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ABSTRACT. Szemerédi’s Regularity Lemma is a powerful tool in graph theory. It asserts that all
large graphs admit bounded partitions of their edge sets, most classes of which consist of uniformly
distributed edges. The original proof of this result was non-constructive, and a constructive proof
was later given by Alon, Duke, Lefmann, R6dl and Yuster.

Szemerédi’s Regularity Lemma was extended to hypergraphs by various authors. Frankl and
R6dl gave one such extension in the case of 3-uniform hypergraphs, which was later extended to
k-uniform hypergraphs by Rodl and Skokan. W.T. Gowers gave another such extension, using a
different concept of regularity than that of Frankl, R6dl and Skokan. Here we give a constructive

proof of a regularity lemma for hypergraphs.

§1. INTRODUCTION

Szemerédi’s Regularity Lemma [25,26] is an important tool in combinatorics, with applications
ranging across combinatorial number theory, extremal graph theory, and theoretical computer
science (see [13,14] for surveys of applications). The Regularity Lemma hinges on the notion of
e-regularity: a bipartite graph H = (X U Y, E) is e-regular if for every X’ € X with |X'| > ¢|X]|
and for every Y/ € Y with Y] > ¢|Y], we have

|dH(X,aY/) - dH(X7Y)| <E,

where di (X', Y") = [H[X',Y']|/(IX’||Y|) is the density of the bipartite graph H[X’,Y’] induced
on the sets X’ and Y’. Szemerédi’s Regularity Lemma [26] is then stated as follows.

Theorem 1.1 (Szemerédi’s Regularity Lemma). For all e > 0 and integers ty = 1, there
exist integers Ty = Ty(g,tg) and Ny = No(e,to) so that every graph G on N > Ny vertices admits
a partition of its vertex set V(G) = Vi U --- U V; with tg < t < Ty satisfying
(1) V(G) =Viu--- UV is equitable: |V1| < --- < |Vi| < [Vi| +1;
(2) V(G) =Vi U+ UV, is e-regular: all but at most £(3) pairs (Vi,V;) with 1 <i<j <t
are e-reqular.

A constructive proof of Theorem 1.1 was later given by Alon, Duke, Lefmann, Rédl and Yuster.
Their result shows that the e-regular partition V(G) = V4 u --- U V4 in Theorem 1.1 can be
constructed in time O(M (n)), where M (n) = O(n?377) is the time needed to multiply two n x n
matrices with 0-1-entries over the integers (see [27]). In [12], the running time of O(M(n)) was
improved to O(n?).
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Szemerédi’s Regularity Lemma has been extended to k-uniform hypergraphs, for £ > 3, by
various authors. Frankl and Rodl [7] gave one such extension to the case of 3-uniform hypergraphs,
using a concept they called (0, 7)-regularity (see upcoming Definition 3.12). This regularity lemma
was extended to k-uniform hypergraphs, for arbitrary k, by Rodl and Skokan [21]. Gowers [8, 9]
also established a regularity lemma for k-uniform hypergraphs, but used a concept of regularity
known as deviation (see upcoming Definition 3.6). While the concepts of (4, r)-regularity and
deviation are different, the corresponding Regularity Lemmas have a similar conclusion. Roughly
speaking, both lemmas guarantee that every (large) k-uniform hypergraph admits a bounded
partition of its edge set, where most classes of the partition consist of ‘regularly distributed’ edges.
Moreover, both Regularity Lemmas for hypergraphs admit a corresponding Counting Lemma (see
upcoming Theorems 6.1 and 6.2, and see also [16]). The Counting Lemma allows one to estimate
the number of fixed subhypergraphs of a given isomorphism type within the ‘regular partition’ the
regularity lemma provides. The combined application of the Regularity and the Counting Lemma
is known as the Regularity Method for hypergraphs (see [17,19,20,23] for surveys of applications).

Here we establish an algorithmic Hypergraph Regularity Lemma (see upcoming Theorem 4.7).
Roughly speaking, we will show that, for every (large) k-uniform hypergraph H®), a ‘regular
partition’ of H*) can, in fact, be constructed in time polynomial in [V (#(*))|. Thus, combining
the work here together with an appropriate Counting Lemma provides an Algorithmic Regularity
Method for hypergraphs. (An algorithmic regularity method for 3-uniform hypergraphs was
established by Haxell, Nagle, and Rédl [10] (see also [15]).)

Let us recall the most important part in the proof of Alon et al. [1] of the algorithmic
version of Theorem 1.1: while it is co-NP-complete to decide whether or not a given bipartite
graph H = (X U Y, E) is e-regular, one can decide in polynomial time if H is e-regular or if it
is not &’-regular for a suitable 0 < &’ = ¢’(¢) < e. (These events are not necessarily exclusive.)
Moreover, in the latter case, the proof in [1] constructs, in polynomial time, a ‘witness’ of the
¢/-irregularity of H. In particular, the key to this proof is to check if both of the following two
properties hold or not for a suitably chosen constant § = d(¢) > 0:

(7) all but §|X| vertices x € X satisfy deg(z) = (d +0)|Y|, and
(ii) all but §| X |? pairs of distinct vertices x # 2’ € X satisfy deg(x,z’) = (d + §)?|Y].

(The rest of the algorithm is based on the argument of Szemerédi [25,26]. Using the outcome of
the checks above, it either confirms that a given partition is e-regular, or it finds its refinement.)
Now, in the context of hypergraphs, it turns out that a suitable generalization of (i) and (i)
above is the concept of deviation, introduced by Gowers [8,9]. As such, deviation is well-suited
for proving an algorithmic version of the hypergraph regularity lemma, and so we follow this
approach.

To prove the algorithmic regularity lemma for hypergraphs, we will proceed along the usual
lines. As in the proof of Szemerédi [25,26] for graphs, we will consider sequences of partitions %;,
i =1, of a hypergraph H®). For each 2;, i > 1, we consider the so-called indez of Z;, denoted
indy, ) (&), which measures the mean-square density of H®*) on ;. When the partition
of H®) is irregular, we refine 2%, in the usual way, to produce &, 1. It is well-known that
indy k) (Zi+1) will be non-negligibly larger than ind,,w) (%), so that this refining process must
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terminate after constantly many iterations. Now, as in the proof of Alon et al. [1] for graphs, to
make the refinement &; 1 of &; constructive, one must be able to construct ‘witnesses’ of the
irregularity of &7;. The novel element of our work does precisely this, and in Section 3, we state the
‘Witness-Construction Theorem’ (Theorem 3.16). In Section 4, we state the Algorithmic Regularity
Lemma (Theorem 4.7), and in Section 5, we show that Theorem 3.16 implies Theorem 4.7.

The remainder of the paper is devoted to proving Theorem 3.16. For this proof, we will need
several technical lemmas. Among these are Gowers’ Counting Lemma (see Theorems 6.1 and 6.2),
which we present in Section 6. As well, we will need an ‘Extension Lemma’ (Theorem 6.4), which
is a derivative of the Counting Lemma, which we also present in Section 6. Finally, we need an
additional lemma, which we call the ‘Negative-Extension Lemma’ (Theorem 7.2), which we state
and prove in Section 7. Using these tools, we prove Theorem 3.16 in Section 8. At the end of the
paper, we include an Appendix for the proofs of a few facts we need along the way.

In order to formally state the Algorithmic Hypergraph Regularity Lemma (Theorem 4.7),
and the related results of Theorems 3.16, 6.1, 6.2, 6.4, and 7.2, we will need some rather
technical background concepts and notation. These background concepts originated in the
papers [7-9,16,21], and have also appeared in, e.g. [2,3,11]. In the next section, we will attempt

to provide some intuitive discussion for these concepts.

Acknowledgment. The authors are indebted to the Referees for their detailed reading and con-

structive suggestions.

§2. HYPERGRAPH REGULARITY: AN INTUITIVE INTRODUCTION

There are several natural ways to define a concept of “regularity” for k-uniform hypergraphs.
Recall that in the Szemerédi Regularity Lemma, the primary structure which undergoes regular-
ization is the edge set of a graph G, and the resulting auxiliary structure is a partition of the
corresponding vertex set. More briefly, 2-tuples (edges of G) are regularized against 1-tuples
(vertices of G). For k-uniform hypergraphs #(*), one may regularize k-tuples (edges of H*))
against 1-tuples (vertices of H(¥)) (see [4,6]), but when k > 3 a corresponding counting lemma
fails to be true.

To overcome the problem above, a more refined approach is to regularize k-tuples (edges
of H®) against (k — 1)-tuples (of V = V(H®)), which yields an auxiliary partition of all
(k —1)-tuples of V = V(#H*)). However, in order to gain control on the classes of (k — 1)-tuples,
we impose regularity on them as well, which leads to a partition of all (k — 2)-tuples of V. This
eventually forces partitions of vertices, pairs, triples, ..., (k — 1)-tuples of V. Blocks of the
resulting family & of partitions of V' are called complezes (see Definition 3.2 below), which consist
of a family H = {HU )}§=1 of j-uniform hypergraphs, 1 < j < k. We now outline the main idea
of a complex, and the properties we seek for it: for each 2 < j < k,

(a) for each J € HY) | and for each (j — 1)-tuple I < J, we have [ € HU-D,
(b) HY) is ‘regularly distributed’ over the set of all cliques K ](-j D of YU,
We now attempt to make the property in (b) somewhat more precise.

For the complex H above, fix 2 < j < k, and let le(H(j_l)) denote the family of j-tuples

spanning a clique Kj(»jfl) in #U~Y. Then, the property in (a) says that H) < K; (HU=D), and
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so we say HU~Y underlies HU). Since HU) < KC;(HU—Y) # @ (for sake of discussion), we define
the density of HU) w.r.t. HU=Y by d; = d(HU|HUD) = |1 |/|IC;(HU~D)|. In this case, we
could record all of the densities of H by the sequence d = (da, . .., dy), which we call the density
sequence of the complex H.

To define a notion of regularity for H, fix 2 < j < k, and fix QU1 < U=V for which
K;(QU=1) # . We define

N H) A K;(QU-D))
d(HD1olU-1Dy = | g\
ST

to be the density of H\Y) w.r.t. QU—1. Now, for d; > 0, we say that HO) is dj-reqular w.r.t. HE-D)
if, for any QU= < HU-Y satistying |K;(QU—D)| > §;/K;(HU~)|, we have

dHD QU1 — g1 | HUD)| < 5;. (1)

Then the concept of d;-regularity in (1) imposes control on the structure of the j-graph HO)
with respect to the underlying (j — 1)-graph #=1) . Since we impose such control on each pair
(HD, HU-D), 2 < j <k, we write § = (Jo,...,0;) and say that the complex H is d-regular to
mean that each pair (KW, HU-Y), 2 <j <k, is d;-regular.

We have now outlined that complexes # of interest should be §-regular, where § = (da,. .., %),
with some density sequence d = (dg, . ..,dy). One of the principle difficulties arising in hypergraph
regularization concerns the relationship between d and 8. In particular, one has to face the
following hierarchy of constants:

di, » 0 » dp—_1 » Op—1 > -+ > d3g » I3 » dy » 9 > 0. (2)

This leads to difficulties in applications. We consider an algorithm which will decide when a
hypergraph #(*) is “sufficiently regular” in the sense of deviation (see DEV (8) in Definition 3.7),
which was introduced by Gowers [8,9] and which is a natural generalization of (i) and (i7) from
the introduction. In the context of Alon et al. [1],

if DEV(d) fails to be true for the complex H, then the corresponding “witness of

k—1)

irregularity” will not be a single Q% —1) < H( , but rather a family of them.

This leads to the concept of (6§, r)-regularity (see Definition 3.12) from [7,21].

For a complex H which fails to satisfy DEV(d), constructing the witness of irregularity
consisting of an r-tuple of subhypergraphs Q§-k_1) < H* =1 1 < j < r, is the main technical part
of our work.

§3. DEVIATION AND THE WITNESS-CONSTRUCTION THEOREM

In this section, we define the concept of deviation (DEV) (cf. Definition 3.6), and we present
some conditions which are sufficient for implying the property of deviation. We also consider the
concept of r-discrepancy (r-DISC) (cf. Definition 3.12), and present a result that we call the
Witness-Construction theorem (cf. Theorem 3.16). For these purposes, we need some supporting
concepts.
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3.1. Background concepts: cylinders, complexes and density. We begin with some basic
concepts. For a set X and an integer j < |X|, let ()j() denote the set of all (unordered) j-tuples
from X. When X = [{] = {1,...,£}, we sometimes write more simply [¢]/ = ([f]) (which we
will be careful not to confuse with the ¢-fold product [¢] x --- x [£]). Given pairwise disjoint
sets V1,...,Vp, denote by K(j)(Vl7 ..., Vy) the complete (-partite, j-uniform hypergraph with
{-partition V3 u- - - UV}, which consists of all j-tuples from V; U+ - - UV meeting each V,,, 1 < a </,
at most once. We now define the concept of a ‘cylinder’.

Definition 3.1 (cylinder). For integers £ > j > 1, an (£, j)-cylinder H'9) with vertex ¢-partition
V(HY)) = Vi U --- UV, is any subhypergraph of K@) (V;,...,V;). When |V;| = --- = |Vi| = m,
we say HU) is an (m, ¢, j)-cylinder.

In the context of Definition 3.1, fix j < i < £ and A; € [¢]". We denote by HW[A;] =
H(j)[U)\e A V] the sub-hypergraph of the (¢, j)-cylinder HU) induced on | J,, A, Va. In this
setting, #U)[A;] is an (4, j)-cylinder.

We now prepare to define the concept of a complex. For an integer i > j, let lCi(”H(j )) denote
the family of all i-element subsets of V(H(j)) which span complete subhypergraphs in H).
Given an (£,j — 1)-cylinder HU~Y and an (¢, j)-cylinder HU), we say HU—V) underlies HU) if

HU) < K; (H=D). In other words, for every J € HU) and for every I € (jil), we have T € HU—1),

Definition 3.2 (complex). For integers 1 < k < ¢, an (¢, k)-complex H = {H(j)};?:l with vertex
partition V; U - -+ U Vp is a collection of (¢, j)-cylinders, 1 < j < k, so that

(1) HM =Vi U --- UV is an (£, 1)-cylinder, i.e., is an (-partition;

(2) for each 2 < j < k, we have that HU~Y) underlies H\9), i.e., HU) < KC;(HU—Y),

In some cases, we use the notation H*) to denote an (¢, k)-complex {H1) ;?:1.
We now define concept of density.

Definition 3.3 (density). For integers 2 < j < £, let HU) be an (¢, j)-cylinder and let HU~1)
be an (¢,j — 1)-cylinder. If K;(HU™V) # &, we define the density of HY) w.r.t. HU~) as

’H(J') A /Cj(q.[(jfl))‘

AHOHITD) = [1C; (HG1)]

If K;(HU=Y) = @, we define d(HY|HU-D) = 0.

3.2. Deviation. In this subsection, we define the concept of deviation (DEV), and present some
conditions which are sufficient for implying the property of deviation. To that end, we need some
supporting concepts.

Definition 3.4 ((£,j)-octohedron). Let integers 1 < j < ¢ be given. The (¢, j)-octohedron
0l = (’)é]) is the complete (-partite j-uniform hypergraph KU)(Uy,...,U,), where |Uj| = --- =
|Ug| = 2, i.e., it is the complete (2, ¢, j)-cylinder.

