. (46)

(To see the last inequality, (29) gives ξ ă δk{p2k ¨ p12qq, and (37) gives δk{2k ă δ1k.) Second, we
take

ÿ

KPApkq0

deg~ΓApSpkqqpKq ď
ÿ

KPApkq0

deg~ΓApSpkqrtĀuqpKq,

since every labeled partite-embedding of Spkq in Hpkq is also a labeled partite-embedding of
Spkq r tĀu in Hpkq. Using the definition of Apkq0 in (43), we have

ÿ

KPApkq0

deg~ΓApSpkqqpKq ď
ÿ

KPApkq0

deg~ΓApSpkqrtĀuqpKq

ď ξ
ÿ

KPApkq
degΓk´1pKq “ ξ

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ. (47)
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Third, we take
ÿ

KPApkqbad

deg~ΓApSpkqqpKq ď
ÿ

KPApkqbad

degΓk´1pKq, (48)

since every labeled partite-embedding of Spkq in Hpkq is also a labeled partite-embedding of Opk´1q

in Hpk´1q. More strongly, we have the following bound (which we prove in a moment).

Fact 7.4.
ÿ

KPApkqbad

degΓk´1pKq ď 8pk ´ 1qξ
ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ.

Applying the bounds of (46)–(48) and the bound of Fact 7.4 to (45), we infer

ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qq
ˇ

ˇ ď

ˆˆ

1` 2
3δ
1
k

˙

d
|Spkq|
rks ` ξ ` 8pk ´ 1qξ

˙

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ

ď

ˆ

1` 2
3δ
1
k ` 8kξd´2k

k

˙

d
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ, (49)

where we used |Spkq| ď 2k and drks ě dk from the hypothesis of Theorem 7.2. Now, since

8kξd´2k

k

p29q
ă

1
12 ¨ 2k δk

p37q
ă

1
12δ

1
k,

we have
ˇ

ˇEMBpSpkq, pHpkq,Hpk´1qqq
ˇ

ˇ ă

ˆ

1` 3
4δ
1
k

˙

d
|Spkq|
rks

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ,

as promised by Claim 7.3. Thus, it only remains to prove Fact 7.4.

7.5. Proof of Fact 7.4. We first outline the main idea of how we bound
ř

KPApkqbad
degΓk´1pKq.

To begin, we divide the k-tuples K P Apkqbad into two classes: those for which degΓk´1pKq is
not ‘too large’, and those for which it is. More generally, we first partition the set of k-tuples
V pΓk´1q “ KkpHpk´1qq as follows. With ζk´1 given in (30), define

Vζk´1-goodpΓk´1q “
!

K P V pΓk´1q “ KkpHpk´1qq :

degΓk´1pKq ă p1` ζk´1q
k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk

,

.

-

,

and Vζk´1-badpΓk´1q “ V pΓk´1qr Vζk´1-goodpΓk´1q. (50)

Then,

Apkqbad Ď Apkq
p26q
Ď KkpHpk´1qq “ V pΓk´1q

p50q
“ Vζk´1-goodpΓk´1q Y Vζk´1-badpΓk´1q. (51)
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As such, with ζk´1 ď 1,
ÿ

KPApkqbad

degΓk´1pKq “
ÿ

!

degΓk´1pKq : K P Apkqbad X Vζk´1-goodpΓk´1q
)

`
ÿ

!

degΓk´1pKq : K P Apkqbad X Vζk´1-badpΓk´1q
)

p50q
ď 2|Apkqbad|

k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk `
ÿ

!

degΓk´1pKq : K P Vζk´1-badpΓk´1q
)

. (52)

To bound the first term in (52), we have from (28) that |Apkqbad| ď ξ|KkpHpk´1qq| is ‘small’. We
will return to this in a moment. To bound the summation in (52), we iterate the approach taken
in (50) and (51). Namely, for 2 ď i ď k´ 1, we divide the k-tuples K P KkpHpiqq into two classes:
those for which degΓi

pKq is not ‘too large’, and those for which it is. More formally, with ζi given
in (32), define

Vζi-goodpΓiq “

$

&

%

K P V pΓiq “ KkpHpiqq : degΓi
pKq ă p1` ζiq

i
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk

,

.

-

,

and Vζi-badpΓiq “ V pΓiqr Vζi-goodpΓiq. (53)

Now, with Γk´1 Ď Γk´2 from (24), we have

Vζk´1-badpΓk´1q Ď V pΓk´1q
p24q
Ď V pΓk´2q

p53q
“ Vζk´2-goodpΓk´2q Y Vζk´2-badpΓk´2q.

Thus, with ζk´2 ď 1 and with Γk´1 Ď Γk´2, we may bound the summation of (52) by
ÿ

!

degΓk´1pKq : K P Vζk´1-badpΓk´1q
)

p24q
ď

ÿ

!

degΓk´2pKq : K P Vζk´1-badpΓk´1q X Vζk´2-goodpΓk´2q
)

`
ÿ

!

degΓk´2pKq : K P Vζk´1-badpΓk´1 X Vζk´2-badpΓk´2q
)

p50q
ď 2

ˇ

ˇVζk´1-badpΓk´1q
ˇ

ˇ

k´2
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk `
ÿ

!

degΓk´2pKq : K P Vζk´2-badpΓk´2q
)

.

Inductively, we conclude

ÿ

!

degΓk´1pKq : K P Vζk´1-badpΓk´1q
)

ď 2nk
k´1
ÿ

i“2

¨

˝|Vζi-badpΓiq|
i´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

˛

‚. (54)

(Note that the summation in (54) does not include i “ 1, because every K P KkpHp1qq satisfies
degΓ1pKq “ nk.)

Applying (54) to the second term of (52), we have

ÿ

KPApkqbad

degΓk´1pKq ď 2nk
¨

˝|Apkqbad|
k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

`

k´1
ÿ

i“2

¨

˝|Vζi-badpΓiq|
i´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

˛

‚

˛

‚. (55)
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As we mentioned earlier, |Apkqbad| ď ξ|KkpHpk´1qq| holds from (41). To further bound |Apkqbad|, we
apply Theorem 6.1 with µ “ 1{2 to |KkpHpk´1qq| to get

|KkpHpk´1qq| ď p1` µq
k´1
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk ă 2

k´1
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk,

ùñ |Apkqbad| ď ξ|KkpHpk´1qq| ď 2ξ
k´1
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk. (56)

Applying (56) to (55) yields

ÿ

KPApkqbad

degΓk´1pKq ď 4ξ
k´1
ź

j“2

ź

ΛjPrksj

d2j

Λj
ˆ n2k ` 2nk

k´1
ÿ

i“2

¨

˝|Vζi-badpΓiq|
i´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

˛

‚. (57)

Now, for fixed 2 ď i ď k ´ 1, we bound |Vζi-badpΓiq|. With ζi ą 0 from (32), Theorem 6.4 gives
|Vζi-badpΓiq| ď ζi|KkpHpiqq|. To further bound |Vζi-badpΓiq|, we apply Theorem 6.1 with µ “ 1{2
to |KkpHpiqq| to get

|KkpHpiqq| ď p1` µq
i
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk ă 2

i
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk,

ùñ |Vζi-badpΓiq| ď ζi|KkpHpiqq| ď 2ζi
i
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk. (58)

Applying (58) to (57) gives

ÿ

KPApkqbad

degΓk´1pKq ď 2n2k

¨

˝

¨

˝2ξ
k´1
ź

j“2

ź

ΛjPrksj

d2j

Λj

˛

‚` 2
k´1
ÿ

i“2

¨

˝ζi
ź

ΛiPrksi

dΛi
ˆ

i´1
ź

j“2

ź

ΛjPrksj

d2j

Λj

˛

‚

˛

‚

ď 2n2k

¨

˝

¨

˝2ξ
k´1
ź

j“2

ź

ΛjPrksj

d2j

Λj

˛

‚` 2
k´1
ÿ

i“2

¨

˝ζi

i´1
ź

j“2

ź

ΛjPrksj

d2j

Λj

˛

‚

˛

‚. (59)

To finish the proof of Fact 7.4, only calculations remain.
Indeed, fix 2 ď i ď k´ 1. Recall from the hypothesis of Theorem 7.2 that the density sequence

dk satisfies dΛj
ě dj for all Λj P rks

j and for all 2 ď j ď k. As such, our definition of ζi in (32)
gives

ζi “ ξ
k´1
ź

j“i

d
pk

jq2
j

j ď ξ
k´1
ź

j“i

ź

ΛjPrksj

d2j

Λj
“ ξ

śk´1
j“2

ś

ΛjPrksj
d2j

Λj
śi´1
j“2

ś

ΛjPrksj
d2j

Λj

. (60)

Applying (60) to (59) gives

ÿ

KPApkqbad

degΓk´1pKq ď 2n2k

¨

˝

¨

˝2ξ
k´1
ź

j“2

ź

ΛjPrksj

d2j

Λj

˛

‚` 2ξpk ´ 2q
k´1
ź

j“2

ź

ΛjPrksj

d2j

Λj

˛

‚

“ 4ξpk ´ 1q
k´1
ź

j“2

ź

ΛjPrksj

d2j

Λj
ˆ n2k. (61)
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To conclude the proof of Fact 7.4, it only remains to bound
ř

KPApkqbad
degΓk´1pKq in terms of

|EMBpOpk´1q,Hpk´1qq|. To that end, with µ “ 1{2, Theorem 6.2 gives

ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ ě p1´ µq
k´1
ź

j“2

ź

ΛjPrksj

d2j

Λj
ˆ n2k ě

1
2

k´1
ź

j“2

ź

ΛjPrksj

d2j

Λj
ˆ n2k. (62)

Comparing (61) and (62), we infer
ÿ

KPApkqbad

degΓk´1pKq ď 8ξpk ´ 1q
ˇ

ˇEMBpOpk´1q,Hpk´1qq
ˇ

ˇ,

as promised by Fact 7.4.