For an (¢, j)-cylinder HU) | we are interested in ‘labeled partite-embedded’ copies of OU) in
).
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Definition 3.5 (labeled partite-embedding). Let 77 be an (¢, j)-cylinder, with ¢-partition
VHU) = Vi u--- UV, and let OU) = KU)(Uy,...,U;) be the (£, j)-octohedron. A labeled,
partite-embedding of OU) in H) is an edge-preserving injection ¢ : Uy u--- Uy —» Vi u--- UV
so that 9 (U;) < V; for each 1 < i < £. We write EMB(OU), %)) to denote the family of all
labeled partite-embeddings 1 of O in HU).

We now define the concept of deviation.

Definition 3.6 (deviation (DEV)). Let HU) be a (j, j)-cylinder with underlying (5,7 — 1)-
cylinder HU=Y. Let #U) and HU~Y have common vertex j-partition V(H)) = V(HU-D) =
Viu---uVj, and let d = d(HY|[HU~Y). For § > 0, we say that (K1), HU=Y) has (d, §)-deviation,
written DEV(d, ¢), if

Z Z H{w(J) :Je KU ({vr, 01}, {ws,05}) } < 5’EMB(O(j_1),H(j_1))’,

v1,v €V vj,v;.EVj
where for every vy, v} € V1, ... ,vj,v;- e Vj, and for each J € KW ({vl,vi}, A {vj,v§ ),
1-d if JeH),
w(J)=+{ —d ifJe;HIV)HD,
0 if J¢ K;(HUD).

It is easy to extend Definition 3.6 from (7, j)-cylinders to (¢, k)-complexes.

Definition 3.7. Let § = (d2,...,6r) and d = (dy; : A; € [¢)7,2 < j < k) be sequences of positive
reals, and let (¢, k)-complex H = {H1) };‘?:1 be given. We say the complex H has DEV(d, §) if,
for each 2 < j < h and A;j € [(), (HW[A;],HU~V[A;]) has DEV(dy,, d;).

For future reference, we present some easy sufficient conditions for the property of deviation

(cf. Definition 3.6). For that, we need the following generalization of Definition 3.5.

Definition 3.8 (labeled partite-embedding). Let H) and #U~ be given as in Defini-
tion 3.6, and let SU) < ©OU) = KU)(U,. .., U;) be an arbitrary (2, j, j)-cylinder. We call an
injection ¢ : Uy U --- U Uj — Vi U --- U Vj a labeled partite-embedding of SU) in (HU) HU-)) if
it satisfies the following conditions:

(1) 4 is a labeled partite-embedding of OU~1) = KUV (Uy,... U;) in HU-Y;

(2) for each J e OW) = KU(Uy, ..., U;), we have

JesW —  y((J)eHV.

We call ¥ a labeled, partite-induced embedding of SU) in (HU), HU=) if it satisfies (1) and (2)
above, together with

(2) for each J € OV) = KU)(U,...,U;), we have
JeSW =  pJ)eHD,

We write EMB(SU), (1), #=1)) to denote the family of all labeled partite-embeddings v of
SU) in (HW), HU-D), We write EMBinq(SW, (H), HU=1)) to denote the family of all labeled,
partite-induced embeddings 1 of SU) in (H), #U-D).
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We now consider the following two properties.

Definition 3.9 (COUNT,;,, COUNT},q). Let HY) and HU~Y be given as in Definition 3.8,
where d = d(HP|HU-D). For § > 0, we say that (£, HU~Y) has COUNT ey, (d, 6) if the
following condition holds: for every (2, j, j)-cylinder @ = S < ©OU) = KO)(U, ..., Uj), we have

’EMB(S(J')7 (H(j),’}_[(j—l)>)‘ —(1+ 5)d|5(j>|‘EMB<@(j—l)7H(j—l))’. (3)

(Note that when SU) = @, it always holds that
[EMB(@, (KU, HU=D))| = (1 + 6)d°|[EMB(OU 1, 30Uy, (4)
since every labeled partite-embedding ¢ of @ in HU) is, equivalently, a labeled partite-embedding

of OU=1 in HU-1 ) We say that (KU, H~D) has COUNT;,q(d, ) if the following condition
holds: for every (2,7, j)-cylinder @ = SO < 0W) = KU (U, ..., Uj),

[EMBipa(SD), (HW), 1U-1))| = (1 + §)dS”l(1 - d)2j_‘3<j)‘|EMB((9(j_1),H(j_1))|.

The following fact will be useful later in this paper. The proof is easy, and we give it in the
Appendix.

Fact 3.10. Suppose H') and HU=Y) are given as in Definition 3.9, where d = d(H(j)\H(jfl)) >0,
and let § > 0 be given. Suppose, moreover, that [EMB(OU=D #G=1)| = Q(n?'), where |Vj| =
©(n) for allie [j].
(1) (K9, HU-DY) has COUNT ey (d, 8) if, and only if, (D, HU=D) has COUNTq(d, 6);
(2) If (H9D, HUD) has COUNT ey (d, ), then (HD, HUD) has DEV(d,d).

3.3. Discrepancy, and the Witness-Construction Theorem. In this subsection, we define
the concept of r-discrepancy (r-DISC), and present the Witness-Construction Theorem (cf. The-
orem 3.16). We begin with the following extension of the concept of density (cf. Definition 3.3).

Definition 3.11 (r-density). Let HU) and HU~D be given as in Definition 3.3, and let integer
r > 1 be given. Let ng_l Q(] D e y6-1 satisfy (e, Qz(j 1)) # &. We define the

r-density of HU) w.r.t. ng 1), e Q7(~] U

(7-1)
aHO Q.. guny = M 0 Ui Ql |
Ui i (@7 )

We now define the concept of r-discrepancy.

Definition 3.12 (r-discrepancy (r-DISC)). Let H) and #U~ be given as in Definition 3.3,
where d = d(HY|HU=D). For § > 0 and an integer 7 > 1, we say that (HU),HU=D) has
(d, 0, 1)-discrepancy, written DISC(d, 0, ), if for any collection ng_l), e Q?_l) < HU-D,

(U K@ > ol = a9y, Qi) —d[ <8 (5)
i€[r]
For brevity, we sometimes refer to (d, d, r)-discrepancy as r-discrepancy, and sometimes write
DISC(d, 6, r) as r-DISC.

We proceed with the following remark.
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Remark 3.13. Note that 1-discrepancy is usually referred to as discrepancy, and 1-DISC is
usually denoted by DISC (cf. [15]). ]

We will also need the following concept, related to Definition 3.12.

Definition 3.14 (r-witness). Let HU) and HU~) be given as in Definition 3.12, where d =
d(HY|HU=Y). Suppose that (H), H(j 1)) does not have DISC(d, §,r), for some § > 0 and
integer r > 1. We call any collection Q ceey Q&J -b < HU=D for which

U QP )] > ok (U] but [dHD|QP Y, QU D) —d| > 4.
i€[r]
an r-witness of = DISC(d, d, 7).

We finally present the Witness-Construction Theorem, which concerns a (k, k)-complex H
satisfying the following setup.

Setup 3.15. Let H = H®) = {10 }k | be a (k, k)-complex, where H()) = V; U --- U V} has
<|Vil<n+1forallie [k‘] Let

di = (dy, : Aje[k),2<j<k)
satisfy that, for each 2 < j < k and for each A, € [k]7,
da, = dHD[A;]HU7VIA]).
Note, in particular, that dpy) = d(?—[ |7-[(k*1 ). We call dy, the density sequence for HF) | Write
HED = (HOMTL and dyoy = (da, s Aje[RP,2<i<k—1),

so that dj_; is the density sequence for H 1.

The Witness-Construction Theorem is now given as follows.

Theorem 3.16 (Witness-Construction Theorem). Let integer k > 2 be fized. For all
dy, 0, > 0, there exists 0, > 0 so that for all d_; > 0, there exists éy_; > 0 so that, ..., for all
de > 0, there exist 05 > 0, positive integer o, and positive integer ng so that the following holds.
Set 6p—1 = (02,...,0_1). Let H = H®E) be q (k, k)-complex with density sequence dy, as

given as in Setup 3.15, where n = ng. Suppose dj. satisfies that, for each 2 < j < k and for each
A; € [K)7, dp; = dj. Assume that

(1) H* Y has DEV (dy_1,8,_1), but that

(2) (H®), HE=D) does not have DEV (dp), 0k)-
(k=1)

Then, there exists an algorithm which constructs, in time O(n3F), an r-witness Qlk

gk—l) c HE=D of - DISC(dy), 0y, ), for some r < ro.

g ey

Remark 3.17. In Theorem 3.16, one has ‘dueling’ constants dj, d;. > 0 only for the k-uniform
hypergraph HE) e HF), Indeed, the hypothesis of Theorem 3.16 assumes that the (k,k — 1)-
complex H*D = (HWD, .. HEDY enjoys DEV(dj_1,05_1). In the same hypothesis, the
parameter J, measures the ‘non-deviation’ of (’H(k) , ’H(k_l)), while in the conclusion the parameter

&), measures the corresponding ‘non-discrepancy’ of (H*), H*=1)), O
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§4. ALGORITHMIC HYPERGRAPH REGULARITY LEMMA

In this section, we state an Algorithmic Hypergraph Regularity Lemma (see Theorem 4.7,
below) for the property of deviation. To state this lemma, we still need some more concepts.

4.1. Families of partitions. Theorem 4.7 provides a well-structured family of partitions & =
{@(1), ce @(k_l)} of vertices, pairs, ..., and (k — 1)-tuples of a given vertex set. We will define
the properties of & in upcoming Definitions 4.1 and 4.2, but we first need to establish some
notation and concepts.

We first discuss the structure of these partitions inductively, following the approach of [16]. Let
k be a fixed integer and V' be a set of vertices. Let 20 = {i,... ’Vlg’“)\} be a partition of V.
For every 1 < j < |2W)], let Cross;(2W) = KW(14,... , Vo)) be the family of all crossing
j-tuples J, i.e., the set of j-tuples which satisfy |.J n V;| < 1 for every 1 < i < |220)].

Suppose that partitions 22 of Crossi(@(l)) have been defined for all 1 < i < j — 1. Then
for every I € Cross;_1(2(), there exists a unique class PU~1) = PU-1 (1) e 201 5o that I €
PU=D. For every J e Cross;(#1)), we define the polyad of J by PU=D(J) = J{PU=V(I): T e
[J]’~1}. Define the family of all polyads PU-D = {75(3'*1)(17): J € Cross;(2W) }, which we
view as a set (as opposed to a multiset, since PU=D(J) = PU=D(J') may hold for J # J').
To simplify notation, we often write the elements of P g PU-1 e P (dropping the
argument .J).

Observe that {/;(PU~1): PU-D e $U-D} is a partition of Cross;(2W1)). The structural
requirement on the partition 220 of Cross;(2(1) is

20) < {,@_(73(];1)): PU—D ¢ Uy (6)
where ‘<’ denotes the refinement relation of set partitions. Note that (6) inductively implies that
P(J) = {POI)}_], where PO(T) = | J{PO(1): Te [J]}, (7)

is a (f,j — 1)-complex (since each P (.J) is a (j,7)-cylinder). We may now give Definitions 4.1
and 4.2.

Definition 4.1 (a-family of partitions). Let V' be a set of vertices, and let k > 2 be a fixed
integer. Let a = (a1,...,ap_1) be a sequence of positive integers. We say & = Z(k —1,a) =
{2, ., 2FDis an a-family of partitions on V, if it satisfies the following:
(a) 20 is a partition of V into a; classes,
(b) 2 is a partition of Cross;(2M) refining {K;(PU-D): PU-1 ¢ PU=DY where, for
every PU-D e -1 |(pl) ¢ 20). Pl /Cj(ﬁ(j—l)m = aj.

Moreover, we say & = Z(k — 1, a) is t-bounded, if max{ay,...,ax_1} <t.

4.2. Properties of families of partitions. In this subsection, we describe some properties we
would like an a-family of partitions & = Z(k — 1, a) to have.

Definition 4.2 ((n,d,>D, a)-family). Let V be a set vertices, let 7 > 0 be fixed, and let k > 2
be a fixed integer. Let § = (d2,...,dx—1) and D = (Ds, ..., Di_1) be sequences of positives, and
let @ = (ay,...,ax—1) be a sequence of positive integers.
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We say an a-family of partitions & = Z(k—1,a) on V is an (n,d, =D, a)-family if it satisfies
the following conditions:

(a) WM = {V;: i€ [a1]} is an equitable vertex partition, i.e., ||V|/a1] < |Vi| < [|V|/a1] for
i € [a1];

(b) |[V]* N Crossi (W) | < n|V|¥;

(¢) all but n|V|¥ many k-tuples K € Crossy(2()) satisfy that for each 2 < j < k —

1, and for each J € (Ij), the pair (PY)(J),PU=1(J)) has DEV(dy,d;), Where dj =
dPU()|PU=D(J)) = D;.
Note that in an (n,d, >D, a)-family of partitions & on V', properties (b) and (¢) above imply
that all but 2n|V|* many k-tuples K € [V]¥ belong to Cross,(Z(1)) and satisfy that, for each
2 <j < k-1, and for each J € (IJ(), the pair (PU)(J),PU=D(.J)) has DEV(dy,d;), where
dy = d(PD(J)|PU-D(])) = D;.

For future reference, we also define the following concept, related to property (c) in Definition 4.2.
Definition 4.3 ((d, >D)-typical polyad). Suppose & = Z(k—1,a) is an (1, d, >D, a)-family
of partitions on a vertex set V', where § = (d2,...,0x_1) and D = (Ds,...,Di_1). We say a
polyad P—1 e (k-1) jg (8, =>D)-typical if

(a) Kp(P*D) = @ and fixing any K e K(PHD), if

(b) the corresponding (k,k — 1)-complex P(K) (cf. (7)) satisfies that, for each 2 < j <
k — 1, and for each J € ([;), the pair (P (J),PU=1(J)) has DEV(dy,6;), where
dy = d(PY())[PU=1(])) = Dj.

Remark 4.4. Note that property (c¢) of Definition 4.2 can be re-written as
Z {‘Kk(ﬁ( ))‘ P e k=1 is not (8, >D)- typlcal} n|V|~.
]

Note that in an (1,8, =D, a)-family &2 = {21 ... 2E=D} (cf. Definition 4.2), the vertices,
pairs, ..., and (k — 1)-tuples of V are under regular control. The following definition describes
how the family 2 will control the edges of a hypergraph H®*), where V = V(’H(k)).

Definition 4.5 ((#*), ) has DEV(6;)). Let 6 > 0 be given. For a k-graph H*) and an
a-family of partitions & = Z(k —1,a) on V = V(HW®), we say (¥, 2) has DEV(0y) if
’U {ICk PE-1 & P*-1) gatisfies that
(K", PE=1)Y does not have DEV(d(”H(k)‘ﬁ(k_l)), o)} < oV |E.

Before we state the algorithmic hypergraph regularity lemma, we say a word about some

notation we use in it.

Remark 4.6. Let D = (Da,...,D;_1) € (0,1]*7! be a sequence, and for each 2 < i < k — 1,
let 6; : (0,1]*=% — (0,1) be a function (of k — i many (0, 1] variables), where we write § =
(62,...,0k—1). We shall use the notation

5(D) = (5Z(D“,Dk_1)2<Z<k—1)



AN ALGORITHMIC HYPERGRAPH REGULARITY LEMMA 11

to denote the sequence of function values whose i*" coordinate, 2 < i < k —1, is &;(D;, ..., Dp_1).
We consider this concept since, in most applications of Theorem 4.7, one needs the value J; to be
sufficiently small not only w.r.t. D;, but also D;,1,..., Dr_1. O

We now state the algorithmic hypergraph regularity lemma.

Theorem 4.7 (Algorithmic Hypergraph Regularity Lemma). Let k > 2 be a fized integer,
and let 1,6, > 0 be fized positives. For each 2 <i <k —1, let ; : (0,1]*7* — (0,1) be a function,
and set § = (d2,...,0k—1). Then, there exist t,ng € N so that the following holds.
For every k-uniform hypergraph H® with \V(?—l(k))] =n = ng, one may construct, in time
O(n®), a family of partitions P = P(k —1,a”) of V(HW) with the following properties:
(i) P is a t-bounded (n,8(D), =D, a”)-family on V(H®) (c¢f. Remark 4.6);
(i) (H®), 2) has DEV(d).

We proceed with the following remark.

Remark 4.8. Similarly as in Szemerédi [25,26] for graphs, it is well-known that one can prove a
hypergraph regularity lemma which ‘regularizes’ not one, but multiple hypergraphs ’Hgk), e ,Hgk)
(on a common vertex set V') simultaneously. More precisely, in the context of Theorem 4.7,
the t-bounded (7, 8(D), =D, a”)-family above will satisfy that, for each 1 < i < s, the pair
(Hgk), ) has DEV (6), where t = t(s, k,n,0k,0) and |V| = ng = no(s, k,n, O, 8).

We shall prove Theorem 4.7 by induction on k > 2. To avoid formalism, we shall prove the
case s = 1, but our induction hypothesis will assume the general case. O

Remark 4.9. We do not expect the running time O(n?*) in the conclusion Theorem 4.7 to be
optimal. For example, a similar algorithm for 3-uniform hypergraphs was proven by Haxell et
al. [10], which ran in time O(n%) (as opposed to O(n?)).

§5. PROOF OF THEOREM 4.7

The proof of Theorem 4.7 is by induction on k > 2. The induction begins with £ = 2 as a
known base case. Indeed, Alon et al. [1] proved an algorithmic version of the Szemerédi Regularity
Lemma, which gives Theorem 4.7 (k = 2) with DEV replaced by DISC (and with faster running
time). Gowers [8,9] proved that DEV and DISC are equivalent properties when k = 2 so the
base case of Theorem 4.7 holds. We assume Theorem 4.7 holds through k£ — 1 > 2, and prove it
for £ = 3. To that end, we need a few supporting considerations.

5.1. Supporting material. Suppose H*) is a k-uniform hypergraph with vertex set V =
V(H®), where |V| = n. Let 2 = 2(k — 1,a) be an a-family of partitions on V. We define the
index of 2 w.rt. H® as

. 1 g o e o
lndq_[(k)(g) = ﬁZ{dz(%(k”P(k 1))|/Ck(7p(k 1))| . P(k 1) ¢ gk 1)}.

Clearly,
0 <indym (22) < 1. (8)
The proof of Theorem 4.7 is similar to that of Szemerédi [25,26], where we will use the following
so-called Indez-Pumping Lemma (Lemma 5.1 below). To introduce this lemma, let H*) be
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a k-uniform hypergraph with vertex set V = V(H*)), where |V| = n. Since this proof is by
induction on k, suppose we already have a ‘regular partition’ & = Z(k — 1,a) of V up through
k — 1. More precisely,

o let & = Z(k—1,a) be an arbitrary t-bounded, (n,6(D), =D, a)-family on V.

We now test how H*) behaves on . In particular, we test whether (H#(*¥), 22) has DEV(4},),
which we may do in time O(n?¥). Indeed,

e for each polyad P*=1 e P*=1  we test (by using Definition 3.6) whether or not
(H®, PE=D) has DEV(dpu-1), k), where dpg_iy = d(H® |[PED),

We arrive at two cases.

Case 1. Suppose we find that most polyads P*~D e P2¢=1 gatisfy that (H*), PF-D) has
DEV(dp@-1),0k). Then we stop, and & is the partition we seek in Theorem 4.7.

Case 2. Suppose we find many polyads P=1) ¢ g(k-1) for which the pair (”H(k), 75(]"_1)) fails
to have DEV (dp -1y, d%). Then, for each such p-1) ¢ gpk-1)
(k—1) {ng—n oD )

e Theorem 3.16 builds (in time O(n**)) an 7,1y -witness Qp(k N , rp<k 1l

of = DISC(dpu- 1),5k,rp(k n),

where 05 = 6k(5k) > 0 depends on 6y, and where 75,1, < r(D), where (D) depends on D.
Now,

e Lemma 5.1 (below) constructs, in time O(n*~1), a new partition 2’ from & and the

witnesses 0% B )1), over those polyads P*+~1) ¢ 2(*-1) fajling to have DEV (dp -1y, 0k),
where

. o4

indH(k)(@/) > indy ) (22) + Ek
We now state the Index-Pumping Lemma precisely.

Lemma 5.1 (Index-Pumping Lemma). Fiz an integer k = 2, and let v, o, >0 be fized. For
each 2 < i < k—1, let 6; : (0,1]*% — (0,1) be a function, where we set & = (da,...,0k_1).
Let r : (0, 1]k 2 — N be an arbitrary function. Let Doq = (D$4,..., D)) € (0,1]%72 and
aoa = (a"9,...,a,) e N*=! be fized. Then, there exist Dyey = (D5V, ..., D2%) € (0,1]%72,
Apew = (@, ..., al®) e N*~1 and ng € N so that the following holds.

Suppose H*®) is a k-uniform hypergraph with vertex set V = V(H(k)), where V| = n = nyg.
Suppose Poq = Pora(k — 1,a) is a teg-bounded (v, (D 01d),>D01d,a01d) -family on V', where
tolq = max{agd, .. aildl} and where §(Djq) = (51-(Dfld Dl‘gldl))k Suppose that @( D
P*=1) s q given collection of polyads satisfying the following properties:

(1) vP*-1 ¢ @,,(,k_l), one is given an rp 1) -witness Qgg(;ii) of ~DISC(dp 1), Ok, Thk-1));
where T 51 < 7(Dold) = r(D9M, ... ,Dgljil);

(2)

Z {"Ck(ﬁ(k_l)ﬂ : PR g @ik_l)} > n”.
Then,
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(a) there exists a tpew-bounded (v,d(Dhyew); =Dhew, Qnew)-family Prew = Pnew(k — 1, Gnew)
on 'V for which

54
ind’]—{,(k) (ynew) = il’ldH(k) (yold) 4 516’

where thew = max{ai®”,...,a}*"} and where §( Dyew) = (6;(DIV, ... ,D};ﬁ“{))f:;

(b) Moreover, there exists an algorithm which, in time O(n kil), constructs the partition Ppew

above from P14 and the given collection of witnesses {Q . pl—D g @ik_l)}.

Pk~ 1)

Lemma 5.1 is essentially given as Lemma 8.3 of [21] and Lemma 6.3 of [9]. The proof of
Lemma 5.1 is given in [9,21], but with no focus to being algorithmic. We shall not give a formal
proof of Lemma 5.1, but we will sketch a proof to indicate how its algorithmic part is obtained.

Indeed, the approach in [21] is similar to Szemerédi’s [25,26]. Consider the Venn diagram of
the intersections of the 7z _1)-Witnesses Qp(kl)l), over P—1) ¢ k=1, By Statement (1) in the
hypothesis of Lemma 5.1, these witnesses are given to us. (In [21], these witnesses are assumed
to exist, but here, we will build them with Theorem 3.16.) This Venn diagram has at most

ol 2 V11 (Doia)

regions (this number is independent of n), where each region is a (kK — 1,k — 1)-cylinder. This
Venn diagram defines a refinement 2., of P4, so that Z2., is itself a partition. The index of
P!,4 will be larger than that of F,q on account of the fact that, in Statement (2), we assumed

=D The (k — 1,k — 1)-cylinders of P! 4 may
not have DEV (), so we apply Theorem 4.7 to each (where we assume, by induction on k, that

many k-tuples were lost to polyads P-1) ¢ P

Theorem 4.7 is algorithmic for k — 1 (cf. Remark 4.8)). This process produces the partition Ppey,
where it is well-known that, as a refinement of 2/, we have indy @) (Pnew) = indymw (ZL14)-
For the formal details of this outline, see [9,21].

5.2. Proof of Theorem 4.7. The proof of Theorem 4.7 was discussed informally when we
introduced the Index-Pumping Lemma. Here, we proceed with the formal details.

Let 7,6, > 0 be given. For each 2 <i <k — 1, let &; : (0,1]*~% — (0,1) be a function, and set
d = (d2,...,0k_1). We begin our argument by defining some auxiliary parameters.

5.2.1. Auziliary parameters for Theorem 4.7. In all that follows, set

d, = ) = =émin{5k,17} and to = [2/v]. (9)

Let
O = 5I/c,Thm.3.16(dkv Ok) (10)
be the constant guaranteed by the Witness-Construction Theorem (Theorem 3.16). More generally,
recall that Theorem 3.16 has the following quantification:
Vk‘,dk,dk,ﬂdz : de_l,a(;k_l e .VdQ,H(SQ,’I“O,TLO e

This means that for each 2 < i < k — 1, the constant ¢; (which is guaranteed to exist by
Theorem 3.16) depends on dj, for all i <j <k —1 (which were given earlier). In other words,
Theorem 3.16 guarantees the existence of the following function

0i hm.3.16(dky Th—1, - -+ ) = {di} x (0,1]F771 — (0,1) (11)
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where zy_1 = dg_1,...,2; = d; € (0,1] are variables. Similarly, with variables z;_; =
dg—1,...,29 = dg € (0, 1], let

ro(dy, -1, 2) : {dg} x (0,1]*7% > N (12)

be the function guaranteed by the Theorem 3.16. We shall assume, w.l.o.g., that for each
2 <i<k-—1and for every xy_1,...,z; € (0,1], we have

di(xp—1,...,2) < 0 Thm3.16(dk, The1, - - -, T;). (13)

Indeed, for otherwise, we would replace the given function d; with the function ; Thm.3.16 and
produce a partition & which is ‘more regular’ than was sought. In what follows, we set
d = (02,...,0), and we emphasize that, in what follows,

k, v, b, 8, and r are fized (as a result of (9)—(13)). (14)

It remains to define the promised integer t. Similarly as in the proof of Szemerédi [25, 26],
this integer will be determined by an iterative procedure using the Index-Pumping Lemma
(Lemma 5.1). To that end, recall that Lemma 5.1 has the following quantification:

Vk,v, 5k7 67 7, Dold, @old; 3 Dew, Gnew, 10 © - - -

We apply Lemma 5.1 with the fixed choices k, v, gk, 8, and 7 from (14) so that Lemma 5.1 defines

functions
Dnew(D01d7 aold) = Dnew(l@ 5]97 67 r=To, D01d7 aold) € (07 1]k_27
and aneW(Dolda aold) = aneW(V7 O, 0,7 = 70, Dold, aold) € Nk_la (15)

where Dgjq € (0,1]¥72 and acq € N*~! are sequences of variables. (Henceforth, we make the
abbreviations D = Dy and @ = apew.) Now, we successively define sequences D ¢ (0, 1]F2
and a? € N¥1 | as follows. With ty given in (9), set

DU = (dg=1,...,dx—1 =1) and aV) = (agl) = to,agl) =1,... ,a,iljl =1). (16)
For ¢ = 2, set (cf. (15))
DY = DD o) = (@), ),
a” = (D0 qli=1) = (agi), . ,agzl) ,
and t; = max {agi), e ,a,(jll} (17)

(recall the functions given in (15)). Set (cf. (10))

2
t= max t;, where istopz{ ‘ (18)

1 gigistop g]%

This concludes the description of parameters we need to prove Theorem 4.7.
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5.2.2. The argument (algorithm) for Theorem /J.7. Let H*) be a k-uniform hypergraph with
vertex set V = V(H®), where we assume n = |V| is sufficiently large. Our goal is to construct,
in time O(n®*), a family of partitions & = 2(k — 1,a”) of V which is t-bounded (cf. (18)),
which is an (1, 8(D), >D, a)-family, where (H*), %) has DEV(J},), and where the sequences D
and a will be given by D@ and a® (cf. (16) and (17)), resp., for some 1 < i < igop (cf. (18)).

To begin, let V =V, u--- U V4, (cf. (9)) be a vertex partition satisfying |n/to]| < |Vi| < [n/to],
for each 1 < h < tg. Let & = {@fl), e szk_l)} be an initial family of partitions, where for
each 2 < 7 < k—1, the partition ﬁfj) consists of the (t]o) many (4, j)-cylinders KO (Vj,,, ..., Vi)
where 1 < hy < --- < hj < tg. Then, & is a tp-bounded (V,E(D(l)),>D(1),a(1))—family of
partitions (cf. (16)). Indeed, all but

to ([”/t0]>nk—2 - n® @ nk
2 to

many k-tuples K € (Z) belong to Crossk(t@l(l)), and every K € Crossk(ﬂl(l)) satisfies that,
for every 2 < j < k— 1, and for every J € ([;), the pair (PY(.J), PU=D(J)) has DEV(1,0)
(cf. Conditions (a)—(c) of Definition 4.2).

For an integer 1 < @ < igop (cf. (18)), assume Z,..., &; are constructed families of partitions
of V', where

P; = Pi(k —1,a;) is a ti-bounded (v, 8(DV), =D a®)-family, (19)
for D@, a® and ¢; given in (16)—(17). We proceed with the following Steps 1-4.

Step 1. Identify, in time O(n?*), the sets

@z(k:Dl%EV = {75(]“71) € @Z(k—l) . (H®, PE1)) does not have DEV (d(H® |[P*=1)) §,) } ,

Pk _ {ﬁ(k_l) e P*D . Pl g not (8(DW), ZD(i))—typical}.

7

Identify, in time O(n*), the sets (cf. (9))
PED, — (P e IV quPPED) 2 4}, SED — D HED

i,dense i,8parse i,dense”

Identify, in time O(1), the set
P 2 D 0 DD S )

2,typ i,dense"

(The last identification uses that |@fk_1)| =0(1).)

Step 2. Compute the sum
5= Y {0 pe-1 ¢ S,

(Since S; = O(n*) has O(logn) many digits, Step 2 is done in time O(logn).) If S; > &n*
(cf. (9)), we proceed to Step 3. If S; < 0xnF, then we stop, and the promised partition is & = ;.
Indeed, since

Py € PED L S Gl

7, i,atyp i,sparse’
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we have (cf. Remark 4.4)
S [0 0 )

< 504 S { (P PO € SEDY S i, p)| - P € D) )

1,atyp 1,Sparse
< Sknk + nnk + dknk (<) (5knk,
so that & = Z; has property DEV (d;) (cf. Definition 4.3). Moreover, since &; is a t;-bounded

(v,6(DY), =D a®)-family, with v < n (cf. (9)), then it is also an (1, §(D®), =D a®)-
family (cf. (9)), as desired.