§8. Proof of Theorem 3.16

The proof of Theorem 3.16 will involve applications of Theorems 6.2, 6.4, and 7.2. In addition
to these tools, we will also need the following lemma, a nonconstructive version of which appeared
as Lemma 2.6 in [22], where it was called the ‘Picking Lemma’. The proof of that version follows
by an application of the Markov Inequality, but here, we will need a constructive counterpart,
proved in the Appendix.

Lemma 8.1 (Algorithmic Picking Lemma). Let σs, . . . , σ2, c ą 0 be given together with an
integer r ě 1. Let X be a set of size m, and let G2, . . . , Gs be graphs with vertex set X satisfying
|G2| ď σ2m

2, . . . , |Gs| ď σsm
2. Then, for every subset Y Ď X of size |Y | ě cm, there exists

an algorithm which chooses, in time Opm3q, vertices Z “ Zr “ tz1, . . . , zru Ă Y so that, for all
2 ď i ď s, |GirZs| ď p2ps´ 1qσi{c2qr2.

We proceed to define the constants of Theorem 3.16 (which will be presented in a similar way
to how we defined the constants of Theorem 7.2).

8.1. The Constants of Theorem 3.16. Let integer k ě 2 be fixed, and let dk, δk ą 0 be given.
To define the promised constant δ1k ą 0, we appeal to Theorem 7.2, which we recall has the
following quantification:

@dk, @δk, Dξ : . . .

With dk, δk ą 0 given above, let

ξ “ ξThm.7.2pk, dk, δkq ą 0 (63)

be the constant guaranteed by Theorem 7.2. We define the promised constant δ1k by

δ1k “

ˆ

ξ

10

˙8
. (64)

Let dk´1 ą 0 be given. We formally define the constant δk´1 ą 0 in upcoming (66), but we
first motivate how we choose it. To that end, define auxiliary constants

µ “

?
2´ 1

?
2` 1

“ 3´ 2
?

2 and ζk´1 “
d2
kξ

2

128pk ´ 1q2d
kp2k´1q
k´1 . (65)

Recall from the hypothesis of Theorem 3.16 that we will be working with a pk, kq-complex
Hpk´1q “ tHpjqu

k´1
j“2 satisfying that
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(1) Hpk´1q “ tHpjqu
k´1
j“1 has DEVpdk´1, δk´1q, but where

(2) pHpkq,Hpk´1qq does not have DEVpdrks, δkq,

where drks ě dk, and where the constants dk´2, . . . , d2 of dk´1 and the constants δk´1, . . . , δ2 of
δk´1 will be disclosed below. For such a complex Hpkq, we want δk´1 ą 0 to be small enough so
that the following conditions are satisfied:

(a) there exists a hypergraph ∅ ‰ Spkq Ď Opkq “ KpkqpU1, . . . , Ukq so that, for any anchor A
with Ā P Spkq, the statement EXTApSpkq, ξ,Hpkqq is false (cf. (63));

(b) we can estimate |KkpHpk´1qq| within an error of 1˘ µ;
(c) all but ζk´1|KkpHpk´1qq| cliques K P KkpHpk´1qq satisfy

degΓk´1pKq “ p1˘ ζk´1q
k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk,

and all but ζk´1|KkpHpk´1qq|2 pairs of cliques K ‰ K 1 P KkpHpk´1qq satisfy

degΓk´1pK,K
1q “ p1˘ ζk´1q

k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk.

To guarantee that (a), (b), and (c) above are satisfied, we need δk´1 ą 0 to be small enough to
enable applications of Theorems 7.2, 6.1, and 6.4, respectively. With dk, δk ą 0 given above, with
ξ ą 0 from (63), and with dk´1 ą 0 given above, let

δThm.7.2, k´1 “ δThm.7.2, k´1pk, dk, δk, ξ, dk´1q ą 0

be the constant guaranteed by Theorem 7.2. With µ ą 0 from (65), and with dk´1 given above,
let

δThm.6.1, k´1 “ δThm.6.1, k´1p` “ k, k ´ 1, µ, dk´1q ą 0

be the constant guaranteed by Theorem 6.1. With ζk´1 ą 0 from (65), and with dk´1 given
above, let

δThm.6.4, k´1 “ δThm.6.4, k´1p` “ k, k ´ 1, ζk´1, dk´1q ą 0

be the constant guaranteed by Theorem 6.4. Now, set

δk´1 “ min tδThm.7.2, k´1, δThm.6.1, k´1, δThm.6.4, k´1u . (66)

This concludes our definition of the promised constant δk´1 ą 0.
Inductively, assume dk´1, δk´1, . . . , di, δi, di´1 ą 0 have been disclosed, for a fixed integer i

satisfying 3 ď i ď k ´ 1. Moreover, assume we have defined auxiliary constants (cf. (65)):

ζk´1 “
d2
kξ

2

128pk ´ 1q2d
kp2k´1q
k´1 , ζk´2 “

d2
kξ

2

128pk ´ 1q2d
p k

k´1qp2
k´1q

k´1 d
p k

k´2qp2
k´1´1q

k´2 , . . .

. . . ζi´1 “
d2
kξ

2

128pk ´ 1q2
k´1
ź

j“i´1
d
pk

jqp2
j`1´1q

j . (67)

We define δi´1 similarly to how we defined δk´1 (cf. (66)). In particular, we want δi´1 ą 0 to
be small enough so that (a) is satisfied with ξ from (63). This task is handled by Theorem 7.2,
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which has the following quantification of constants:

@dk, @δk, Dξ : @dk´1, Dδk´1 : . . . ,@di´1, Dδi´1 : . . .

With dk, δk ą 0 given above, with ξ given in (63), and with dk´1, δk´1, . . . , di´1 inductively
disclosed above, let

δThm.7.2, i´1 “ δThm.7.2, i´1pk, dk, δk, ξ, dk´1, δk´1, . . . , di´1q ą 0

be the constant guaranteed by Theorem 7.2. We also want δi´1 ą 0 to be small enough so that (b)
above is satisfied with µ ą 0 from (65). Moreover, we want δi´1 ą 0 to be small enough so that
the following sequence (b1) of conditions is satisfied (cf. (65)):

pb1q ‚ we can estimate |KkpHpk´1qq| within an error of 1˘ µ;
‚ we can estimate |KkpHpk´2qq| within an error of 1˘ µ;

...

‚ we can estimate |KkpHpi´1qq| within an error of 1˘ µ.

To guarantee that the sequence (b1) of conditions above will be satisfied, we fix an integer h
satisfying i´ 1 ď h ď k ´ 1, and appeal to Theorem 6.1, which has the following quantification
of constants:

@µ, @dh, Dδh : @dh´1, Dδh´1 : . . .@di´1, Dδi´1 : . . .

With µ ą 0 from (65), and with dh, δh, . . . , di´1 ą 0 inductively disclosed above, let

δThm.6.1, i´1, h “ δThm.6.1, i´1, hp` “ k, h, µ, dh, δh, . . . , di´1q ą 0

be the constant guaranteed by Theorem 6.1. Set

δThm.6.1, i´1 “ min tδThm.6.1, i´1, h : i´ 1 ď h ď k ´ 1u .

Finally, we also want δi´1 ą 0 to be small enough so that (c) above is satisfied with ζk´1 ą 0
from (65). Moreover, we want δi´1 ą 0 to be small enough so that the following sequence (c1) of
conditions is satisfied (cf. (67)):

pc1q ‚ all but ζk´1|KkpHpk´1qq| cliques K P KkpHpk´1qq satisfy

degΓk´1pKq “ p1˘ ζk´1q
k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk,

and all but ζk´1|KkpHpk´1qq|2 pairs of cliques K ‰ K 1 P KkpHpk´1qq satisfy

degΓk´1pK,K
1q “ p1˘ ζk´1q

k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk;

‚ all but ζk´2|KkpHpk´2qq| cliques K P KkpHpk´2qq satisfy

degΓk´2pKq “ p1˘ ζk´2q
k´2
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk,
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and all but ζk´2|KkpHpk´2qq|2 pairs of cliques K ‰ K 1 P KkpHpk´2qq satisfy

degΓk´2pK,K
1q “ p1˘ ζk´2q

k´2
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk;

...

‚ all but ζi´1|KkpHpi´1qq| cliques K P KkpHpi´1qq satisfy

degΓi´1pKq “ p1˘ ζi´1q
i´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk,

and all but ζi´1|KkpHpi´1qq|2 pairs of cliques K ‰ K 1 P KkpHpi´1qq satisfy

degΓi´1pK,K
1q “ p1˘ ζi´1q

i´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk.

To guarantee that the sequence (c1) of conditions above will be satisfied, we fix an integer h
satisfying i´ 1 ď h ď k ´ 1, and appeal to Theorem 6.4, which has the following quantification
of constants:

@ζh, @dh, Dδh : @dh´1, Dδh´1 : . . .@di´1, Dδi´1 : . . .

With ζh ą 0 from (67), and with dh, δh, . . . , di´1 ą 0 inductively disclosed above, let

δThm.6.4, i´1, h “ δThm.6.4, i´1, hp` “ k, h, ζh, dh, δh, . . . , di´1q ą 0

be the constant guaranteed by Theorem 6.4. Set

δThm.6.4, i´1 “ min tδThm.6.4, i´1, h : i´ 1 ď h ď k ´ 1u .

Now, set

δi´1 “ min tδThm.7.2, i´1, δThm.6.1, i´1, δThm.6.4, i´1u . (68)

This concludes our definition of the promised constant δi´1 ą 0. We continue this way until
δ2 ą 0 is reached.