Step 3. If S; > 6;n”, then we will apply Theorem 3.16 to each Ph-1 ¢ @fﬁ_l). We first verify
that the hypothesis of Theorem 3.16 will be satisfied. To that end, fix P*—1 ¢ @gfl), and let
P be the corresponding (k, k — 1)-complex (cf. (7)). In the context of Theorem 3.16, P plays the
role of H*=Y and (H®) A Kp(P*-1D)) U P plays the role of H¥). Since
PO ¢ kD @) P,

we have that P is (8(D™),>D®)-typical, or in other words (cf. Definition 4.3), P has
DEV(dp -1y, 0 (D®)) for some density sequence d -1y which is coordinate-wise at least DO,
Since
P e P4 DUy 0 UL
we have that (H*), P*=1) does not have DEV (d(H®|P*-1) §,.), where d(H®|PE-1) > .
Moreover, we have chosen the constants dj, 8, and o5 (cf. (9) and (10)) and the functions §(D®)
and

ro(DW) = ro(dy,d ..., d")
(cf. (11)—(13)) appropriately for an application of Theorem 3.16. Thus, the hypothesis of
Theorem 3.16 is satisfied, and so Theorem 3.16 constructs, in time O(n*), an Tp(k—1)-Witness

Qp(k 1y, given by

k—1 k—1
Qa0 QD pnn S PED, (21)

of ﬂDISC(d(H(k),ﬁ(k_l)),gk,rﬁ(k_n), where 7541, < ro(D™). Repeat the application of
Theorem 3.16 over all P*—1 e @i(’]f;l).

Step 4. If S; > o,n*, then we will apply Lemma 5.1 to the family of partitions &; and the
collection of witnesses Q . )1), over all P*—1) ¢ @g;;”. We first verify that the hypothesis of
Lemma 5.1 will be satisfied. Indeed, by our induction hypothesis in (19), & is a constructed
ti-bounded (v, 8(D™), =D a®) family of partitions. Assumption (1) of Lemma 5.1 is satisfied

because the set ,@(k_l) was constructed in Step 1 (cf. (20)), and for each P*—1) e e@z(l:‘ 1), a

-1)
Pe-1) "
Lemma 5.1 is satisfied because we assume S; > 0;n”, and so

corresponding 75, 1)-witness o was constructed in Step 3 (cf. (21)). Assumption (2) of

S; = 2{"@@ ‘ pl—1 e pk 1’} 5ot S 5k,
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Thus, Lemma 5.1 constructs, in time O(n*~1), a t;11-bounded (v, §(DUFD) =D+ gli+1)

family of partitions &; 1, where t;,1, D(”l), and a1 are given in (17), for which

54
indy ) (Piy1) = indyi0 (P5) + Ek

Return to Step 1 with the newly constructed family & 1.

From (8), we may repeat Steps 1-4 above at most isop = [2/5%] times (cf. (18)), which proves
Theorem 4.7.

§6. COUNTING AND EXTENSION LEMMAS

In this section, we present Counting and Extension Lemmas for regular complexes. All results
in this section can be derived, in a standard way, from the following Counting Lemma for cliques
due to Gowers [8,9],

Theorem 6.1 (Clique Counting Lemma, Gowers). Let integers { = k = 2 be fized. For all
w,di > 0, there exists 0, > 0 so that for all di,_1 > 0, there exists dx_1 > 0 so that, ..., for all
do > 0, there exists d2 > 0 and positive integer ng so that the following holds.

Set § = (d2,...,6k), and let d = (dp;: Aj € [()7,2 < j < /) be a sequence satisfying, for
each 2 < j < k, dy, > d; for all Aj € [0, Let H = {H(j)}k 1 be an (£, k)-complex, where
HO =Viu--- UV hasng < n < |Vi| <n+1 for each 1 <i < (. If H has DEV(d,J), then
H*) e H has

‘ng( |_1+“HHd/\ x nt

J=2Ajelt
(k).

many cliques K,

We now present a version of Theorem 6.1 which allows us to count copies of the (¢, k)-octohedron
O®) = KE(Uy,...,Up), |Ui| = - = |Ug| = 2, within an (¢, k)-complex .

Theorem 6.2 (Octohedral Counting Lemma). Let integers { = k > 2 be fized. For all
w,di > 0, there exists 0, > 0 so that for all di,_1 > 0, there exists §_1 > 0 so that, ..., for all
ds > 0, there exists 0o > 0 and positive integer ng so that the following holds.

Set 6 = (52,.. ,0k), and let d = (dp; : Aj € [()7,2 < j < k) be a sequence satisfying that

for all 2 < j < k and Aj € [£), dy, = dj. Let H = {H(j)};?:l be an (¢,k)-complex, where
H<>_v1u UV hasng<n<|Vi| <n+1,1<i<{ IfH has DEV(d, ), then H¥) e H
has

[EMB(OW 70| = (1 + p) H H d

J=2Ajelt

many labeled partite-isomorphic copies of the (£, k)—octohedron oW = K(k)(Ul, oo Up).

We next present a type of extension lemma (cf. Lemma 6.4), which we will describe in terms

of the following auxiliary graph I'.
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Definition 6.3. For integers ¢ > k > 2, let H = {HU) } ‘', bean (E k)-complex, and let O®)
be the (¢, k)-octohedron. We define the octohedral-incidence graph T = Ty o(H) of H as follows.
Set V(T') = Ko(H®). For L,L' € V(I'), put {L,L'} € T if, and only if, there exists a labeled
partite-embedding ¢ of O*) in H with im¢ = L U I/, i.e., L U L’ induces a copy of O*) in H*),

We now state the Octohedral Extension Lemma.

Theorem 6.4 (Octohedral Extension Lemma). Fiz integers ¢ > k > 2. For all {,d; > 0,
there exists 0, > 0 so that for all d_1 > 0, there exists 0p_1 > 0 so that, ..., for all dy > 0, there
exist 0o > 0 and positive integer ng so that the following holds.

Set 5 = (02,...,0k), and let d = (dp, : Aj € [(),2 < j < k) be a sequence satisfying that, for
all 2 < j <k and for all Aj € [f] dy; = dj. Let H = {’H(j)}?:l be an (¢, k)-complex, where
HD) —Vlu U Vy hasng < n < |Vi| <n+1 for each i € [¢]. If H has DEV(d, ) and if
= I‘k,g(’H) is the octohedral-incidence graph of H (cf. Definition 6.3), then

(1) all but C|ICe(H®)| cliques L € Ko(H®) satisfy

k .
degr(L) = (1 £ () H H d?{jﬁl X
J=2 Ajele)

(2) all but ¢|[ICo(H®)|? pairs of cliques L # L' € Ko(H®)) satisfy

degp(L, L) = (1 +¢) ]_[ ]_[ dw 3 x

J=2Ajelf]

§7. THE NEGATIVE-EXTENSION LEMMA

In the previous section, we stated Counting and Extension Lemmas corresponding to when a
complex H has the deviation property DEV. In this section, we explore what happens when the
property of deviation fails to hold. We give our main result as Theorem 7.2, which we call the
Negative-Extension Lemma. We first motivate this result.

Suppose H¥) is a (k,k)-cylinder with underlying (k,k — 1)-cylinder H*~Y where d =
d(H®|HE=D) > 0. For § > 0, suppose that (H*), H*D) does not have DEV/(d, §). State-
ment (2) of Fact 3.10 then guarantees that (H*), H*~1) does not have COUNT o, (d, ). As
such, by Definition 3.9 (recall (3) and (4)), there exists some @ # S®) < O®) = KE)(U,, ... Uy)
so that

IEMB(S®), (H® 1 *=D))| » (1 + 6)dS™ |[EMB(O*—D, 1)), (22)
The Negative-Extension Lemma (Theorem 7.2) will conclude that, as a result of (22), there

are ‘many’ k-tuples K € Ky, (H(k_l)) which ‘belong’ to some unusual number of labeled partite
embeddings of S*) in H*). To make our plan precise, we need some supporting concepts.

7.1. Supporting concepts, and the Negative-Extension Lemma. We use the following
notation. For a (k, k)-complex H = {HYW}5_, and for an integer 1 < i <k, let HO Ly Wy_,
Note that H is a (k,i)-complex. Now, let

Ty = T (M) (23)
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be the octohedral-incidence graph (cf. Definition 6.3) of H) . Clearly,
Iyl 1<--- <. (24)

We also use the following variant of the octohedral-incidence graph I'y, which accommodates
arbitary subhypergraphs @ < S® < 0% = K®)\(Uy, ..., U).

Definition 7.1 (incidence digraph, anchor). Fix a (2,k, k)-cylinder @ < S® < o) =
K®(U,...,Uy). Fix a k-tuple A = {ay,...,a;}, where for each i € [k], a; € U;. Let
HP) = {7_[(3‘)};?:1 be a (k, k)-complex. We define the (S®), A)-incidence digraph T 4(S®) =
CA(S® HE)) of HF) as follows. Set V(F4(S®)) = Kp(HE D). For K,K' € V([a(S®)),
put (K, K’) € T4(S®) if, and only if, there exists a labeled partite-embedding 1 of S®) in
(H®), HE=D) (cf. Definition 3.8) so that 1/(A) = K and imt = K U K’. We will say that A is
the anchor of T 4(S™), and we will write A = (U U --- U Up) ~ A.

When working with the (S*), A)-incidence digraph T' 4(S®)) = T 4(S®), H) of a (k, k)-complex
H, we use the following standard notation. For K, K’ € V(f), we write

NE (st

(K) = {K" e V(Ea(S™)) : (K, K") € Ta(s™)},
NfA(s(k))(Ka K') = NfA(g(k))(K) N NfA(s<k))(K/),
degis sy (K) = ‘NfA(S(@)(K) and  degg sy (K, K') = ‘Nm(s(m([(, K. (25)

Note that all neighborhoods and degrees defined above are out-neighborhoods and out-degrees.
We now consider the following statement EXT, which considers a hypergraph @ # S®*) < O®)
an anchor A for which A € S®) (cf. Definition 7.1), and a (k, k)-complex H®*).

EXTA(SW) = EXT4(S®, ¢, HW). Fiz o #» S® < 0®) = KE(Uy,...,U,), and fiz an
anchor A for which A e S®) (¢f. Definition 7.1). Let & > 0 be given, and let HF) = {’H(j)}f=1 be
a (k, k)-complex with dj) = d(HPHE=DY > 0. Then, the following condition holds:

(1) If Ae 8®), then all but £|HP)| edges H € H¥) satisfy the following implication:

If degﬁA(S(k)\{A})(H) > §degpk71(H),
then — degg (suy(H) = (1 £ &)dp) degp | (sa g ay)(H);
(2) If A ¢ S®) then all but &K (H* )| cliques K € Kp(H* V) satisfy the following
implication:
If  degg, swgay)(K) > & degr, , (K),
then  degg sy (K) = (1 £ §)dpy degp, 5w 1y)(K)-

For future purposes, it will be convenient to have a compact presentation of the statement
EXT4(S®) = EXT4(S®), ¢, H*)) (see (28) below). To that end, let

H ) if Ae S®)

Krp(HED) if A¢ SH), (26)

AR — AR (SF) 4 3R]y = {
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In the language of A®*), we will combine Conditions (1) and (2) of EXT4(S®) into one
presentation, as follows. Set

AR = AR (80 4 e By = {K e AW degy sy 5 (K) > Edegp,  (K)

but  degg, s (K) # (1 £ €)dpg degg, sz (K) - (27)
Then,
EXT4(S® & H®) is true = A% | < ¢la®), (28)

We now state the main result of the section, the Negative-Extension Lemma.

Theorem 7.2 (The Negative-Extension Lemma). Let integer k > 2 be fized. For all
dy, 0 > 0, there exists & > 0 so that for all di,_1 > 0, there exists d_1 > 0 so that, ..., for all
do > 0, there exist 6o > 0 and positive integer ng so that the following holds.

Set 8p—1 = (02,...,0x_1). Let H = HE) be o (k, k)-complex with density sequence dy, as
given in Setup 3.15, where n = ng. Suppose dj, satisfies that, for each 2 < j <k, dy, = dj for all
A; € [k)7. Assume that

(1) H* Y has DEV(dy_1,0,_1), but that
(2) (H® HE=DY) does not have DEV (dp, 0k,)-

Then, there exists a hypergraph @ # S®) < O = K(k)(Ul, ..., Ug) so that, whenever an anchor
A satisfies A € S| the statement EXTA(S(k),é,’H(k)) is false. In other words, the hypergraphs
A®) = (W A HE)) and AR = AP (WA ¢ 1B satisfy | AR = ¢| AW,

We proceed to define the constants for Theorem 7.2.

7.2. The constants of Theorem 7.2. Let k > 2 be a fixed integer, and let dg, d; > 0 be given.
We define the constant ¢ promised by Theorem 7.2 by

1002k F7F
Let di_1 > 0 be given. We formally define the constant d;_1 in upcoming (31), but we first

§= (29)

motivate how we choose it. To that end, define auxiliary constants (cf. (29))
k—
p=1/2 and Gy =E&df? (30)
Recall from the hypothesis of Theorem 7.2 that we will be working with a (k, k — 1)-complex
HE-D = {’H(j) f;zl which has DEV (dy_1,d5_1), where the constants di_o, ..., ds of dx_1 and

the constants dg_1, ..., d of 85— will be disclosed below. For such a complex H ¥V, we want
dk—1 > 0 to be small enough so that the following conditions are satisfied (cf. (30)):

(a) we can estimate |y (#*~1))| within an error of 1 + y;
(b) we can estimate |[EMB(OQ®*~1) (=1} within an error of 1 + y;
() all but Ce_1|Kp(HED)]| cliques K € Kp(HFD) satisfy

degr, , (K) = (1 £ Ck-1) H H dz] !

J=2 Ajelk)y
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To guarantee that (a), (b), and (c¢) above are satisfied, we need d;_1 > 0 to be small enough to
enable applications of Theorems 6.1, 6.2, and 6.4. With di_; given above, and with p = 1/2
from (30), let

OThm6.1, k—1 = 0Thme1(d =k, k=1, u=1/2,d_1) > 0
and  0Thm.6.2, k-1 = OThme2(l = k. k—1, 0 =1/2,dp_1) >0
be the constants guaranteed by Theorems 6.1 and 6.2. With dy_; given above, and with (x_1
from (30), let
O0Thm.6.4, k—1 = OThm.6.4({ = k,k —1,{ = (4—1,dp—1) > 0

be the constant guaranteed by Theorem 6.4. Now, set

Ok—1 = min {6Thm6.1, k — 1, OThm.6.2, k — 1, OThm.6.4, k — 1} (31)

which concludes our definition of the promised constant dj_1.
Inductively, assume di_1,0g_1, - - -, d;, 0;, d;—1 have been disclosed, for a fixed integer i satisfying
3 < i <k — 1. Moreover, assume that we have defined auxiliary constants (cf. (30))

k—1 k—2
)2 2

k=1 ay,
C G [[ A e

j=i—1

Gor = €250, g = e glns)

We define §;_; similarly to how we defined ;1 (cf. (31)). In particular, we want §;—1 > 0 to be
small enough so that (a) and (b) above are satisfied with p = 1/2. These tasks are handled by
Theorems 6.1 and 6.2, which have the following common quantification of constants:

V}L, de_l, Hék_l e .Vdifl, 35171 L.
With p = 1/2 from (30), and with dg_1, k1, ...,d;—1 inductively disclosed above, let
0Thm.6.1,i—1 = Orhm6.2(€ =k, k — 1,0 = 1/2,dj—1, 61, . .., di, i, di—1) > 0
and  0Thm.6.2,i -1 = OThm6.2(f = k,k — 1, u=1/2,dp_1,0,—1,...,d;, 6;,di—1) >0

be the constants guaranteed by Theorems 6.1 and 6.2. We also want §;—_1 > 0 to be small enough
so that (c) above is satisfied with (1 from (30). Moreover, we want d;,—; > 0 to be small enough
so that the following sequence (¢’) of conditions is satisfied (cf. (32)):

() e all but G |[Kp(HE )| cliques K € K (H*EY) satisty

degp, , (K) = (1 + Ge— H H alQJ bxon

J=2 Ajelk)

o all but (o Kp(H*2)]| cliques K € Ky (H*2)) satisfy

2 .
degr, ,(K) = (1 £ (2) ]_[ H df\]j” x nk;
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e all but ¢;_1|Kr(HD)]| cliques K € Ki(HD) satisfy
-1
degp, ,(K)=(1%¢1 H H d2j !