It remains to define the integer r0 promised by Theorem 3.16. To that end, set

r0 “ 2
k´1
ź

j“2
d
pk

jqp2´2jq

j , (69)

where we omit floors and ceilings for simplicity. Finally, in all that follows, we take the integer
n0 to be sufficiently large whenever needed. This concludes our description of the promised
constants.
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8.2. The Algorithm for Theorem 3.16. Set δk´1 “ pδ2, . . . , δk´1q, where each δj , 2 ď j ď

k ´ 1, was defined in (68). Let Hpkq be a pk, kq-complex with density sequence dk, as given in
Setup 3.15, where n ě n0. Suppose dk satisfies that, for each 2 ď j ď k, dΛj

ě dj for all Λj P rksj ,
where dj was given above. Suppose Hpk´1q has DEVpdk´1,dk´1q, but that pHpkq,Hpk´1qq does
not have DEVpdrks, δkq. Our goal is to construct, in time Opn3kq, a collection of subhypergraphs
Qpk´1q

1 , . . . ,Qpk´1q
r Ď Hpk´1q, where r ď r0 (cf. (69)), so that

ˇ

ˇ

ˇ

ď

iPrrs

KkpQ
pk´1q
i q

ˇ

ˇ

ˇ
ą δ1k

ˇ

ˇ

ˇ
KkpHpk´1qq

ˇ

ˇ

ˇ
and

ˇ

ˇ

ˇ
d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

´ drks

ˇ

ˇ

ˇ
ą δ1k, (70)

where δ1k was defined in (64).
Our algorithm will take place in five steps. Before emerging into techical details, we give an

overview of the algorithm.

‚ Assumptions (1) and (2) of Theorem 3.16 allow us to apply the Negative-Extension
Lemma to the pk, kq-complex Hpkq. In Step 1, we will apply Theorem 7.2 to Hpkq to
conclude that there exists a hypergraph ∅ ‰ Spkq Ď Opkq “ KpkqpU1, . . . , Ukq so that, for
any anchor A for which Ā P Spkq, the statement EXTApSpkq, ξ,Hq is false. In order to find
the hypergraph Spkq, we will test, for each ∅ ‰ Spkq Ď Opkq, for each fixed choice of anchor
A with Ā P Spkq, and for each k-tuple K P KkpHpk´1qq, whether or not deg~ΓApSpkqqpKq is
‘close’ to what is expected. Since EXTApSpkq, ξ,Hq is false, our search will find some
∅ ‰ Spkq Ď Opkq so that, for any anchor A with Ā P Spkq, ‘many’ K P KkpHpk´1qq will
have deg~ΓApSpkqqpKq being ‘far’ from what is expected. The running time of Step 1 will
be Opn2kq.

We will assume, w.l.o.g., that many of the k-tuples K above have deg~ΓApSpkqqpKq being
‘too large’, and we will denote the set of such K by Apkqbad,`.

While Step 1 involved the pk, kq-complex Hpkq “ tHpjqukj“1, Steps 2-4 will consider the underlying
pk, k ´ 1q-complex Hpk´1q “ tHpjqu

k´1
j“1 .

‚ Assumption (1) of Theorem 3.16 allows us to apply the Extension Lemma to the pk, k´1q-
complex Hpk´1q. In Step 2, we will apply Theorem 6.4 to Hpk´1q to conclude that ‘nearly’
all K P KkpHpk´1qq have degΓk´1pKq being ‘close’ to what is expected. We will remove,
one-by-one, all k-tuples K P Apkqbad,` (see Step 1) for which degΓk´1pKq is ‘far’ from what
is expected. The application of Theorem 6.4 will guarantee that ‘many’ k-tuples of Apkqbad,`

remain after this removal, and we will denote this remaining set by rApkqbad,`. The running
time of Step 2 will be Opn2kq.

‚ Assumption (1) of Theorem 3.16 allows us to apply the Extension Lemma to each of
the complexes Hpk´1q, Hpk´2q, . . . , Hp2q. In Step 3, we will apply Theorem 6.4 to each
of the complexes Hpk´1, Hpk´2q, . . . , Hp2q to conclude that, for each 2 ď i ď k ´ 1,
‘nearly’ all pairs of k-tuples K ‰ K 1 P KkpHpiqq have degΓi

pK,K 1q being ‘close’ to what
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is expected. For each 2 ď i ď k ´ 1, we will consider the auxiliary graph Gi formed by
the set of pairs K ‰ K 1 P KkpHpiqq for which degΓi

pK,K 1q is ‘far’ from what is expected.
The application of Theorem 6.4 will then guarantee that the graphs Gi, 2 ď i ď k ´ 1,
are ‘sparse’. The running time of Step 3 will be Opn3kq.

‚ In Step 4, we will apply the Picking Lemma to the set Y “ rApkqbad,` Ď Kk´1pHpk´1qq “ X

(see Step 2) and the graphs Gi (see Step 3), 2 ď i ď k ´ 1. Lemma 8.1 will choose a
set Z “ Zr Ă Y “ rApkqbad of size r ď r0 (cf. (69)) so that, for each 2 ď i ď k ´ 1, the
induced subgraph GirZs is still ‘sparse’. In other words, for each 2 ď i ď k´ 1, most pairs
K ‰ K 1 P GirZs will have degΓi

pK,K 1q being ‘close’ to what is expected. This property
will be a key detail in Step 5. The running time of Step 4 will be Opn3kq.

‚ In Step 5, we will observe that each K P Z defines a complex QK “ tQpjqK u
k´1
j“2 which is

a subcomplex of Hpk´1q “ tHpjqu
k´1
j“2 . We will show that the collection Qpk´1q

K P Qpk´1q,
over all K P Z, is precisely the r-witness we promised in (70). A key ingredient in verifying
that Qpk´1q

K , over all K P Z, is the promised r-witness will be that each graph GirZs,
2 ď i ď k ´ 1, is ‘sparse’. The running time of Step 5 will be Opnkq.

We now proceed to fill in the details of the outline above, beginning with Step 1.

Step 1: Applying the Negative-Extension Lemma. By Assumptions (1) and (2) of
Theorem 3.16, the pk, k ´ 1q-complex Hpk´1q has DEVpdk´1, δk´1q, but pHpkq,Hpk´1qq does not
have DEVpdrks, δkq, where drks “ dpHpkq|Hpk´1qq. As such, with ξ given in (63), Theorem 7.2
guarantees the existence of a subhypergraph ∅ ‰ Spkq Ď Opkq “ KpkqpU1, . . . , Ukq so that, for any
anchor A with Ā P Spkq, the statement EXTApSpkq, ξ,Hpkqq is false. Now, with a greedy search,
we determine the hypergraph ∅ ‰ Spkq Ď Opkq, and we find a ‘large’ set of k-tuples K P KkpHpkqq

witnessing that the statement EXTApSpkq, ξ,Hpkqq is false. Indeed, for each ∅ ‰ Spkq Ď Opkq, fix
an arbitrary anchor A for which Ā P Spkq. As we did in (26), define

Apkq “ ApkqpSpkq, A, ξ,Hpkqq “

#

Hpkq if A P Spkq,
KkpHpk´1qq if A R Spkq.

Now, for each K P Apkq,

test if deg~ΓApSpkqrtĀuqpKq ą ξ degΓk´1pKq. (71)

Since
V p~ΓApSpkq r tĀuqq Ď V pΓk´1q “ KkpHpk´1qq,

where |KkpHpk´1qq| “ Opnkq, the test in (71) can be done in time Opnkq. If (71) holds,

test if deg~ΓApSpkqqpKq “ p1˘ ξqdrks deg~ΓApSpkqrĀqpKq. (72)

The test in (72) can similarly be done in time Opnkq. Thus, over all K P Apkq, the tests of (71)
and (72) can be done in time Opn2kq.
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Now, set (cf. (27))

Apkqbad “ ApkqbadpS
pkq, A, ξ,Hpkqq “

!

K P Apkq : deg~ΓApSpkqrĀqpKq ą ξ degΓk´1pKq

but deg~ΓApSpkqqpKq ‰ p1˘ ξqdrks deg~ΓApSpkqrĀqpKq
)

,

which we have identified in time Opn2kq. Since the statement EXTApSpkq, ξ,Hpkqq is false, there
must be some ∅ ‰ Spkq Ď Opkq so that, for any anchor A with Ā P Spkq, we have

ˇ

ˇApkqbad
ˇ

ˇ ě ξ|Apkq| ě ξ|Hpkq| “ ξdrks|KkpHpk´1qq|, (73)

where we used that drks “ dpHpkq|Hpk´1qq. Moreover, the tests of (71) and (72) will (eventually)
find the hypergraph ∅ ‰ Spkq Ď Opkq and the corresponding set Apkqbad, all in time Opn2kq. (For
the remainder of this section, we fix an arbitrary anchor A with Ā P Spkq.)

We now refine the set Apkqbad, as follows. Denote by Apkqbad,` the set of k-tuples K P Apkqbad for
which

deg~ΓApSpkqqpKq ą p1` ξqdrks deg~ΓApSpkqrtĀuqpKq, (74)

and set Apkqbad,´ “ Apkqbad r Apkqbad,`. Then, one of Apkqbad,` or Apkqbad,´ has size at least 1
2 |A

pkq
bad|. In our

proof, it will be symmetric to handle these two cases, so we assume, w.l.o.g., that
ˇ

ˇApkqbad,`
ˇ

ˇ ě
1
2
ˇ

ˇApkqbad
ˇ

ˇ

p73q
ě

1
2ξdrks|KkpHpk´1qq|. (75)

Clearly, the set Apkqbad,` can be found in time Opn2kq, since we will, in fact, identify it as we build
Apkqbad. We now proceed to Step 2.

Step 2: Applying the Extension Lemma to Hpk´1q. We apply Theorem 6.4 to the pk, k´1q-
complex Hpk´1q to further refine the set Apkqbad,`. To that end, by Assumption (1) in the hypothesis
of Theorem 3.16, Hpk´1q has DEVpdk´1, δk´1q. With ζk´1 given in (65), Statement (1) of the
Extension Lemma guarantees that all but ζk´1|KkpHpk´1qq| many elements K P KkpHpk´1qq

satisfy

degΓk´1pKq “ p1˘ ζk´1q
k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk. (76)

Now, let rApkqbad,` denote the set of k-tuples K P Apkqbad,` for which (76) holds. Since ζk´1 ă
1
4ξdk ď

1
4ξdrks from (65), we infer from (75) that

ˇ

ˇ rApkqbad,`
ˇ

ˇ ě
1
4ξdrks|KkpHpk´1qq|. (77)

Moreover, we can identify the set rApkqbad,`, arguing similarly as in Step 1.
For future reference, let us now review that every element K P rApkqbad,` has the following

properties (on account of (73), (74), and (76)):

deg~ΓApSpkqrtĀuqpKq ą ξ degΓk´1pKq, where degΓk´1pKq “ p1˘ ζk´1q
k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

,

and deg~ΓApSpkqqpKq ą p1` ξqdrks deg~ΓApSpkqrtĀuqpKq. (78)
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We now proceed to Step 3.

Step 3: Applying the Extension Lemma to each of Hpk´1q, . . . ,Hp2q. We now apply
Theorem 6.4 to each of the complexes Hpk´1q, . . . ,Hp2q. To that end, for each 2 ď i ď k ´ 1 and
with ζi given in (67), Statement (2) of the Extension Lemma guarantees that all but ζi|KkpHpiqq|2

many pairs K,K 1 P KkpHpiqq satisfy

degΓi
pK,K 1q ď p1` ζiq

i
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk ă 2
i
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk. (79)

We now record, for each 2 ď i ď k ´ 1, the pairs K ‰ K 1 P KkpHpiqq for which (79) fails. Indeed,
for each 2 ď i ď k ´ 1, let Gi be the graph with vertex set V pGiq “ KkpHpk´1qq and edge set

Gi “

$

&

%

tK,K 1u P

ˆ

KkpHpk´1qq

2

˙

: degΓi
pK,K 1q ą 2

i
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk

,

.

-

. (80)

Note that the graphs Gi, 2 ď i ď k ´ 1, may be constructed in time Opn3kq. Indeed, for
each 2 ď i ď k ´ 1, the graph Gi has vertex set KkpHpk´1qq and the graph Γi has vertex set
KkpHpiqq Ě KkpHpk´1qq, where |KkpHpiqq| “ Opnkq. As such, we may greedily test the Γi-codegree
of pairs of vertices of Gi in time Opn3kq.

Now, for each 2 ď i ď k ´ 1, the application of Theorem 6.4 in (79) gives |Gi| ă ζi|KkpHpiqq|2.
Since

V pGiq “ KkpHpk´1qq Ď KkpHpk´2qq Ď ¨ ¨ ¨ Ď KkpHpiqq,

we rewrite |Gi| ď ζi|KkpHpiqq|2 in terms of |KkpHpk´1qq|2. For i “ k ´ 1, nothing needs to be
done. For 2 ď i ď k ´ 2, we employ Theorem 6.1, which says that for each 2 ď i ď k ´ 1,

|KkpHpiqq| “ p1˘ µq
i
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk, (81)

where µ is given in (65). As such,

|KkpHpiqq|2 ď p1` µq2
i
ź

j“2

ź

ΛjPrksj

d2
Λj
ˆ n2k and |KkpHpk´1qq|2 ě p1´ µq2

k´1
ź

j“2

ź

ΛjPrksj

d2
Λj
ˆ n2k,

in which case

|Gi|

|KkpHpk´1qq|2
ď ζi

|KkpHpiqq|2

|KkpHpk´1qq|2
ď ζi

ˆ

1` µ
1´ µ

˙2 k´1
ź

j“i`1

ź

ΛjPrksj

d´2
Λj

p65q
ď 2ζi

k´1
ź

j“i`1

ź

ΛjPrksj

d´2
Λj
,

or equivalently,

|Gi| ď 2ζi
k´1
ź

j“i`1

ź

ΛjPrksj

d´2
Λj
ˆ |KkpHpk´1qq|2.

Altogether, we conclude that for each 2 ď i ď k ´ 1,

|Gi| ă

#

ζk´1|KkpHpk´1qq|2 if i “ k ´ 1,
2ζi

śk´1
j“i`1

ś

ΛjPrksj
d´2

Λj
ˆ |KkpHpk´1qq|2 if 2 ď i ď k ´ 2.

(82)
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We now proceed to Step 4.

Step 4: Applying the Picking Lemma. In the context of the Picking Lemma, set X “

KkpHpk´1qq, where here we write |X| “ m, and let G2, . . . , Gk´1 be the graphs constructed in (80)
of Step 2 on the common vertex set X. Set, for each 2 ď i ď k ´ 1 and ζi given in (67),

σi “

#

ζk´1 if i “ k ´ 1,
2ζi

śk´1
j“i`1

ś

ΛjPrksj
d´2

Λj
if 2 ď i ď k ´ 1.

(83)

Then, (82) gives that, for each 2 ď i ď k ´ 1, |Gi| ă σim
2. Set

c “
1
4drksξ, (84)

and set Y “ rApkqbad,` (cf. (77) and (78)). Then,

Y “ rApkqbad,` Ď Apkqbad,` Ď Apkqbad Ď Apkq Ď KkpHpk´1qq “ X,

and (77) and (84) give |Y | ě cm. Set

r “ 2
b

δ1k

k´1
ź

j“2

ź

ΛjPrksj

d2´2j

Λj
, (85)

where we omit floors and ceilings for simplicity. Note that, as defined in (85), we have

r “ 2
b

δ1k

k´1
ź

j“2

ź

ΛjPrksj

d2´2j

Λj
ď 2

k´1
ź

j“2

ź

ΛjPrksj

d2´2j

Λj
ď 2

k´1
ź

j“2
d
pk

jqp2´2jq

j

p69q
“ r0, (86)

where we used that, for each 2 ď j ď k ´ 1, we have dΛj
ě dj for all Λj P rksj .

We apply the (Algorithmic) Picking Lemma (Lemma 8.1) (with s “ k ´ 1) to select, in time
Opm3q “ Opn3kq, vertices Z “ Zr “ tK1, . . . ,Kru Ă Y “ rApkqbad,` so that, for each 2 ď i ď k ´ 1,
|GirZs| ă p2pk ´ 1qσi{c2qr2. The selected vertices Z “ tK1, . . . ,Kru Ă rApkqbad,` will play a critical
role in our algorithm. One key use we will later have of Z (in Step 4) is summarized in the
following claim.

Claim 8.2.
ÿ

1ďaăbďr
degΓk´1pKa,Kbq ď 2r2

k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk.

We prefer not to break the flow of the algorithm, and therefore defer this proof until Sec-
tion 8.3. We continue with Step 5 of our algorithm, which will conclude the proof of Theorem 3.16.

Step 5: Constructing the subhypergraphs Qpk´1q
1 , . . . ,Qpk´1q

r . In Steps 1 and 2, we con-
structed, in time Opn2kq the set rApkqbad,` Ď Apkq (cf. (77) and (78)). In Step 3, we constructed,
in time Opn3kq, the graphs Gi, 2 ď i ď k ´ 1, defined in (80). In Step 4, we used the Picking
Lemma to select, in time Opn3kq, a subset Z “ tK1, . . . ,Kru Ă rApkqbad,` for which Claim 8.2 holds.
The following claim, which is the last subroutine for proving Theorem 3.16, will now allow us to
construct the subhypergraphs Qpk´1q

1 , . . . ,Qpk´1q
r Ď Hpk´1q promised in (70).
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Claim 8.3. Recall the hypergraph Spkq determined in Step 1, whose anchor satisfies Ā P Spkq.
Then, for each K P Apkq (cf. (26)), one may construct, in time Opnk´1q, a pk, k ´ 1q-complex
Qpk´1q
K “ tQpjqK u

k´1
j“1 , where QpjqK Ď Hpjq for each j P rk ´ 1s, so that

(1) N~ΓApSpkqrtĀuqpKq “ KkpQ
pk´1q
K q;

Consequently,

(2) N~ΓApSpkqqpKq “ Hpkq XN~ΓApSpkqrtĀuqpKq “ Hpkq XKkpQ
pk´1q
K q.

Remark 8.4. Claim 8.3 holds more generally than we’ve stated above. In particular, Statement (1)
of Claim 8.3 is true for all k-graphs ∅ Ď Spkq Ď Opkq “ KpkqpU1, . . . , Ukq, and for all choices of
anchors A. Statement (2) of Claim 8.3 is a consequence of Statement (1), since

N~ΓApSpkqqpKq “ Hpkq XN~ΓApSpkqrtĀuqpKq

is a basic identity of the graphs ~ΓApSpkqq and ~ΓApSpkq r tĀuq. Thus, Statement (2) of Claim 8.3
is true for all hypergraphs ∅ ‰ Spkq Ď Opkq, and for all choices of anchors A for which Ā P Spkq.

The proof of Claim 8.3 is mechanical, but not difficult. We will first show how Claim 8.3 concludes
the proof of Theorem 3.16. We return to the proof of Claim 8.3 in Section 8.4.