To guarantee that the sequence (¢’) of conditions above will be satisfied, we fix an integer h
satisfying ¢ — 1 < h < k— 1, and we appeal to Theorem 6.4, which has the following quantification
of constants:
VC, th, Hdh : th_l, E|(Sh_1 Lo .Vdifl, 351',1 L
With dp, dp, . .., di—1,d;—1 inductively disclosed above, and with ¢ = ( from (32), let
OThm.6.4, i — 1, h = 0Thm.6.4(¢ = k, h, = Cp, dn, On, - - -, diy 63y di1)
be the constant guaranteed by Theorem 6.4. Set
OThm.6.4, i —1 = MiN{0Thme4,i—1,h: ¢ —1 <h <k—1}.
Finally, set

0i—1 = Min {0Thm.6.1, i — 1, OThm.6.2, i — 1, OThm.6.4, i — 1} - (33)

We continue this way until ds is reached. This concludes our definitions of the constants.

7.3. The argument for Theorem 7.2. Set §;,_1 = (J2,...,0,—1), where each §;,2 < j < k—1,
was defined in (33). Let H*) be a (k, k)-complex with density sequence dy,, as given in Setup 3.15,
where n > ng. Suppose dj, satisfies that, for each 2 < j < k, dy, = d; for all A; € [k]7, where d;
was given above. Suppose that H*~Y has DEV (dj,_1,)_1), but that (X®), #* 1) does not
have DEV (d[), ). Theorem 7.2 promises a hypergraph & # Sk c o® = K®E(Uy,...,U) so
that, for any anchor A for which A € S®) (cf. Definition 7.1), the statement EXT ,(S®), ¢, #*))
is false. We begin our argument by defining the promised hypergraph S*).

7.3.1. Defining the hypergraph S®). First, we appeal to (22), and take any hypergraph @ #
S*®) < 0% for which

[EMB(S®), (K0, HED)| 2 (1 + 6,)dly) [EMBO®, 2 D)|. (34)

Indeed, Assumption (2) of our hypothesis says that (%*), H*=) does not have DEV (d), 0k)-
As such, Statement (2) of Fact 3.10 gives that (%*), H(*~1)) does not have COUNT ey (), O )-
Thus, some @& # S < OF) satisfying (34) is guaranteed to exist by Definition 3.9.

Second, take @ # Sr(r];)n = 8™ to be an edge-minimal subhypergraph for which

sk

(k—1) (k—1)

(k)
(Note that in (35), we require the error 5k/2‘8(k)| [Sminl to decrease as | m1n| decreases.) Note

that Sr(ni)n must exist, because S*) itself satisfies (34). Note also that S ) % &, because

|[EMB(2, (1R 3 E=1))) )| = (1+0) dO |EMB O(k—l)fo(k—l))L
Since Sr(m)n # @ is edge-minimal w.r.t. (35), we have that, for each e € Sr(fl)n,
[EMB(S{L ~ fe}, (), 1t=D))| = < + 616) A5 EMBO®, HED)|. (36)
olS®) |- |\ [+1
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For simplicity of notation, we shall write

5y = M and S® .= s% (37)
Then, we may rewrite (35) as
’EMB(S("f), (7—[(’“),7-[(1’“—1)))‘ #(1+ 5;6)d|[‘2](k)"EMB((’)(k_l),H(k_l))’, (38)
and we may rewrite (36) as, for each e € S*),
[EMB(S® . fe}, (H®), #*ED))| = <1 - ﬁ“) die”1 T [EMB(O®D, D) (39)

This concludes our definition of the promised hypergraph S*).
We pause to say a word about the inequality in (38). We have that either

[EMB(S®, (H®, HED))| < (1 - 5)dfe) " [EMBOF, 24061
o [EMB(S®M), (H®) H0V))| > (1 + 6 [EMBOD, #+D)|

In our proof, it will be symmetric to handle either situation above. Since both cases can be
handled similarly, we will w.l.o.g. assume that the latter holds:

EMB(S®, (H®, 7 ED))| > (1 + 6)dy, " [EMB(O®D, 2D, (40)

We proceed to develop a proof by contradiction. Assume the hypergraph S®*) from (40) doesn’t
have the desired property of Theorem 7.2. In particular, assume that there exists an anchor A,
where A € S®)| for which the statement EXT 4(S®) ¢, H®)) is true. With this assumption, we
will prove the following.

Claim 7.3. Assuming the statement EXTA(S(k),f,’H(k)) is true for some A e S®) | we have
[EMB(S®), (®), 7+=1y)| < (1 + 25,;> diy”[EMB(O%D, 21,

Now, the bound in Claim 7.3 is a direct contradiction with the bound in (40). Thus, it must
be the case that for any anchor A, where A € S, the statement EXTA(S(k),f, ’H(k)) is false,
as promised by Theorem 7.2. Thus, to complete the proof of Theorem 7.2, it only remains to
prove Claim 7.3.

7.4. Proof of Claim 7.3. Assume that the statement EXT 4(S®) ¢ H®*)) is true for some
anchor A with A e S®),

Recall that in (26)-(28), we abbreviated the truth of the statement EXT 4(S®), ¢, H®) in
terms of the following hypergraphs A% and A](D];)d:

H ) if Ae S®),

(k) = AR (SK) 4 2 ®)y =
AT = AT AHT) {/Ck(H(k—n) if A¢S®),

Alf)];)d = Al(o];)d(‘s(k)v A7£’%(k)) = {K € ‘A(k) : deng(S(k)\A)(K) > fdegrk—l (K)

but deng(S(k))(K) #(1+ §)d[k] deng(3<k)\A) (K)} .
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Recall from (28) that our assumption that EXT 4(S®), ¢, ’H(k)) is true is equivalent to
[ASh] < €lA®] < glicy (HED)). (41)
Define also the sets

k k
A = AL (S, 4,6, 1) = {K € AB): degg | g3y (K) > ¢ degr, ,(K)

and  degr | g0 (K) = (1 E)dpy degr g1y ()}, (42)

and
AP = AP (SD, 4,6, 1) = {K e AP : degr | g4 (K) < Edegr,  (K)}. (43)
Note that
A® Aé’iod v 'Abad v A(gk) (44)

is a partition.
Using the partition A®) =AW good Y Abad v A(()k) from (44), observe that (recall Definition 3.8)

’EMB(S(k), (%(k%’}_[(k*l)))‘ = Z degf:A(S(k))(K>

KeA®)
Z deg (st (K) Z deg, (s (K Z degg , 500y (K). (45)
KeAé’;l . KeAl®) KeAl®

We now bound each of the sums above.
First, using the definition of Agf)z)d in (42), we have

Z degﬁA(s(k))(K) (1+&)d Z degFA(S(k)\{A})( )

(k) (k)
KeAgood KE.A

(39)

/
= (1+&)dpy [EMB(S™ < {4}, (P 7ED))| < (1+€) <1+52'f> d|[‘,f](k)||EMB((9(k’1),7-1,(’“’1))|

(1 L2+ )dls( NIEMB(O®-D, 261y

29), (37
0 )<1 204 >d'5”'|EMB Ok (=1 (46)

(To see the last inequality, (29) gives £ < 8x/(2% - (12)), and (37) gives 6;/2F < §,.) Second, we
take
> degg | sy (K) < > degp, st 4y) (),
KeAék) KEA(()k)

since every labeled partite-embedding of S*) in H*) is also a labeled partite-embedding of
k) {A} in H®). Using the definition of A(()k) in (43), we have

Z degg , (st () < 2 degis, sy (K)
KEAEJ’“) KeAék)

<€ D) degp,  (K) =¢EMBORD HE=1) - (47)
KeAk)
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Third, we take

Z degg (st ( Z degp, _, ( (48)

KeA®) KeA{)’gd

since every labeled partite-embedding of S®) in #*) is also a labeled partite-embedding of O*—1)

in H*~1). More strongly, we have the following bound (which we prove in a moment).

Fact 7.4.

S degr, , (K) < 8(k — 1)¢[EMB(OD, 3(=1))|.

K eAi)Z)d

Applying the bounds of (46)—(48) and the bound of Fact 7.4 to (45), we infer

[EMB(S®, (™, )| < ((1 i §5’€) ay €+ 8- s) [EMB(O®*—1), (51
2
< (1 + 20+ 8k§d,§2k> dfI[EMB(O®, 7)) (49)

where we used |S®)| < 2% and dpy) = dy from the hypothesis of Theorem 7.2. Now, since

(29) 1 (37)

_9k
8k&d,, 17 Qkék < 12

6k,

we have

[EMB(S®), (1®), 1*-1))| < (1 + i%) diy” [EMB(O%D, 21

as promised by Claim 7.3. Thus, it only remains to prove Fact 7.4.

7.5. Proof of Fact 7.4. We first outline the main idea of how we bound ZKeAl(ak)d degp, , (K).

To begin, we divide the k-tuples K e Ag;)d into two classes: those for which degp,  (K) is
not ‘too large’, and those for which it is. More generally, we first partition the set of k-tuples
V(1) = Kp(H*D) as follows. With ¢x_; given in (30), define

Ve _1-good(Tk-1) = {K eV({Ig_1) = ]Ck(;l-[(kfl)) .

degp, (K) < (1+ ¢e1) H 11 d2] ! ,

J=2 Aje[k)V

and V¢, pad(Tk—1) = V(Tk—1) N Vi _1-good (Tk—1)- (50)
Then,

AB, ¢ 4w @

(50)

Ke(H* ) = V(Tro1) = Ve y-gooa Th-1) U Ve, baa(Tk—1). (51
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As such, with (r_1 <1

Y degr, ,(K) = ) {degr, | (K) : K € Al 0 Ve gooa(Din) }

k
+ Z {degrk—1 (K): K e Al(oa)d n ‘/Ckfl‘bad(]‘_‘k—l)}

? 2|Abad|H H d2 L x —i—Z{dengl KeVCkfl_bad(Fk,l)}. (52)

J=2 Ajelk

To bound the first term in (52), we have from (28) that \Agca)d\ < E|KL(HED)] is ‘small’. We
will return to this in a moment. To bound the summation in (52), we iterate the approach taken
n (50) and (51). Namely, for 2 < i < k — 1, we divide the k-tuples K € Kp(H?) into two classes:
those for which degp, (K') is not ‘too large’, and those for which it is. More formally, with ¢; given
n (32), define

Ve,-good(Ti) = 4 K € V(Ty) = Kp(HY) « degr, (K) < (1+ ;) H [T & :
J=2Ajelk))

and VCi—bad( Z) = V( Z) ~ VCi-good(Fi)- (53)
Now, with I'y_; € I'y_5 from (24), we have

(24) 53
Veroibad(Tr—1) € V(Tr—1) € V(Ir_2) @ Ver o-good(Ti—2) U Ve, ybad(Tr—2)-

Thus, with (;_o < 1 and with I'y_; € I'y_2, we may bound the summation of (52) by

Z {degf‘k—1 (K) K e ‘/Ckfl‘bad(]‘_‘k—l)}

(24)
<), {degrk,2(K) K eV bad(Tr—1) N ng_Q-good(Tk_z)}

+ Z {degrk,Q(K) K eV paalk—1 0 V(k_z-bad(rk—Q)}

<2V aa T[] T d?fj_l xnf 4+ {degrk,Q(K) K e VCk_g—bad(Fk—2)} :
j:2 Aje[k]j

Inductively, we conclude

k—1
Z {degfkﬂ (K): K€ VCk—l-bad(Fk—l)} < 2n" Z ’VCi-bad i)l H H dQJ Y (54)
1=2

J=2Ajelk

(Note that the summation in (54) does not include i = 1, because every K € K, (H)) satisfies

degp, (K) = nk.)
Applying (54) to the second term of (52), we have

k—1
Y, degr, (K)<2n" || bad\H ] dy " 7 | Vebaa(T \H ] dy Y- (55)
=2

KeA(D) J=2 Aje[k] 3=2 Ajelk)i
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As we mentioned earlier, \Ag;)d\ < €|KR(H*=D)| holds from (41). To further bound ]A]g];)d], we
apply Theorem 6.1 with g = 1/2 to |[KCi(H* 1) to get

KCp(HED)] < 1+MH H dp; xn <2H H d, x nF

J=2 Ajelk J=2 Ajelk]

k—1
— AR <MD <26 ] [T da, x b (56)
j:2/\j€[k}]j

Applying (56) to (55) yields

k—1 )
> degr, (K 451_[ H d3 x n? +2nk2 [V¢,-baa (T H ]_[ dQJj_l . (57)

KGASZZ J=2 Ajelk J=2 Aje[k]d

Now, for fixed 2 < i < k — 1, we bound |V¢,-paq(I';)|. With ¢; > 0 from (32), Theorem 6.4 gives
|Vei-baa (I )| C1|IC/€(H(Z )|. To further bound |V¢,.pad(I's)|, we apply Theorem 6.1 with p = 1/2
to [ICr(HD)| to get

Cr(HD)| < 1+MH H dp; xn <2H H dp, x n¥

J=2Ajelk J=2 Ajelk

- |‘/Ci-bad(ri)| < <z|lck( 2Cz H H dA X nk 58)

J=2Ajelk

Applying (58) to (57) gives

3 degp, | (K) < 20 2§H H d3. +2Z G H da, xH H d3,

KeAg?d J=2 Ajelk J=2 Ajelk
1—
< 2% 251_[ ]_[ dQJ +22 g]‘[ H d2] . (59)
J=2 Ajelk J=2Ajelk

To finish the proof of Fact 7.4, only calculations remain.
Indeed, fix 2 < i < k— 1. Recall from the hypothesis of Theorem 7.2 that the density sequence

dj, satisfies dy, > dj for all A; € [k]7 and for all 2 < j < k. As such, our definition of ¢; in (32)
gives
k—1 ; 2j
(%)2 H 2 [T e
¢l a7 <¢ : (60)
L1 H JL A s

Applying (60) to (59) gives

D1 degr,  (K) < 2n* 251_[ H d +26(k —2) H [] &

KeA® J=2 Ajelk J=2 Ajelk)

bad
k—1 )
-OJ] T & xn*. (61)
j:2Aj€[k]j
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To conclude the proof of Fact 7.4, it only remains to bound >}« degp,_, (K) in terms of
bad
|[EMB(O® =1 3{(,=1))|. To that end, with y = 1/2, Theorem 6.2 gives

[EMB(O®=1) 3¢(k=1) ]_[ H d3 51:[ H n*.  (62)

J=2 Ajelk) Ajelk
Comparing (61) and (62), we infer

Z degp, ,(K) < 8(k — 1)’EMB(O(’€*1)7H(k71)) ’

K eA}()’Z)d

as promised by Fact 7.4.

§8. PROOF OF THEOREM 3.16

The proof of Theorem 3.16 will involve applications of Theorems 6.2, 6.4, and 7.2. In addition
to these tools, we will also need the following lemma, a nonconstructive version of which appeared
as Lemma 2.6 in [22], where it was called the ‘Picking Lemma’. The proof of that version follows
by an application of the Markov Inequality, but here, we will need a constructive counterpart,
proved in the Appendix.

Lemma 8.1 (Algorithmic Picking Lemma). Let og,...,02,¢> 0 be given together with an
integer v = 1. Let X be a set of size m, and let Go, ..., Gy be graphs with vertex set X satisfying
|G| < gam?,...,|Gs| < osm?. Then, for every subset Y < X of size |Y| = cm, there exists
an algorzthm which chooses, in time O(m3), vertices Z = Z, = {z1,...,2:} € Y so that, for all
2<i<s, |GilZ]] < (2(s — Doi/c?)r®

We proceed to define the constants of Theorem 3.16 (which will be presented in a similar way

to how we defined the constants of Theorem 7.2).

8.1. The Constants of Theorem 3.16. Let integer k > 2 be fixed, and let di, dx > 0 be given.
To define the promised constant ¢ > 0, we appeal to Theorem 7.2, which we recall has the
following quantification:

Vdg, Vo, 3¢ @ ...

With dg, 6 > 0 given above, let
§ = Erhmr2(k, di, 0) > 0 (63)

be the constant guaranteed by Theorem 7.2. We define the promised constant ;. by

5, = (f())s (64)

Let di—1 > 0 be given. We formally define the constant 63— > 0 in upcoming (66), but we
first motivate how we choose it. To that end, define auxiliary constants

V2-1 dz&?
— V2T 3 9v2 and Gy = kS
SRV V2 and G 128(k —1)2

Recall from the hypothesis of Theorem 3.16 that we will be working with a (k, k)-complex
H D — (340) f;Ql satisfying that

k(28 -1)

51 (65)
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1) HED = %=1 has DEV/(dj,_1, 1), but where
=1
(2) (H*®) Hk )) does not have DEV (dp, dx),

where d[k] > dj., and where the constants dj_s,...,ds of di_1 and the constants §,_1,..., 02 of
0.1 will be disclosed below. For such a complex ’H(k), we want dp_1 > 0 to be small enough so
that the following conditions are satisfied:

(a) there exists a hypergraph & # Sk < ok — K(”“)(Ul7 ..., Uk) so that, for any anchor A
with A € S®), the statement EXTA(S(k),ﬁ,’H(k)) is false (cf. (63));

(b) we can estimate |KCp(H*~D)| within an error of 1 + y;

(c) all but Ce_1|Kp(HED)]| cliques K € Kp(HFD) satisfy

degr,  (K) = (1+ (1) H 11 d” U nk,
7=2 e[k}
and all but Cx_1|Kx(H*=D)|? pairs of cliques K # K’ € K(H* V) satisfy

degr, (KK) = (1460 ] [] B2
J=2 Ajelk)?

To guarantee that (a), (b), and (c¢) above are satisfied, we need d;_1 > 0 to be small enough to
enable applications of Theorems 7.2, 6.1, and 6.4, respectively. With di, dp > 0 given above, with
¢ >0 from (63), and with dx_; > 0 given above, let

OThm.7.2, k=1 = OThm.7.2, k—1(K, d, O, €, dp—1) > 0

be the constant guaranteed by Theorem 7.2. With p > 0 from (65), and with di_; given above,
let
OThm.6.1, k—1 = OThm.6.1, k—1(£ =k, k — 1, 1, dp—1) > 0

be the constant guaranteed by Theorem 6.1. With (1 > 0 from (65), and with dj_; given
above, let

OThm.6.4, k—1 = OThm.6.4, k—1({ = K,k —1,(x—1,dp—1) > 0

be the constant guaranteed by Theorem 6.4. Now, set

Op—1 = Min {6Thm.7.2, k=1, OThm.6.1, k—1> OThm.6.4, k—1} - (66)

This concludes our definition of the promised constant §;_; > 0.
Inductively, assume dg_1,0%_1,-..,d;,d;,d;—1 > 0 have been disclosed, for a fixed integer 4
satisfying 3 <i < k — 1. Moreover, assume we have defined auxiliary constants (cf. (65)):
) EF-1) (2k1-1)

d12c€2 k(2% —1) di§2 (kfl (1:2)
Ck:—l = mdk_l ) Ck—2 = mdk_l dk_g )

)(@7+i-1)
Gi-1 = 128 1280k —1)2 H . (67)

We define ;1 similarly to how we defined d;_1 (cf. (66)). In particular, we want 6;—1; > 0 to
be small enough so that (a) is satisfied with £ from (63). This task is handled by Theorem 7.2,
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which has the following quantification of constants:
de, Vék,3§ : de_h Hék_l L. .,Vdi_l, 351'—1 L.

With dg,dr > 0 given above, with £ given in (63), and with dg_1,0,_1,...,d;—1 inductively
disclosed above, let

OThm.7.2, i—1 = 0Thm.7.2, i—1 (K, dgs Ok, &, d—1, 01, - ., di—1) > 0

be the constant guaranteed by Theorem 7.2. We also want d;—1 > 0 to be small enough so that (b)
above is satisfied with g > 0 from (65). Moreover, we want §;—1 > 0 to be small enough so that
the following sequence (b') of conditions is satisfied (cf. (65)):

(/) e we can estimate |y (H* V)| within an error of 1 + y;
e we can estimate |y (#(#~2)| within an error of 1 + y;

e we can estimate |Ky(H~1)| within an error of 1 + .

To guarantee that the sequence (b') of conditions above will be satisfied, we fix an integer h
satisfying + — 1 < h < k — 1, and appeal to Theorem 6.1, which has the following quantification
of constants:

VM, th, Eléh . th_l, 36}1_1 .. .Vdifl, 361‘,1 Lo

With > 0 from (65), and with dj, dp, . ..,d;—1 > 0 inductively disclosed above, let

OThm.6.1, i—1,h = 0Thm.6.1, i—1, (£ = Kk, b, pt,dp, Op, ..., di—1) > 0

be the constant guaranteed by Theorem 6.1. Set

OThm.6.1, i—1 = MiN{0Thm.6.1,i—1,h 14 — 1 < h <k —1}.

Finally, we also want §;—1 > 0 to be small enough so that (c) above is satisfied with (1 > 0
from (65). Moreover, we want §;_1 > 0 to be small enough so that the following sequence (¢’) of
conditions is satisfied (cf. (67)):

() e all but G |Ke(HED)| cliques K € Kp(HFD) satisfy

degr, (K) = (1 £ ¢ ]_[ [T &' xn

J=2 Ajelk)

and all but Cx_1|x(H*=D)|? pairs of cliques K # K’ € Kj(H* V) satisfy

degr, (K, K') = (1+ ¢ ]_[ H 3% x
J=2 Ajelk
e all but _o|Kip(H*2)| cliques K € Ky (HF2)) satisfy
2

k

degr, ,(K)=(1£Go) [ [] a3 " xn",
J=2 Ajelk)d
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and all but Cg_o|Krx(H*=2))|? pairs of cliques K # K’ € Kj(H* 2) satisfy

degp, ,(K,K') = (1+ (n ]‘I I]j dy =% x

J=2 Ajelk

e all but §_1|K(HD)| cliques K € Kj,(H~Y) satisfy
degp, (K)=(1+¢ 1 H H al2J !
J=2Ajelk)?
and all but ¢;_1|Kr(HD)|? pairs of cliques K # K’ € Kj(H~1) satisfy
degr, (K,K') = (14 (i1 H H d}’ 23
J=2 Ajelk])

To guarantee that the sequence (¢’) of conditions above will be satisfied, we fix an integer h
satisfying © — 1 < h < k — 1, and appeal to Theorem 6.4, which has the following quantification
of constants:

Y, Ydp, 30, Vdp_1, 301 : ... Vd;i—1, 3d;—1 : ...
With ¢, > 0 from (67), and with dp, 0p, . ..,d;—1 > 0 inductively disclosed above, let
OThm.6.4, i—1,h = OThm.6.4, i—1,h(€ =k, A, Chy dp, Ony - - di1) >0
be the constant guaranteed by Theorem 6.4. Set
OThm.6.4, i—1 = Min {0rhm 64, i—1,n ¢ —1 < h <k —1}.
Now, set

0i—1 = min {0Thm.7.2, i—1, 0Thm.6.1, i—1, OThm.6.4, i—1} - (68)

This concludes our definition of the promised constant d;_1 > 0. We continue this way until
02 > 0 is reached.
It remains to define the integer ry promised by Theorem 3.16. To that end, set

k=1 k\io oj
ro=2] ), (69)

where we omit floors and ceilings for simplicity. Finally, in all that follows, we take the integer
ng to be sufficiently large whenever needed. This concludes our description of the promised

constants.
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8.2. The Algorithm for Theorem 3.16. Set d;_; = (02,...,0,—1), where each 0, 2 < j <
k — 1, was defined in (68). Let H®F) be a (k, k)-complex with density sequence dy, as given in
Setup 3.15, where n > ng. Suppose dj, satisfies that, for each 2 < j <k, dp, = d; forall A; € k)7,
where d; was given above. Suppose HE=D has DEV (dj_1,dj_1), but that (H®*, H*E=1) does
not have DEV (d[, ). Our goal is to construct, in time O(n3k), a collection of subhypergraphs
ngil), e o1 ¢ HE=D | where r < rg (cf. (69)), so that

U k)| > 4
i€[r]

ICk(H(k‘l))’ and ’d(#’mgg’“‘”,...,Qg’f—U)—d[k]]>5,;, (70)

where 0; was defined in (64).
Our algorithm will take place in five steps. Before emerging into techical details, we give an
overview of the algorithm.

e Assumptions (1) and (2) of Theorem 3.16 allow us to apply the Negative-Extension
Lemma to the (k, k)-complex H®*) . In Step 1, we will apply Theorem 7.2 to H® to
conclude that there exists a hypergraph @ # S®) < O%) = K®) (U, ..., U}) so that, for
any anchor A for which A € S®), the statement EXT 4(S*), £, ) is false. In order to find
the hypergraph S®) | we will test, for each @ # S®) < O®) | for each fixed choice of anchor
A with A e S® | and for each k-tuple K € Ky (H(¥~1)), whether or not deng(S(k))(K) is
‘close’ to what is expected. Since EXT 4(S (k),ﬁ , ) is false, our search will find some
@ # 8K < O®) 5o that, for any anchor A with A € S®), ‘many’ K e Kp(H* V) will
have degz | ( S<k>)(K ) being ‘far’ from what is expected. The running time of Step 1 will
be O(n2k).

We will assume, w.l.o.g., that many of the k-tuples K above have deng(S(k))(K) being

‘too large’, and we will denote the set of such K by A](D’;)d I

While Step 1 involved the (k, k)-complex HE) — {(HO) };Ll, Steps 2-4 will consider the underlying
(k, k —1)-complex HF~1) = {H(j)};?;ll.

e Assumption (1) of Theorem 3.16 allows us to apply the Extension Lemma to the (k, k—1)-
complex HED In Step 2, we will apply Theorem 6.4 to H* 1) to conclude that ‘nearly’
all K € Kp(H* V) have degp, ,(K) being ‘close’ to what is expected. We will remove,
one-by-one, all k-tuples K € Ag;)d’ , (see Step 1) for which degp, | (K) is ‘far’ from what
is expected. The application of Theorem 6.4 will guarantee that ‘many’ k-tuples of A](fa)dy n

remain after this removal, and we will denote this remaining set by ,Z]g];)d +- The running
time of Step 2 will be O(n?").

e Assumption (1) of Theorem 3.16 allows us to apply the Extension Lemma to each of
the complexes ?-L(k'_l), ’H(k_2), e HP . In Step 3, we will apply Theorem 6.4 to each
of the complexes H* =1 #* =2 #® to conclude that, for each 2 < i < k — 1,
‘nearly’ all pairs of k-tuples K # K’ e Kj(H®) have degp, (K, K') being ‘close’ to what
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is expected. For each 2 < i < k — 1, we will consider the auxiliary graph G; formed by
the set of pairs K # K’ € K(H®) for which degr, (K, K') is ‘far’ from what is expected.
The application of Theorem 6.4 will then guarantee that the graphs G;, 2 <i <k — 1,
are ‘sparse’. The running time of Step 3 will be O(n3*).

e In Step 4, we will apply the Picking Lemma to the set ¥ = JZ(](D];)(LJF c ICk,l(H(k_l)) =X
(see Step 2) and the graphs G; (see Step 3), 2 < i < k — 1. Lemma 8.1 will choose a
set Z =Z,cY = .Zg;)d of size r < rg (cf. (69)) so that, for each 2 < i < k — 1, the
induced subgraph G;[Z] is still ‘sparse’. In other words, for each 2 < i < k — 1, most pairs
K # K'e G;[Z] will have degp, (K, K') being ‘close’ to what is expected. This property
will be a key detail in Step 5. The running time of Step 4 will be O(n>F).

e In Step 5, we will observe that each K € Z defines a complex Qx = {Q%) f;
a subcomplex of H*~1) = {H(j)}f;gl. We will show that the collection Qy;_l) e Q1)
over all K € Z, is precisely the r-witness we promised in (70). A key ingredient in verifying
that Q%il), over all K € Z, is the promised r-witness will be that each graph G;[Z],

2 <i < k—1,is ‘sparse’. The running time of Step 5 will be O(n*).

21 which is

We now proceed to fill in the details of the outline above, beginning with Step 1.

Step 1: Applying the Negative-Extension Lemma. By Assumptions (1) and (2) of
Theorem 3.16, the (k, k — 1)-complex H ¥~ has DEV (dj_1, 8;_1), but (H*), #* 1) does not
have DEV (dy), o), where dp, = d(H®|HE=1). As such, with ¢ given in (63), Theorem 7.2
guarantees the existence of a subhypergraph @ # S®*) < O®) — K(k)(Ul, ..., Ug) so that, for any
anchor A with A € S()| the statement EXTA(S(k), £, ”H(k)) is false. Now, with a greedy search,
we determine the hypergraph @ # S® < O®) and we find a ‘large’ set of k-tuples K € le(’H(k))
witnessing that the statement EXTA(S(’I“),S7 ’H(k)) is false. Indeed, for each @ # S*) < O®) fix
an arbitrary anchor A for which A € S*). As we did in (26), define

H ) if AeS®),

AR — A (SR 4 ¢ H®)) =
( . ) Krp(HE=D) if A¢ 8K,

Now, for each K € A®),

test if deng(S(k)\{A})(K) > {degp, _, (K). (71)
Since
V(EAS™ N AA}) € V(Tho) = K (D),
where |Kx(H*~1)| = O(n*), the test in (71) can be done in time O(n*). If (71) holds,

The test in (72) can similarly be done in time O(n*). Thus, over all K € A®) the tests of (71)
and (72) can be done in time O(n?).
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Now, set (cf. (27))
Al = AL (SW), A&, 1B {K e AW - degg, 501 (K) > Edegr, , (K)

but  degg g (K) # (1 €)dpy degg, sy (K) |-

which we have identified in time O(n?*). Since the statement EXT 4(S®), £, 1 k)) is false, there
must be some & # S*) < O%) 5o that, for any anchor A with A € S| we have

JAEL | > €| AW = (1B = gdpg | Kp(HED)), (73)

where we used that dp,) = d(H® |HE=1). Moreover, the tests of (71) and (72) will (eventually)
find the hypergraph @ # S®) < O®) and the corresponding set Aé?d, all in time O(n?*). (For
the remainder of this section, we fix an arbitrary anchor A with A € S®)))

We now refine the set Ag;)d, as follows. Denote by A}(;Qi, . the set of k-tuples K € Ag;)d for
which

degg, sy (K) > (1 +&)dp degi , s 1y () (74)

and set .Abad _ Abad Abad - Then, one of Abad L or Abad has size at least %|Ag;)d] In our
proof, it will be symmetric to handle these two cases, so we assume, w.l.o.g., that

) _
"Abad + = "Abad > fd[k]VCk(H(k D). (75)
Clearly, the set A{)];)(L . can be found in time O(n?F), since we will, in fact, identify it as we build

Al()?d. We now proceed to Step 2.