To finish the proof of Theorem 3.16, fix Ki P Z, and let Qpk´1q
i “ Qpk´1q

Ki
be the pk, k ´ 1q-

complex constructed in Claim 8.3. For each 1 ď i ď r, we define Qpk´1q
i “ Qpk´1q

Ki
P Qpk´1q

i , and so
by Claim 8.3, we have Qpk´1q

i Ď Hpk´1q. We prove the hypergraphs Qpk´1q
1 , . . . ,Qpk´1q

r Ď Hpk´1q

satisfy the conclusion of Theorem 3.16. Indeed, we already noted in (86) that r ď r0, as
required by Theorem 3.16. As well, it follows from our discussion above that the hypergraphs
Qpk´1q

1 , . . . ,Qpk´1q
r Ď Hpk´1q were constructed in time Opn3kq, as required by Theorem 3.16. It

remains to verify the conditions in (70), which we separate into the following two parts.

Fact 8.5.
ˇ

ˇ

ˇ

ď

iPrrs

KkpQ
pk´1q
i q

ˇ

ˇ

ˇ
ą δ1k

ˇ

ˇ

ˇ
KkpHpk´1qq

ˇ

ˇ

ˇ
.

Fact 8.6.
d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

ą drks ` δ
1
k.

We proceed immediately to the proofs of Facts 8.5 and 8.6.

Proof of Fact 8.5. We use Inclusion-Exclusion to conclude
ˇ

ˇ

ˇ

ď

iPrrs

KkpQ
pk´1q
i q

ˇ

ˇ

ˇ
ě

ÿ

iPrrs

ˇ

ˇ

ˇ
KkpQ

pk´1q
i q

ˇ

ˇ

ˇ
´

ÿ

1ďiăjďr

ˇ

ˇ

ˇ
KkpQ

pk´1q
i q XKkpQ

pk´1q
j q

ˇ

ˇ

ˇ
. (87)

To bound the sums above, recall from Claim 8.3 that, for each i P rrs,
ˇ

ˇ

ˇ
KkpQ

pk´1q
i q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
N~ΓApSpkqrtĀuqpKiq

ˇ

ˇ

ˇ
“ deg~ΓApSpkqrtĀuqpKiq. (88)

Claim 8.3 also gives that, for each 1 ď i ă j ď r,
ˇ

ˇ

ˇ
KkpQ

pk´1q
i q XKkpQ

pk´1q
j q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
N~ΓApSpkqrtĀuqpKiq XN~ΓApSpkqrtĀuqpKjq

ˇ

ˇ

ˇ
ď degΓk´1pKi,Kjq, (89)
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where the last inequality holds because ~ΓApSpkqr tĀuq Ď Γk´1, which holds because every labeled
partite-embedding of Spkq r tĀu in Hpkq is also a labeled partite-embedding of Opk´1q in Hpk´1q.
Applying (88) and (89) to (87) yields

ˇ

ˇ

ˇ

ď

iPrrs

KkpQ
pk´1q
i q

ˇ

ˇ

ˇ
ě

ÿ

iPrrs

deg~ΓApSpkqrtĀuqpKiq ´
ÿ

1ďiăjďr
degΓk´1pKi,Kjq.

Claim 8.2 immediately bounds the double summation above:

ˇ

ˇ

ˇ

ď

iPrrs

KkpQ
pk´1q
i q

ˇ

ˇ

ˇ
ě

ÿ

iPrrs

deg~ΓApSpkqrtĀuqpKiq ´ 2r2
k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk. (90)

To bound the sum in (90), we use that for every 1 ď i ď r, the k-tuple Ki P Z Ă Y “ Apkqbad,`
satisfies the following properties from (78):

deg~ΓApSpkqrtĀuqpKiq
p78q
ą ξ degΓk´1pKiq

p78q
ą

1
2ξ

k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk
p64q
“ 5pδ1kq1{8

k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk. (91)

Applying (91) to (90) yields

ˇ

ˇ

ˇ

ď

iPrrs

KkpQ
pk´1q
i q

ˇ

ˇ

ˇ
ě 5rpδ1kq1{8

k´1
ź

j“2

ź

ΛjPrksj

d2j´1
Λj

ˆ nk ´ 2r2
k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk.

Employing the value r “ 2
a

δ1k
śk´1
j“2

ś

ΛjPrksj
d2´2j

Λj
from (85) into the inequality above yields

ˇ

ˇ

ˇ

ď

iPrrs

KkpQ
pk´1q
i q

ˇ

ˇ

ˇ
ě 10pδ1kq5{8

k´1
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk ´ 8δ1k

k´1
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk

ě 2δ1k
k´1
ź

j“2

ź

ΛjPrksj

dΛj
ˆ nk

p81q
ě δ1k|KkpHpk´1qq|.

This proves Fact 8.5. �

Proof of Fact 8.6. By Inclusion-Exclusion, we have

d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

“

ˇ

ˇ

ˇ
Hpkq X

Ť

iPrrsKkpQ
pk´1q
i q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ť

iPrrsKkpQ
pk´1q
i q

ˇ

ˇ

ˇ

ě

ř

iPrrs

ˇ

ˇ

ˇ
Hpkq XKkpQ

pk´1q
i q

ˇ

ˇ

ˇ
´
ř

1ďiăjďr

ˇ

ˇ

ˇ
Hpkq XKkpQ

pk´1q
i q XKkpQ

pk´1q
j q

ˇ

ˇ

ˇ

ř

iPrrs

ˇ

ˇ

ˇ
KkpQ

pk´1q
i q

ˇ

ˇ

ˇ

ě

ř

iPrrs

ˇ

ˇ

ˇ
Hpkq XKkpQ

pk´1q
i q

ˇ

ˇ

ˇ
´
ř

1ďiăjďr

ˇ

ˇ

ˇ
KkpQ

pk´1q
i q XKkpQ

pk´1q
j q

ˇ

ˇ

ˇ

ř

iPrrs

ˇ

ˇ

ˇ
KkpQ

pk´1q
i q

ˇ

ˇ

ˇ

. (92)
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Recall from Claim 8.3 that for each i P rrs, we have
ˇ

ˇ

ˇ
KkpQ

pk´1q
i q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
N~ΓApSpkqrtĀuqpKiq

ˇ

ˇ

ˇ
“ deg~ΓApSpkqrtĀuqpKiq,

and
ˇ

ˇ

ˇ
Hpkq XKkpQ

pk´1q
i q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
N~ΓApSpkqqpKiq

ˇ

ˇ

ˇ
“ deg~ΓApSpkqqpKiq.

Recall from (89) that, for each 1 ď i ă j ď r, we have that |KkpQ
pk´1q
i q X KkpQ

pk´1q
j q| ď

degΓk´1pKi,Kjq. We may therefore update (92) to say

d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

ě

ř

iPrrs deg~ΓApSpkqqpKiq ´
ř

1ďiăjďr degΓk´1pKi,Kjq
ř

iPrrs deg~ΓApSpkqrtĀuqpKiq
.

Claim 8.2 immediately bounds the double summation above:

d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

ě

ř

iPrrs deg~ΓApSpkqqpKiq ´

´

2r2 śk´1
j“2

ś

ΛjPrksj
d2¨2j´3

Λj
ˆ nk

¯

ř

iPrrs deg~ΓApSpkqrtĀuqpKiq
. (93)

To bound the sum in the numerator, we use that, for every 1 ď i ď r, the k-tuple Ki P Z Ă Y “

Apkqbad,` satisfies the following property from (78):

deg~ΓApSpkqqpKiq
p78q
ą p1` ξqdrks deg~ΓApSpkqrtĀuqpKiq. (94)

Applying (94) to (93) yields

d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

ě

p1` ξqdrks
ř

iPrrs deg~ΓApSpkqrtĀuqpKiq ´

´

2r2 śk´1
j“2

ś

ΛjPrksj
d2¨2j´3

Λj
ˆ nk

¯

ř

iPrrs deg~ΓApSpkqrtĀuqpKiq

“ p1` ξqdrks ´
2r2 śk´1

j“2
ś

ΛjPrksj
d2¨2j´3

Λj
ˆ nk

ř

iPrrs deg~ΓApSpkqrtĀuqpKiq
.

Employing (91) in the denominator, we have

d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

ě p1` ξqdrks ´
2r

5pδ1kq1{8
k´1
ź

j“2

ź

ΛjPrksj

d2j´2
Λj

.

Employing the value r “ 2
a

δ1k
śk´1
j“2

ś

ΛjPrksj
d2´2j

Λj
from (85) into the inequality above yields

d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

ě p1` ξqdrks ´
4
5pδ

1
kq

3{8 “ drks ` ξdrks ´
4
5pδ

1
kq

3{8.

Now, from the hypothesis of Theorem 3.16, we have drks ě dk, and it follows from the definition
of ξ in (63) that ξ ď dk ď drks. We therefore have

d
´

Hpkq|Qpk´1q
1 , . . . ,Qpk´1q

r

¯

ě drks ` ξ
2 ´

4
5pδ

1
kq

3{8

p64q
“ drks ` 100pδ1kq1{4 ´

4
5pδ

1
kq

3{8 ě drks ` 99pδ1kq3{8 ą drks ` δ
1
k.

This proves Fact 8.6. �
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8.3. Proof of Claim 8.2. We shall prove, more generally, that for each 2 ď i ď k ´ 1,
ÿ

tKa,KbuPGirZs

degΓi
pKa,Kbq ď

i

k ´ 1r
2
k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk. (95)

We first show that (95) implies Claim 8.2. Indeed, observe that
ÿ

1ďaăbďr
degΓk´1pKa,Kbq “

ÿ

tKa,KbuPp
Z
2qrGk´1

degΓk´1pKa,Kbq `
ÿ

tKa,KbuPGk´1

degΓk´1pKa,Kbq

p80q
ď 2

ˆ

r

2

˙ k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk `
ÿ

tKa,KbuPGk´1

degΓk´1pKa,Kbq.