Step 2: Applying the Extension Lemma to HED, We apply Theorem 6.4 to the (k, k—1)-
complex H =1 to further refine the set Al(aka)d, - To that end, by Assumption (1) in the hypothesis
of Theorem 3.16, H*~Y) has DEV(dy_1,d)_1). With (,_1 given in (65), Statement (1) of the
Extension Lemma guarantees that all but ¢,_1|/Cp(H* )| many elements K e Kp(H*D)
satisfy

degp, | (K) = (1 £ (e H I d” L nk. (76)
J=2 Ajelk)

Now, let JAT}(JZ)dHF denote the set of k-tuples K € Abad’+ for which (76) holds. Since (1 < ifdk <
%ﬁd[k] from (65), we infer from (75) that

~ 1 B
(Aot | > 7 Epg (D)), (77)

Moreover, we can identify the set .Z}(J];)d 4, arguing similarly as in Step 1.
For future reference, let us now review that every element K € Ag;)d + has the following

properties (on account of (73), (74), and (76)):

deng(3<k)\{A})(K)>§degrk_1(K), where degpk_l(K)z(liQk i H H d21 L
J=2Ajelk

and deng(3<k))(K) (1+&)dp 1degg (s \{A})( ). (78)
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We now proceed to Step 3.

Step 3: Applying the Extension Lemma to each of H(k_l),...,’H(Q). We now apply
Theorem 6.4 to each of the complexes ’H(k_l), . ,7-L(2). To that end, for each 2 <i <k —1 and
with ¢; given in (67), Statement (2) of the Extension Lemma guarantees that all but ¢;[KCp(H®)|?
many pairs K, K’ € K, (H®) satisfy

degr, (K, K') < (1+¢) ]_[ H d” 3 x P <2H I d” =3 x (79)
J=2Ajelk J=2 Aje[k]

We now record, for each 2 < i < k — 1, the pairs K # K’ € Ky(H®) for which (79) fails. Indeed,
for each 2 < i < k — 1, let G; be the graph with vertex set V(G;) = Kp(H*~) and edge set

Gi={{K K'}e (D) degr (K,K') > 2f[ 1 4% 3 x pk (80)
i = : 5 : degrp, (K, Ay :
J=2 Ajelk]y
Note that the graphs G;, 2 < i < k — 1, may be constructed in time O(n3¥). Indeed, for
each 2 < ¢ < k — 1, the graph G has vertex set Kp(#*#~D) and the graph T'; has vertex set

Kip(H®) 2 le(’H( D), where |K,,(H®)| = O(n¥). As such, we may greedily test the I';-codegree
of pairs of vertices of G; in time O(n?F).

Now, for each 2 < i < k — 1, the application of Theorem 6.4 in (79) gives |G| < G|KCr(H®)|2.
Since

V(Gi) = KeHEY) 2 Ky () < oo K (WD),
GIKRH(HD)? in terms of [KCp(HF~V)|2. For i = k — 1, nothing needs to be

we rewrite |G;| <
done. For 2 < ¢ < k — 2, we employ Theorem 6.1, which says that for each 2 <i < k —1,

KK = (1 + p) H H dp, x n* (81)

J=2Ajelk
where p is given in (65). As such,
e (H D)) < 1+u21—[ [T 4, and  |[Cp(HENP > (1—p 2H [T &, xn*
J=2 Ajelk] J=2 Ajelk)?
in which case

=l G 1+ i (63
it <<y << (i25) 11, 11 &< I 11 &

J=i+1Ajelk J=i+1Ajelk

or equivalently,

|Gil < 2<1H [T daZ > 1K),

j=i+1 A e[k]d
Altogether, we conclude that for each 2 <i <k —1,

Gl < Cr1|Kr(H ’“‘1)|2 ifi=Fk—1,
Z 2<Z1—[] z+1HAe X X [Kp(HED)2 if2<i<k—2.
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We now proceed to Step 4.

Step 4: Applying the Picking Lemma. In the context of the Picking Lemma, set X =
Ko (H* 1), where here we write | X| = m, and let Gy, ..., Gx_; be the graphs constructed in (80)
of Step 2 on the common vertex set X. Set, for each 2 < i <k — 1 and (; given in (67),

' Ckl ifi=4k—1, <3
R A p L | A2 if2<i<k—1 (83)
2 ]z+1 Ajelk Aj == :

Then, (82) gives that, for each 2 <i <k —1, |GZ| < a;m?. Set
1
= 4
1mss (84)
and set Y = fl}(j;)dﬂr (cf. (77) and (78)). Then,

V= A € Ay € Al € AD (1) = X,
and (77) and (84) give |Y| = em. Set

r—z\/iﬂ H 3, (85)

J=2 Ajelk
where we omit floors and ceilings for simplicity. Note that, as defined in (85), we have

k-1

. .
r=2yi ] [[ &< I [] 4" <=1 a) e @, (56)
J=2Ajelk J=2Ajelk Jj=2
where we used that, for each 2 < j <k — 1, we have dy, > d; for all A; € (k).

We apply the (Algorithmic) Picking Lemma (Lemma 8. 1) (With s = k —1) to select, in time
O(m?) = O(n3), vertices Z = Z, = {K1,...,K,} cY = Abad . so that, for each 2 <i <k —1,
|Gi[Z]] < (2(k — 1)a;/c?)r?. The selected vertices Z = {Ki,...,K,} .ZE)]Z)(L+ will play a critical
role in our algorithm. One key use we will later have of Z (in Step 4) is summarized in the

following claim.

Claim 8.2.

Z deng_1<KauKb 27’21_[ H d221 -3

1<a<b<r Jj= 2A €[k

We prefer not to break the flow of the algorithm, and therefore defer this proof until Sec-
tion 8.3. We continue with Step 5 of our algorithm, which will conclude the proof of Theorem 3.16.

Step 5: Constructing the subhypergraphs ng_l), ey Q&k_l). In Steps 1 and 2, we con-
structed, in time O(n?¥) the set “Zg;)d,+ < A® (cf. (77) and (78)). In Step 3, we constructed,
in time O(n3%), the graphs G, 2 < i < k — 1, defined in (80). In Step 4, we used the Picking
Lemma to select, in time O(n3%), a subset Z = {K1,...,K,} ,Z](D];)dﬂr for which Claim 8.2 holds.
The following claim, which is the last subroutine for proving Theorem 3.16, will now allow us to

construct the subhypergraphs Q(k Do Q,Qk*l) < H* =D promised in (70).
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Claim 8.3. Recall the hypergmph S®) determined in Step 1, whose anchor satisfies A € S®).
Then, for each K e AR (cf. (,26)), one may construct, in time O(n*=1), a (k,k — 1)-complex
Q (1] {QK i —1 where Q < HY) for each j € [k — 1], so that

(1) NfA(5<k)\{A})( ) = ’Ck(Q(k 1))

Consequently,

ke
(2) i, sy (B) = H® 0 Ny (50 gy (K) = HO 0 Ki(Qc ).

Remark 8.4. Claim 8.3 holds more generally than we’ve stated above. In particular, Statement (1)
of Claim 8.3 is true for all k-graphs @ < S® < O%) = K®) (U, ... Uy), and for all choices of
anchors A. Statement (2) of Claim 8.3 is a consequence of Statement (1), since

N, sty (K) = H® A Ng A(s®pap K)

is a basic identity of the graphs I'4(S®) and T 4(S®) \ {A}). Thus, Statement (2) of Claim 8.3
is true for all hypergraphs @ # S® < ©%) and for all choices of anchors A for which A € S®*),

The proof of Claim 8.3 is mechanical, but not difficult. We will first show how Claim 8.3 concludes
the proof of Theorem 3.16. We return to the proof of Claim 8.3 in Section 8.4.

To finish the proof of Theorem 3.16, fix K; € Z, and let Q%Y = Q™Y be the (k,k — 1)-
complex constructed in Claim 8.3. For each 1 < i < r, we define ng_l) = Q(kl Ve QZ(»k 1), and so
by Claim 8.3, we have ng_l) < H* =1 We prove the hypergraphs Q(llC 2 e Qﬁk_l) < Hk=1)
satisfy the conclusion of Theorem 3.16. Indeed, we already noted in (86) that r < rg, as
required by Theorem 3.16. As well, it follows from our discussion above that the hypergraphs
ng_l), R Qik_l) < H* =1 were constructed in time O(n%), as required by Theorem 3.16. Tt
remains to verify the conditions in (70), which we separate into the following two parts.

Fact 8.5.
-

ZE’I’

((HED)].

Fact 8.6.
d (H<’“>|Q§’“*”, o Qs,’H)) > iy + O}

We proceed immediately to the proofs of Facts 8.5 and 8.6.

Proof of Fact 8.5. We use Inclusion-Exclusion to conclude

U k@)= 3 k@)= Y k@t ) arkw@ ). 6
i€(r] i€(r]

I<i<jy<r

To bound the sums above, recall from Claim 8.3 that, for each i € [r],

k: 1)
‘Kk ‘_‘ A(8™) \{A})( i)| = degg (S(k>\{A})(Ki)- (88)

Claim 8.3 also gives that, for each 1 < ¢ < j <

Kr(Q¥ ) A ’Ck;(Q - ‘ = ‘ A(S®) \{A})( i) 0 Ng s gay) (K5)| < degr, _, (Ki, Kj), (89)
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where the last inequality holds because I' 4(S® < {A}) < I'y_1, which holds because every labeled
partite-embedding of S®) < {4} in H*) is also a labeled partite-embedding of O*~1 in #*=1,
Applying (88) and (89) to (87) yields

‘U /Ck(ng Y ‘ Z degr , (s gay) (Ki) Z degr, , (Ki, Kj).

i€[r] 1<i<j<r
Claim 8.2 immediately bounds the double summation above:
k—1)
U K@) > 3 dear, sy (K3) — 2 H [T a7~ (90)
i€[r]

i€(r] J=2 Ajelk]d

To bound the sum in (90), we use that for every 1 < i < r, the k-tuple K; € Z Y = ‘Abad n
satisfies the following properties from (78):

(78)
degg, (s ay) (£) > Edegr, , (K)

@ k=1 N
751_[ H 5/ 1/81_[ H d2 1>< (91)

J=2 Ajelk J=2 Ajelk)
Applying (91) to (90) yields
‘U’C kl)‘>5 5’1/8H1_Id2]1xn—2r2nnd22]3
J=2 Ajelk J=2 Ajelk)?

Employing the value r = 24/0}, 1—[5;21 I1 Ajelk)i difj from (85) into the inequality above yields

’UIC k1’>105'5/8HHdA xn—85kHHdA x n¥

J=2 Ajelk J=2 Ajelk

25k1_[ H dp, x n* 6’|IC (HE=D)].

J=2 Ajelk

This proves Fact 8.5. O

Proof of Fact 8.6. By Inclusion-Exclusion, we have

HO 0 U Kn (@)
)Uie[r] ’Ck(ngfl))‘

d (HW;QQ’“‘”, L fo“‘”) _

> Luicly] HE A K9 1))’ ~ Dicicjer [HW 0 Kr(QF V) A ICk(Qg'k_l))’
- k-
2ie[r] ]Ck(Q( 1))’
et [ I )‘ — Dici<j<r k() ICk(Qg'kil))‘

(92)

=

Zie []

k(Qz(k_l))‘
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Recall from Claim 8.3 that for each i € [r], we have

et -

AS(k>\{A})( i) =degﬁ (s(k)\{A})(Ki)

k
and - [H®) 0 K@) = N, iy (K| = de, i (K.

Recall from (89) that, for each 1 < i < j < r, we have that |IC;§(QZ( a )) N Kk (Q(k 1))| <
degp, , (K, Kj). We may therefore update (92) to say

=

(. ) » Dot )~ S s i)
Dielr] 4685 , (s ay) (i)

Claim 8.2 immediately bounds the double summation above:

Dielr) degg, (500 (Ki) — (27“2 ]_[ HA <k d2 2-3 nk)
Zie[r] deng(3<k)\{A})(Kz)

a(m®efY, . o) > . (93)

To bound the sum in the numerator, we use that, for every 1 < ¢ < r, the k-tuple K; e Zc Y =

A}()?(L . satisfies the following property from (78):

(7 )
deng(s(k))(Ki) (1+ 5) degpA( (k)\{A})(K )- (94)

Applying (94) to (93) yields
a(H®1ef Y, .. Q) =

(1+ &) Siepr) degr, sy () — (22 T3 T, ey 32 % % )
Liefr] deg, (st gay) (K0

20 T 1520 Tl jepuy 4322 x
Zie[r] deng($<k)\{A})(Ki)

= (L +&)dy) —

Employing (91) in the denominator, we have

d <7‘l(k)|ng_1)7 . Q£k71)> > (1+ §)dk) — 5/ 1/8 H H

Employing the value r = 24/}, Hf;; I1 Ajelk) d?\__y from (85) into the inequality above yields

4 (HOIQH,. . QDY) = (1 + E)dg — SO0 = dyg + &g — 5 (01",

Now, from the hypothesis of Theorem 3.16, we have d[;) = dj, and it follows from the definition
of £ in (63) that < dy < df). We therefore have

_ _ 4
d(HOIQ Y, Q) = dyyy + € — Z(6)*"
64 4
g + 10000 = 207" = dyg + 99(63)7® > dygg + .

This proves Fact 8.6. (]
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8.3. Proof of Claim 8.2. We shall prove, more generally, that for each 2 <7 <k —1,

2H H d22J 3 (95)

Z degF (Kava

{Ka,Kp}eGi[Z] J=2 Ajelk)d
We first show that (95) implies Claim 8.2. Indeed, observe that
Z degrk,1 (KCH Kb) = 2 degl—‘k,1 (KCH Kb) + 2 degrk,1 (K(l7 Kb)
1<a<b<r {Ka,Kb}G(Z)\Gk,1 {Ka,Kp}eGr—1
e d3’ 23 d K, K,
]_[ 1_[ Y, degr, (K K).
J=2 A E {KaaKb}EGk:—l

Employing (95) with i = k — 1, we have

1
fa0}e()

||:]\

22] 3
H a3 7
Ajelk

as desired.