Employing (95) with i “ k ´ 1, we have
ÿ

ta,buPprrs2 q

degΓk´1pKa,Kbq ď

ˆ

1` pk ´ 1q 1
k ´ 1

˙

r2
k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk,

as desired.
To prove (95), we use induction on 2 ď i ď k ´ 1. Since the base case i “ 2 will be implicit in

the inductive step, we give its discussion in context (see (96) and (97) below). For 3 ď i ď k ´ 1,
we have the recurrence

ÿ

tKa,KbuPGirZs

degΓi
pKa,Kbq

p24q
ď

ÿ

tKa,KbuPGirZs

degΓi´1pKa,Kbq

“
ÿ

tKa,KbuPpGirGi´1qrZs

degΓi´1pKa,Kbq `
ÿ

tKa,KbuPpGiXGi´1qrZs

degΓi´1pKa,Kbq

p80q
ď 2|GirZs|

i´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ˆ nk `
ÿ

tKa,KbuPGi´1rZs

degΓi´1pKa,Kbq. (96)

Note that the last inequality of (96) also holds for i “ 2. Indeed, when i “ 2, the summation
in (96) is zero, and the first term is 2|G2rZs|n

k. However, when i “ 2, the following stronger
inequality holds:

ÿ

tKa,KbuPG2rZs

degΓ2pKa,Kbq ď |G2rZs| ˆ n
k. (97)

Now, for 2 ď i ď k ´ 1, we claim that

2|GirZs|
i´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

ď
1

k ´ 1r
2
k´1
ź

j“2

ź

ΛjPrksj

d2¨2j´3
Λj

,

or equivalently,

|GirZs| ď
r2

2pk ´ 1q

k´1
ź

j“i

ź

ΛjPrksj

d2¨2j´3
Λj

, (98)

which, if true, completes our induction step.
To see (98), recall that the Picking Lemma ensures that |GirZs| ď 2pk ´ 1qpσi{c2qr2, where

σi
p83q
“

#

ζk´1 if i “ k ´ 1,
2ζi

śk´1
j“i`1

ś

ΛjPrksj
d´2

Λj
if 2 ď i ď k ´ 2,
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and c “ 1
4drksξ was given in (84). To bound σk´1 “ ζk´1, we have

σk´1 “ ζk´1
p67q
“

d2
kξ

2

128pk ´ 1q2d
kp2¨2k´1´1q
k´1 ď

d2
rksξ

2

128pk ´ 1q2
ź

Λk´1Prksk´1

d2¨2k´1´1
Λk´1

ď
d2
rksξ

2

128pk ´ 1q2
ź

Λk´1Prksk´1

d2¨2k´1k´3
Λk´1

,

where we used, for j P tk ´ 1, ku, dΛj
ě dj for all Λj P rks

j . Thus, with |Gk´1rZs| ď 2pk ´
1qpσk´1{c

2qr2 and c “ 1
4drksξ, we have

|Gk´1rZs| ď 2pk ´ 1qσk´1
c2 r2 ď

r2

4pk ´ 1q
ź

Λk´1Prksk´1

d2¨2k´1´3
Λk´1

ă
r2

2pk ´ 1q
ź

Λk´1Prksk´1

d2¨2k´1´3
Λk´1

,

which is (98) in the case i “ k ´ 1.
For 2 ď i ď k ´ 2, we have from (83) that σi “ 2ζi

śk´1
j“i`1

ś

ΛjPrksj
d´2

Λj
. To bound ζi in this

expression, observe that

ζi
p67q
“

d2
kξ

2

128pk ´ 1q2
k´1
ź

j“i

d
pk

jqp2¨2
j´1q

j ď
d2
rksξ

2

128pk ´ 1q2
k´1
ź

j“i

ź

ΛjPrksj

d2¨2j´1
Λj

“
d2
rksξ

2

128pk ´ 1q2

śk´1
j“i

ś

ΛjPrksj
d2¨2j´3

Λj
śk´1
j“i

ś

ΛjPrksj
d´2

Λj

ď
d2
rksξ

2

128pk ´ 1q2

śk´1
j“i

ś

ΛjPrksj
d2¨2j´3

Λj
śk´1
j“i`1

ś

ΛjPrksj
d´2

Λj

,

where we used that, for each 2 ď j ď k, dΛj
ě dj for all Λj P rksj . As such, we may bound σi by

σi
p83q
“ 2ζi

k´1
ź

j“i`1

ź

ΛjPrksj

d´2
Λj
ď

d2
rksξ

2

64pk ´ 1q2
k´1
ź

j“i

ź

ΛjPrksj

d2¨2j´3
Λj

.

Thus, with |GirZs| ď 2pk ´ 1qpσi{c2qr2 and c “ 1
4drksξ, we have

|GirZs| ď 2pk ´ 1qσi
c2 r

2 ď
1

2pk ´ 1qr
2
k´1
ź

j“i

ź

ΛjPrksj

d2¨2j´3
Λj

,

which is (98). This proves Claim 8.2.

8.4. Proof of Claim 8.3. In this section, we construct the promised pk, k´1q-complex Qpk´1q
K “

tQpjqK u
k´1
j“1 . In what follows, we use the following standard notation: for a k-uniform hypergraph

G, and for a set L Ď V pGq, let

NGpLq “ tJ Ă V pGq : LY J P Gu ,

denote the G-neighborhood of L, which is a pk ´ |L|q-uniform hypergraph. Now, to construct
the promised pk, k ´ 1q-complex Qpk´1q

K “ tQpjqK u
k´1
j“1 is not difficult, but it requires some work

to state. We begin with a discussion of the following example, where k “ 4 and Sp4q “
Op4q “ Kp4qpU1, U2, U3, U4q, that is, Sp4q is the complete 4-partite 4-uniform hypergraph with
|U1| “ |U2| “ |U3| “ |U4| “ 2.
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8.4.1. Example: constructing Qp3q when Sp4q “ Op4q “ Kp4qpU1, U2, U3, U4q. Since Sp4q “ Op4q,
we have that the anchor A satisfies A P Sp4q, and therefore, Ap4q “ Hp4q (cf. (26)). Now, fix
K P Ap4q “ Hp4q, and let K “ tv1, v2, v3, v4u, where vi P Vi for all 1 ď i ď 4.

We construct the promised p4, 3q-complex Qp3q
K “ Qp4q

tv1,v2,v3,v4u
“ tQpjqK u3j“1 recursively. To

begin, set

Qp1qK “ NHp4qptv1, v2, v3uq YNHp4qptv1, v2, v4uq YNHp4qptv1, v3, v4uq YNHp4qptv2, v3, v4uq,

which is a p4, 1q-cylinder since it is just a partition of vertices into four sets. Next, set

Qp2qK “
`

ď

1ďiăjď4
NHp4qptvi, vjuq

˘

XK2pQp1qK q.

Then, Qp2qK “ Qp2q
tv1,v2,v3,v4u

consists of six bipartite graphs Qp2q
tvi,vju

, 1 ď i ă j ď 4, where for
example,

Qp2q
tv1,v2u

“ NHp4qptv1, v2uq
“

NHp4qptv1, v2, v3uq, NHp4qptv1, v2, v4uq
‰

is the subgraph of NHp4qptv1, v2uq induced on NHp4qptv1, v2, v3uq YNHp4qptv1, v2, v4uq. Finally, set

Qp3qK “
`

NHp4qpv1q YNHp4qpv2q YNHp4qpv3q YNHp4qpv4q
˘

XK3pQp2qK q.

Then, Qp3qK consists of four 3-partite 3-graphs Qp3qv1 , Qp3qv2 , Qp3qv3 , Qp3qv4 , where for example,

Qp3qv1 “ NHp4qpv1q XK3
`

Qp2q
tv1,v2u

YQp2q
tv1,v3u

YQp2q
tv1,v4u

˘

is the subhypergraph of NHp4qpv1q induced on the triangles of Qp2q
tv1,v2u

YQp2q
tv1,v3u

YQp2q
tv1,v4u

. This
defines the p4, 3q-complex Qp3q

K “ tQpjqK u3j“1, where it is clear that for each 1 ď j ď 3, QpjqK may
be constructed in time Opnjq.

8.4.2. Defining Qpk´1q
K for general Spkq. To define the pk, k ´ 1q-complex Qpk´1q

K “ tQpjqK u
k´1
j“1 for

a general Spkq Ď Opkq “ KpkqpU1, . . . , Ukq, we proceed similarly to the example above. However,
now we must define each of the pk, jq-cylinders QpjqK , 1 ď j ď k ´ 1, inductively. Moreover, we
must be mindful of the fact that not all edges of Opkq “ KpkqpU1, . . . , Ukq may be present in Spkq.
(In particular, we are only guaranteed that Ā P Spkq, by hypothesis.)

We begin by making a few initial preparations. We write the anchor A as A “ ta1, . . . , aku.
We then write Ā “ tb1, . . . , bku, which by hypothesis is an element of Spkq. Then, Ui “ tai, biu
for all i P rks. Now, fix K P Apkq, where we recall from (26) that Apkq “ Hpkq if A P Spkq, and
Apkq “ KkpHpk´1qq if A R Spkq. We write K “ tv1, . . . , vku, where vi P Vi for all i P rks. We will
construct the promised complex Qpk´1q

K “ tQpjqK u
k´1
j“1 recursively.

To construct the promised pk, 1q-cylinder Qp1qK , we consider the family
`

A
k´1

˘

of all pk´1q-tuples
from the anchor A. To begin, for A1 “ tah1 , . . . , ahk´1u Ă A, write A r A1 “ tahk

u and write
KA1 “ tvh1 , . . . , vhk´1u. Define

Qp1qA1 “

#

NHpkqpKA1q if tah1 , . . . , ahk´1 , bhk
u P Spkq,

NKkpHpk´1qqpKA1q if tah1 , . . . , ahk´1 , bhk
u R Spkq.

(99)

Define
Qp1qK “

ď

A1Pp A
k´1q

Qp1qA1 ,
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and note that Qp1qK is a pk, 1q-cylinder. Trivially, Qp1q
K “ tQp1qK u is a pk, 1q-complex whose sole

component Qp1qK satisfies Qp1qK Ď V1 Y ¨ ¨ ¨ Y Vk “ Hp1q. Moreover, Qp1q
K may be constructed in

time Opnq.
For 2 ď i ď k ´ 1, assume we have constructed, in time Opni´1q, a pk, i ´ 1q-complex

Qpi´1q
K “ tQpjqK u

i´1
j“1, where QpjqK Ď Hpjq holds for all j P ri ´ 1s. We construct, in time Opniq,

a pk, iq-cylinder QpiqK Ď Hpiq X KkpQ
pi´1q
K q by considering the family

`

A
k´i

˘

of all pk ´ iq-tuples
from A “ ta1, . . . , aku. For A1 “ tah1 , . . . , ahk´i

u Ă A, write A r A1 “ tahk´i`1 , . . . , ahk
u and

KA1 “ tvh1 , . . . , vhk´i
u. Define

QpiqA1 “

#

NHpkqpKA1q XKipQpi´1q
K q if tah1 , . . . , ahk´i

, bhk´i`1 , . . . , bhk
u P Spkq,

NKkpHpk´1qqpKA1q XKipQpi´1q
K q if tah1 , . . . , ahk´i

, bhk´i`1 , . . . , bhk
u R Spkq.

(100)

Define

QpiqK “
ď

A1P
`

A
k´i

˘

QpiqA1 ,

and note that QpiqK Ď Hpiq XKipQpi´1q
K q is a pk, iq-cylinder. As such, together with our induction

hypothesis, we may conclude that Qpiq
K “ tQpjqK uij“1 is a pk, iq-complex where QpjqK Ď Hpjq holds

for each j P ris. Moreover, Qpiq
K may be constructed in time Opniq. Inductively, this defines the

promised pk, k ´ 1q-complex Qpk´1q
K “ tQpjqK u

pk´1q
j“1 .

We claim that, by construction, the pk, k´ 1q-complex Qpk´1q
K “ tQpjqK u

pk´1q
j“1 has the properties

promised by Claim 8.3. For that, it suffices to prove Qpk´1q
K satisfies Statement (1) of Claim 8.3

(see Remark 8.4). Indeed, fix K 1 P KkpHpk´1qq. Then, K 1 P N~ΓApSpkqrtĀuqpKq if, and only if, there
exists a labeled partite-embedding ψ of Spkq r tĀu in Hpkq satisfying ψpAq “ K and ψpĀq “ K 1.
In other words, K Y K 1 induces a copy of Spkq r tĀu in Hpkq, and K Y K 1 induces a copy of
Opk´1q in Hpk´1q. However, our construction in (100) equivalently places K 1 P Kk´1pQ

pk´1q
K q, and

vice-versa.

§9. Appendix

9.1. Proof of Lemma 8.1. The proof of Lemma 8.1 (which is reduced to Claim 9.1 below)
will make a standard appeal to the Method of Conditional Expectations (cf. [18,24]), which is
based on an original idea of Erdős and Selfridge [5]. Before we emerge into these details, we
note that it suffices to prove Lemma 8.1 when c “ 1 (and consequently, Y “ X). In particular,
let σs, . . . , σ2 ą 0 be given, together with an integer r ě 1. Let X be a set of size m, and let
G2, . . . , Gs be graphs with vertex set X satisfying |G2| ď σ2m

2, . . . , |Gs| ď σsm
2.

Suppose there exists an algorithm which chooses, in time Op|X|3q “ Opm3q,

vertices Z “ Zr “ tz1, . . . , zru Ă Y “ X so that, for all 2 ď i ď s,

|GirZs| ă 2ps´ 1qσir2. (101)
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Now, let Y Ď X of size |Y | ě c|X| be given, where c ą 0 is a constant. Note that the induced
subgraphs GirY s, 2 ď i ď s, satisfy

|GirY s| ď |Gi| ď σim
2 ùñ

|GirY s|

|Y |2
ď σi

m2

|Y |2
ď
σi
c2 ùñ |GirY s| ď

σi
c2 |Y |

2.

We apply the algorithm in (101) to the induced subgraphs GirY s, 2 ď i ď s. This algorithm
chooses, in time Op|Y |3q “ Opm3q, vertices Z “ Zr “ tz1, . . . , zru Ă Y so that, for all 2 ď i ď s,

|GirZs| “ |pGirY sqrZs| ď 2ps´ 1qσi
c2 r

2,

as desired.
We now prove (101), i.e., Lemma 8.1 when c “ 1 and Y “ X. To that end, let us assume,

w.l.o.g., that

|G2| “ σ2m
2, . . . , |Gs| “ σsm

2, where σs “ maxtσ2, . . . , σsu. (102)

Now, for each 2 ď i ď s, define the constant weight function ωi : Gi Ñ tσs{σiu, i.e., for each pair
tx, x1u P Gi, define

ωiptx, x
1uq “ σs{σi. (103)

Note that Gi has total weight

ωipGiq “
ÿ

tx,x1uPGi

ωiptx, x
1uq “

σs
σi
|Gi|

p102q
“ σsm

2.

Define G “ G2 Y ¨ ¨ ¨ YGs. Then, G is a simple weighted graph on vertex set X whose weight
function ω : GÑ R is given by, for each tx, x1u P G,

ωptx, x1uq “
ÿ

GiQtx,x1u

ωiptx, x
1uq. (104)

Note that G has total weight

ωpGq “
ÿ

tx,x1uPG

ωptx, x1uq “
s
ÿ

i“2
ωipGiq “ ps´ 1qσsm2.

We make the following claim.

Claim 9.1. There exists an algorithm which chooses, in time Opm3q, vertices Z “ Zr “

tz1, . . . , zru Ă X so that ωpGrZsq ď 2ps´ 1qσsr2.

We defer the proof of Claim 9.1 for a moment in favor of showing how it implies Lemma 8.1.
Let Z “ Zr “ tz1, . . . , zru be the set chosen by Claim 9.1. Fix 2 ď i ď s. Then,

ωipGirZsq ď ωpGrZsq ď 2ps´ 1qσsr2. (105)

On the other hand, by (103), we have that

ωipGirZsq “
σs
σi
|GirZs|. (106)

Comparing (105) and (106), we see
σs
σi
|GirZs| “ ωipGirZsq ď ωpGrZsq ď 2ps´ 1qσsr2,
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from which |GirZs| ď 2ps´1qσir2 follows. Thus, to finish the proof of Lemma 8.1, it only remains
to prove Claim 9.1.

9.1.1. Proof of Claim 9.1. To select the promised vertices Z “ Zr “ tz1, . . . , zru Ă X, we use
the following iterative procedure. For an integer 0 ď p ă r, suppose we have selected vertices
Zp “ tz1, . . . , zpu Ă X (if p “ 0, then Zp “ ∅) satisfying the following property:

Let Ar´p Ď X r Zp of size |Ar´p| “ r ´ p be selected uniformly at random.

Then, we have ErωpGrZp YAr´psqs ď 2ps´ 1qσsr2. (107)

Observe that (107) is true when p “ 0. Indeed, in this case, Z0 “ ∅, and Ar Ď X is an r-element
set selected uniformly at random. Thus, using linearity of expectation, we see that

ErωpGrArsqs
p104q
“

s
ÿ

i“2
ErωpGirArsqs

p103q
“

s
ÿ

i“2

σs
σi

Er|GrArs|s “
s
ÿ

i“2

σs
σi
|Gi|

`

r
2
˘

`

m
2
˘

p102q
“ p1` op1qqps´ 1qσsr2 ă 2ps´ 1qσsr2.

Thus, (107) is true when p “ 0. It remains to prove that we may select, in time Opm2q, a vertex
v P X r Zp so that the set Zp`1 “ Zp Y tzu still satisfies the property in (107). Thus, we stop
when p “ r. Indeed, the set Zr is the desired set, since then Ar´p “ ∅, and so we will have, for
all 2 ď i ď s, ErωpGrZrsqs “ ωpGrZrsq.

To prove the inductive step for (107), we make the following considerations. With the set
Zp “ tz1, . . . , zpu fixed above, define

gpZpq “ gpz1, . . . , zpq “ E
Ar´pP

`

XrZp

r´p

˘rωpGrZp YAr´psqs,

where the expectation above is taken uniformly over all sets Ar´p Ď X rZp of size |Ar´p| “ r´ p.
Thus, gpZpq is the expected ω-weight of an induced subgraph GrZp Y Ar´ps whose vertices
contain Zp, where Ar´p runs uniformly over all pr´ pq-element sets of X rZp. By our Induction
Assumption in (107), we have

gpZpq “ gpz1, . . . , zpq ď 2ps´ 1qσsr2. (108)

Fix an arbitrary vertex z P X r Zp, and write Zzp`1 “ Zp Y tzu. Define

fpzq “ gpZzp`1q “ gpz1, . . . , zp, zq “ E
Ar´p´1P

`XrZz
p`1

r´p´1
˘rωpGrZzp`1 YAr´p´1sqs, (109)

where the expectation above is taken uniformly over all sets Ar´p´1 Ď XrZzp`1 of size |Ar´p´1| “

r ´ p´ 1. Thus, fpzq is the average ω-weight of an induced subgraph GrZzp`1 YAr´p´1s whose
vertices contain Zzp`1, where Ar´p´1 runs uniformly over all pr´p´1q-element subsets of XrZzp`1.
As such, the quantity

1
|X r Zp|

ÿ

zPXrZp

fpzq “
1

m´ p

ÿ

zPXrZp

fpzq

is the average ω-weight of an induced subgraph GrZp YAr´ps whose vertices contain Zp, where
Ar´p runs uniformly over all pr ´ pq-element subsets of X r Zp. Therefore,

1
m´ p

ÿ

zPXrZp

fpzq “ gpZpq “ gpz1, . . . , zpq
p108q
ď 2ps´ 1qσsr2.
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Thus, to complete the inductive step for (107), we prove that we may select, in time Opm3q, a
vertex z0 P X r Zp so that

fpz0q ď
1

m´ p

ÿ

zPXrZp

fpzq. (110)

We now proceed to prove (110).
To prove (110), we shall compute, for a fixed vertex z P X r Zp, the value of fpzq (which is

defined in (109)). This computation will take place in (119) below, but to get there, we will need
several considerations. To begin, for z P X rZp fixed, we continue to write Zzp`1 “ Zp Y tzu. For
a vertex x P X r Zzp`1, let

ωpGrtxu, Zzp`1sq

denote the total ω-weight of all edges of the form tx, yu P G, where y P Zzp`1. (Note that
Grtxu, Zzp`1s is a star centered at x, with pendent vertices consisting of NGpxq X Zzp`1.) Now,
define the following equivalence relation „ on X r Zzp`1 by setting, for each x, x1 P X r Zzp`1,

x „ x1 ðñ ωpGrtxu, Zzp`1sq “ ωpGrtx1u, Zzp`1sq. (111)

Then, we may construct, in time Opmq, the partition

X r Zzp`1 “ Xz
1 Y ¨ ¨ ¨ YX

z
t (112)

induced by „. For future reference, let us write, for each 1 ď j ď t,

αj
def
“

 

ωpGrtxu, Zzp`1sq : x P Xz
j

(

. (113)

With the vertex z P X r Zp fixed, observe that the partition in (112) satisfies t “ tpzq ď

pp`2qs´1 “ Op1q. Indeed, for a fixed x P XrZzp`1, each of the ps´1q many graphs Gi, 2 ď i ď s,
satisfies |NGipxq X Z

z
p`1| P t0, 1, . . . , p` 1u, i.e., |NGipxq X Z

z
p`1| has pp` 2q many possible sizes.

By (103),
ωipGirtxu, Z

z
p`1sq “

σs
σi
|NGipxq X Z

z
p`1|,

and so
ωpGrtxu, Zzp`1sq

p104q
“

s
ÿ

i“2
ωipGirtxu, Z

z
p`1sq “

s
ÿ

i“2

σs
σi
|NGipxq X Z

z
p`1|

may assume at most pp` 2qs´1 possible values, as claimed.
With the vertex z P X r Zp still fixed, and with the partition X r Zzp`1 “ Xz

1 Y ¨ ¨ ¨ Y Xz
t

from (112), we may now compute fpzq (which is defined in (109)). To that end, fix

an integer sum a1 ` ¨ ¨ ¨ ` at “ r ´ p´ 1, where 0 ď aj ď |X
z
j |, 1 ď j ď t. (114)

For each 1 ď j ď t,

let Azj P
ˆ

Xz
j

aj

˙

be an arbitrary aj-subset, and let Az “ Azpa1, . . . , atq “
t
ď

j“1
Azj . (115)

Define

fpz; a1, . . . , atq “ E
pAz

1,...,A
z
t qP

śt
j“1 p

Xz
j

aj
q
rωpGrZzp`1 YA

z
1 Y ¨ ¨ ¨ YA

z
t sqs

“ E
pAz

1,...,A
z
t qP

śt
j“1 p

Xz
j

aj
q
rωpGrZzp`1 YA

zpa1, . . . , atqsqs. (116)
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where the expectation above is taken uniformly over all sequences pAz1, . . . , Azt q P
śt
j“1

`

Xz
j
aj

˘

, i.e.,
the expectation above is taken uniformly over all subsets Az “ Azpa1, . . . , atq Ď X r Zzp`1 of the
form in (115). Then, fpzq (which is defined in (109)) is given by

fpzq “
ÿ

a1`¨¨¨`at“r´p´1

śt
j“1

`

|Xz
j |

aj

˘

`

n´p´r
r´p´1

˘ fpz; a1, . . . , atq, (117)

where the sum extends over all indices of the form in (114).
We now expand the expression for fpzq given in (117) by computing each term fpz; a1, . . . , atq

(cf. (116)), where a1 ` ¨ ¨ ¨ ` at “ r ´ p ´ 1 is of the form in (114). Indeed, by linearity of
expectation, we claim that

fpz; a1, . . . , atq “ ωpGrZzp`1sq `
t
ÿ

j“1
αjaj

`

t
ÿ

j“1
ωpGrXz

j sq

`

aj

2
˘

`|Xz
j |

2
˘

`
ÿ

1ďjăkďt
ωpGrXz

j , X
z
k sq

ajak
|Xz

j ||X
z
k |
. (118)

Indeed, the first term in (118) is ωpGrZzp`1sq, which is the total ω-weight of the edges of GrZzp`1s.
The first sum in (118) is the expected ω-weight of GrAz1 Y ¨ ¨ ¨ YAzt , Zzp`1s (cf. (113)). The second
sum in (118) is the expected ω-weight of

Ťt
j“1GrA

z
j s. Finally, the third sum in (118) is the

expected ω-weight of
Ť

1ďjăkďtGrA
z
j , A

z
ks. Thus, applying (118) to (117), we have that

fpzq “
ÿ

a1`¨¨¨`at“r´p´1

śt
j“1

`

|Xz
j |

aj

˘

`

n´p´r
r´p´1

˘

˜

ωpGrZzp`1sq `
t
ÿ

j“1
αjaj

`

t
ÿ

j“1
ωpGrXz

j sq

`

aj

2
˘

`|Xz
j |

2
˘

`
ÿ

1ďjăkďt
ωpGrXz

j , X
z
k sq

ajak
|Xz

j ||X
z
k |

¸

, (119)

where the (main) sum extends over all indices of the form in (114).
To prove (110), it remains to choose, in time Opm3q, a vertex z0 P X r Zp so that fpz0q ď

1
m´p

ř

zPXrZp
fpzq. For that, we use the expression in (118) for fpzq. Note that, for each

z P X r Zp, the expression for fpzq in (119) depends only on z. Moreover, since all sums above
consist of Op1q many terms, we may compute, in time Opm2q, the value of fpzq for a fixed
z P X r Zp. Now, in time Opm3q, we compute all values of fpzq over all z P X r Zp, and select
z0 P X r Zp so that

fpz0q “ min
zPXrZp

fpzq.

Then, by our choice of z0, we have fpz0q ď
1

m´p

ř

zPXrZp
fpzq, which proves (110). This proves

Claim 9.1, and hence, concludes the proof of Lemma 8.1.

9.2. Proof of Fact 3.10. The equivalence COUNTemb ðñ COUNTind is trivial to prove.
Indeed, let Hpjq and Hpj´1q be given as in Definition 3.9, where d “ dpHpjq|Hpj´1qq ą 0, and fix
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δ ą 0. Note that, for each ∅ Ď Spjq Ď Opjq “ KpjqpU1, . . . , Ujq, we have
ˇ

ˇEMBpSpjq, pHpjq,Hpj´1qqq
ˇ

ˇ “
ÿ

SpjqĎFpjqĎOpjq

ˇ

ˇEMBindpF pjq, pHpjq,Hpj´1qqq
ˇ

ˇ, and

ˇ

ˇEMBindpSpjq, pHpjq,Hpj´1qqq
ˇ

ˇ “
ÿ

SpjqĎFpjqĎOpjq
p´1q|Fpjq|´|Spjq|

ˇ

ˇEMBpF pjq, pHpjq,Hpj´1qqq
ˇ

ˇ.

With these identities, we may apply Definition 3.9 (and the Binomial Theorem) to conclude that
pHpjq,Hpj´1qq has COUNTembpd, δq if, and only if, pHpjq,Hpj´1qq has COUNTindpd, δq.

Now, suppose pHpjq,Hpj´1qq has COUNTembpd, δq and that, for each i P rjs, we have |Vi| “
Θpnq, and that |EMBpOpj´1q,Hpj´1qq| “ Ωpn2j

q. Then,
ÿ

v1,v11PV1

¨ ¨ ¨
ÿ

vj ,v1jPVj

ź

!

ωpJq : J P Kpjq
`

tv1, v
1
1u, . . . , tvj , v

1
ju
˘

)

“ Opn2j´1q `
ÿ

∅ĎSpjqĎOpjq
p1´ dq|Spjq|p´dq2j´|Spjq|ˇ

ˇEMBindpSpjq, pHpjq,Hpj´1qqq
ˇ

ˇ.

Since pHpjq,Hpj´1qq has COUNTembpd, δq, it also has COUNTindpd, δq, and so we conclude
ÿ

v1,v11PV1

¨ ¨ ¨
ÿ

vj ,v1jPVj

ź

!

ωpJq : J P Kpjq
`

tv1, v
1
1u, . . . , tvj , v

1
ju
˘

)

ď Opn2j´1q `
ˇ

ˇEMBpOpj´1q,Hpj´1qq
ˇ

ˇd2j
p1´ dq2j

ˆ δ22j

ď Opn2j´1q ` δ2´2j ˇ
ˇEMBpOpj´1q,Hpj´1qq

ˇ

ˇ ď δ
ˇ

ˇEMBpOpj´1q,Hpj´1qq
ˇ

ˇ,

where we used dp1´ dq ď 1{4.
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