To prove (95), we use induction on 2 < i < k — 1. Since the base case i = 2 will be implicit in
the inductive step, we give its discussion in context (see (96) and (97) below). For 3 <i <k —1,
we have the recurrence

(24)

> degr. (Kq, Kp) < > degr, | (Ko, Kp)
{Ka,Kp}eGi[Z] {Ka,Kp}eGi[Z]
= > degr, , (Ka, K) + > degr, | (Ka, Kp)
{Ka,Kb}e( 'L'\Gi 1)[2] {K(L,Kb}E(GiﬁGi_l)[Z]
(80)
< 2|Gi[Z |]‘[ 1‘[ dw 3 % > degp,  (Ka, K3). (96)
Jj= 2A€ {Ka,Kb}EGifl[Z]

Note that the last inequality of (96) also holds for ¢ = 2. Indeed, when i = 2, the summation
in (96) is zero, and the first term is 2|G2[Z]|n*. However, when i = 2, the following stronger
inequality holds:
> degr, (Kq, Kp) < |G2[Z]] x nF. (97)
{Ka,Kp}eG2|Z]
Now, for 2 < i < k — 1, we claim that

Q‘G ‘H H d22j 3< 2H H d22J 3

J=2Ajelk J=2 Ajelk]d
or equivalently,
Gil2]] < ( H H iy, (98)
] i Ajelk
which, if true, completes our induction step.
To see (98), recall that the Picking Lemma ensures that |G;[Z]| < 2(k — 1)(0;/c?)r?, where

Cr—1 ifi=4k—1,
2G T i [ ey 40 if2<i<k—2,

(83)
o; =
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and ¢ = %d[k]ﬁ was given in (84). To bound oj_1 = (;_1, we have

o7)  dpg? B(2241-1) d%kﬁz 1—[ 22

Ok—1 k-1 = - =
128(k —1)2 F-1 128(k:—1)2Ak71€[k]k Ak

@2, -
- [ @2 s
x — p) A 5
8k -1, L e
where we used, for j € {k — 1,k}, dy, > d; for all A; € [k)/. Thus, with |G}_1[Z]| < 2(k —
1)(ok_1/c*)r? and ¢ = %d[k]f, we have

2 2
Ok_1 T ok—1_ T k—1
GralZll <2k -D)=5F=r* < o |1 & P egp Il AT
Ag_1€[k]F—1 Ap—ye[k]*1

which is (98) in the case i = k — 1.
For 2 < i < k — 2, we have from (83) that o; = 2¢; H] it HA <[k . To bound ¢; in this
expression, observe that

(67) dzéﬂ 2:27-1) 2.29 1
Q_128 2Hd <128 —12HHd

J=t Ajelk
- d%k]ﬁg 1_[ HA e[k d2 v < d%k]ﬁ H HA €Lk a o
80k = 12 12 Tl d— 128(k — 1)? Hfziil Ayelkp de ’

where we used that, for each 2 < j <k, dy; > d; for all Aj € [k])7. As such, we may bound o; by

2
7 g ] H 21_[ H diy

J=i+1 A elk J=t Ajelk

Thus, with |G;[Z]| < 2(k — 1)(0;/c?)r? and ¢ = %d[k]ﬁ, we have

a; "2 < 2 227
GilZ]] < 2(k = 1) 57* < 5T 1_[ H 3>,

J=t Ajelk

which is (98). This proves Claim 8.2.

8.4. Proof of Claim 8.3. In this section, we construct the promised (k, k—1)-complex Q%fl) =

{Q % } . In what follows, we use the following standard notation: for a k-uniform hypergraph
g, and for aset L < V(G), let

Ng(L)={JcV(G):LuJeGgG},

denote the G-neighborhood of L, which is a (k — |L|)-uniform hypergraph. Now, to construct
the promised (k, k — 1)-complex Q(k 2 {Q%) }?;11 is not difficult, but it requires some work
to state. We begin with a discussion of the following example, where k¥ = 4 and S =
oW = KW(U,, Uy, Us, Uy), that is, S is the complete 4-partite 4-uniform hypergraph with
|Ur| = |Us| = |Us| = |Us| = 2.
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8.4.1. Ezample: constructing Q) when S® = 0¥ = K®(Uy, Uy, Us, Uy). Since SW = 0¥,
we have that the anchor A satisfies A € S, and therefore, A® = H® (cf. (26)). Now, fix
Ke AW = HW and let K = {v1,v9,v3,v4}, where v; € Vj for all 1 < i < 4.

We construct the promised (4, 3)-complex Qg?) = Qgi)w%%m} = {Q%)}?:l recursively. To

begin, set

QW = Nyw ({v1, v2,v3}) U Nygeay ({v1,v2, v4}) U Nygey ({01, 03, v4}) O Ny ({v2, 03, v4}),

which is a (4, 1)-cylinder since it is just a partition of vertices into four sets. Next, set

QP =( J Nuwlvnu}) nKa(QR).

1<i<j<4
Then, Qg) = Qg)l Vo031 } consists of six bipartite graphs Q{U v} 1 <7< j <4, where for
sV2,U3, J
example,
2
QP = Ny ({1, v2}) [Ny ({or, v2,v3}), Nygeoy ({ur, 02, v4})]

is the subgraph of Ny ({v1,v2}) induced on Ny ({v1,v2,v3}) U Ny ({v1, v2, va}). Finally, set

Qg?) = (N’H(4) (’Ul) U NH(4)(U2) U NH(4) (1)3) U NH(4) (1)4)) M ]Cg(Qg))

Then, Q ) consists of four 3-partite 3-graphs Qv1 , 1(}?2’), 1(}3;), S;), where for example,

Qg)l) = NH(4) (Ul) N ’C‘?’ (Q( Q{v1 Ug} ng))l ’U4})

{v1,02}
is the subhypergraph of Ny, ) (v1) induced on the triangles of Q{v)1 va) Q{v1 s} Y Q{vl v4} This

defines the (4, 3)-complex Q(3) {Q
be constructed in time O(n/).

J 1, where it is clear that for each 1 < j < 3, Q ¢ may

8.4.2. Defining Q%fl) for general S®). To define the (k, k — 1)-complex Qy{c = {QK }k L for
a general S®) < Ok) = K®)(Uy,...,Uy), we proceed similarly to the example above. However,

now we must define each of the (k, j)-cylinders Qg), 1 < j <k -1, inductively. Moreover, we
must be mindful of the fact that not all edges of O®*) = K(k)(Ul7 ..., Uk) may be present in Sk,
(In particular, we are only guaranteed that AeS® by hypothesis.)

We begin by making a few initial preparations. We write the anchor A as A = {a1,...,a}.
We then write A = {by,..., b}, which by hypothesis is an element of S®). Then, U; = {a;, b;}
for all i € [k]. Now, fix K € A®) where we recall from (26) that A®) = H® if A e S®) and
AF) = I (HED) if A ¢ S®). We write K = {v1, ..., v}, where v; € V; for all i € [k]. We will

construct the promised complex Q%fl) = {Q%) kfll recursively.

To construct the promised (k, 1)-cylinder Qg), we consider the family (kfl) of all (k—1)-tuples
from the anchor A. To begin, for A" = {ap,,...,an,_,} < A, write AN A" = {ap, } and write

K = {vp,,...,vp,_, }. Define

Q(I/) _ Ny (Kar) if {ahl, cey Opy bhk} IS S(k)7 (99)
! Nic, -0y (Kar) i {any, - an_,, bp, ) ¢ SW.

Define
1 1
Q(K) = l I Q(4 /) 5

ae(y)
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and note that Q%) is a (k,1)-cylinder. Trivially, Qg) = {Q%)} is a (k,1)-complex whose sole
component Q%) satisfies Q%) cViu---ulg = HD), Moreover, Q%) may be constructed in
time O(n).

For 2 <1 < k 1, assume we have constructed, in time O(n'~!), a (k,i — 1)-complex
Q 1 {Q s 1, where Q]) < HY) holds for all j € [i — 1]. We construct, in time O(n?),

a (k,i)-cylinder QK < HO A Ky, (QK ) by considering the family (, Z) of all (k — i)-tuples
from A = {ay,...,ax}. For A" = {ap,,...,an, ,} < A, write AN A" = {ap,_, ,,...,a5,} and
Ky = {vp,,...,vn,_,}. Define

QE;) _ NH(k) (KA/) N ]C (Q(Z 1 ) lf {ahl, ey ahkﬂ., bhk—i+1’ e ,bhk} (S S(k), (100)
N’Ck(H(k_l))(KA/) N ICZ(QK )) if {ahU sy Qg bhkﬂ'ﬂ’ s ’bhk} ¢ S(k)
Define
A
ae(,2;)
and note that Qg? cH (Q i 1)) is a (k z) cylinder As such, together with our induction

hypothesis, we may conclude that ol K {Q _; is a (k,i)-complex where Q(j < HY) holds
for each j € [i]. Moreover, o) K may be constructed in time O(n?). Inductively, this defines the
promised (k,k — 1)-complex QK = {QK } - 1).

We claim that, by construction, the (k, k — 1)-complex Q (b=1) _ {Q % } ) has the properties
promised by Claim 8.3. For that, it suffices to prove Q%fl) satisfies Statement (1) of Claim 8.3
(see Remark 8.4). Indeed, fix K’ € le(H(k_l)) Then, K’ € NfA(S(k>\{A})(K) if, and only if, there
exists a labeled partite-embedding 1 of S*) < {A} in H*) satisfying 1)(A) = K and (A) = K.
In other words, K u K’ induces a copy of S®*) ~ {A} in H®) and K U K’ induces a copy of
OF=1 in H*=D However, our construction in (100) equivalently places K’ € ICk_l(Qg’;*l)), and

vice-versa.

§9. APPENDIX

9.1. Proof of Lemma 8.1. The proof of Lemma 8.1 (which is reduced to Claim 9.1 below)
will make a standard appeal to the Method of Conditional Expectations (cf. [18,24]), which is
based on an original idea of Erdés and Selfridge [5]. Before we emerge into these details, we
note that it suffices to prove Lemma 8.1 when ¢ = 1 (and consequently, Y = X). In particular,
let 0s,...,09 > 0 be given, together with an integer » > 1. Let X be a set of size m, and let
G, ...,Gs be graphs with vertex set X satisfying |Ga| < gom?, ..., |Gs| <

Suppose there exists an algorithm which chooses, in time O(|X[>) = O(m?),
vertices Z = Zyp = {z1,...,2,} €Y = X so that, for all 2 <i < s,
|Gi[Z]| < 2(s — 1)oyr?. (101)
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Now, let Y < X of size |Y| > ¢|X| be given, where ¢ > 0 is a constant. Note that the induced
subgraphs G;[Y], 2 < i < s, satisfy

2 |Gi[Y]] m? _ o Ti 3712

G| < [Gil < oum dl<otn<h — GII<GIE
We apply the algorithm in (101) to the induced subgraphs G;[Y], 2 < i < s. This algorithm
chooses, in time O(|Y|?) = O(m?), vertices Z = Z, = {21,...,2.} € Y so that, for all 2 <i < s,

Gi[Z]] = [(Gi[YD[Z]| < 2(s — 1)657“2

as desired.
We now prove (101), i.e., Lemma 8.1 when ¢ = 1 and Y = X. To that end, let us assume,
w.l.o.g., that

|Go| = o9m?, ..., |Gs| = osm?, where o, = max{os,...,0}. (102)
Now, for each 2 < i < s, define the constant weight function w; : G; — {os/0;}, i.e., for each pair
{z,2'} € G;, define
wi({x,2'}) = 0s/0;. (103)
Note that G; has total weight

(102
w(@)= Y wllea)) =216 " o
{z,2'}eG;
Define G = Gy u - -+ U G,. Then, G is a simple weighted graph on vertex set X whose weight
function w : G — R is given by, for each {z,2'} € G,

wfz,2'}) = >, wil{z,a). (104)

Gix{x,z’}
Note that G has total weight

w(G) = Z w({x,2'}) = Zwl D) = (s —1Dosm?.

{z,2'}eG

We make the following claim.

Claim 9.1. There exists an algorithm which chooses, in time O(m?), vertices Z = Z, =
{z1,..., 2} © X s0 that w(G[Z]) < 2(s — 1)ogr?.

We defer the proof of Claim 9.1 for a moment in favor of showing how it implies Lemma 8.1.
Let Z = Z, = {z1,...,2-} be the set chosen by Claim 9.1. Fix 2 <i < s. Then,

wi(Gi[Z]) < w(G[Z]) < 2(s — 1)osr. (105)
On the other hand, by (103), we have that
wi(Gil2)) = 771Gl 2] (106)
Comparing (105) and (106), we see
Z2|Gi12]] = wi(Gi[2)) < w(G[Z]) < 2(s = Dour?,
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from which |G;[Z]] < 2(s—1)o7? follows. Thus, to finish the proof of Lemma 8.1, it only remains
to prove Claim 9.1.

9.1.1. Proof of Claim 9.1. To select the promised vertices Z = Z, = {z1,...,2,} € X, we use
the following iterative procedure. For an integer 0 < p < r, suppose we have selected vertices
Zy=A{z1,...,2p} € X (if p =0, then Z, = @) satisfying the following property:

Let A,—, € X \ Z, of size |A,_p| = r — p be selected uniformly at random.
Then, we have E[w(G[Z, U Ar—,])] < 2(s — 1)osr®. (107)

Observe that (107) is true when p = 0. Indeed, in this case, Zy = &, and A, < X is an r-element
set selected uniformly at random. Thus, using linearity of expectation, we see that

Elw(G[A D] "2 Y Elw(Gi[A])] (123)2 EllGIa ] = ) 2 |G|()

2 P o (3)
(14 0o(1) (s = Dorr? < 205 = Dorr?.

Thus, (107) is true when p = 0. It remains to prove that we may select, in time O(m?), a vertex
v e X \ Z, so that the set Z,;1 = Z, U {2} still satisfies the property in (107). Thus, we stop
when p = r. Indeed, the set Z, is the desired set, since then A,_, = &, and so we will have, for
all 2 <i < s, Elw(G[Z,])] = w(G[Z,]).

To prove the inductive step for (107), we make the following considerations. With the set
Zy ={z1,..., 2} fixed above, define

9(Zp) = g(z1,...,2p) =E X7 [w(G[Zp v Arp])],

where the expectation above is taken uniformly over all sets A,_, € X \ Z, of size |A,_p| = r—p.
Thus, g(Zp) is the expected w-weight of an induced subgraph G[Z, u A,_,| whose vertices
contain Z,, where A,_, runs uniformly over all (r — p)-element sets of X \ Z,. By our Induction
Assumption in (107), we have

9(Zy) = g(z1,- -, %) < 2(s — D)ogr?. (108)
Fix an arbitrary vertex 2z € X \ Z,, and write Z7, | = Z, U {z}. Define

f(z) = g( ;+1) =g(21,...,2,2) =E X\Z7, )[W(G[Z;-s-l U Arp1])]s (109)
r—p— 1

A'r—p 1€ (
where the expectation above is taken uniformly over all sets A,—,—1 S X\ Z7 | of size |Ar—p_1| =
r—p— 1. Thus, f(z) is the average w-weight of an induced subgraph G[Z;,, U A;—;—1] whose
Vertlces contain Z7, |, where A,_, 1 runs uniformly over all (r —p—1)-element subsets of X \ 77,
As such, the quantity
Y fle)= >, fz

X~ 2] Z l X2y m—p X2,
is the average w-weight of an induced subgraph G[Z, u A,_,] whose vertices contain Z,, where
A,_p runs uniformly over all (r — p)-element subsets of X \ Z,. Therefore,

(108)
Z flz Zy)) =g(z1,...,2) < 2(s—1)ogr?

zeX\Zp
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Thus, to complete the inductive step for (107), we prove that we may select, in time O(m?), a
vertex zgp € X \ Z, so that

f(Zo

>, f (110)

zeX ~Zp
We now proceed to prove (110).

To prove (110), we shall compute, for a fixed vertex z € X \ Z,, the value of f(z) (which is
defined in (109)). This computation will take place in (119) below, but to get there, we will need
several considerations. To begin, for z € X \ Z, fixed, we continue to write Z;,, = Z, u {z}. For
a vertex ¥ € X \ Zj 4, let

w(G{z}, Z514])
denote the total w-weight of all edges of the form {z,y} € G, where y € Z7, ;. (Note that

G[{z}, Z;,1] is a star centered at z, with pendent vertices consisting of Ng(x ) N Z;.1.) Now,

define the following equivalence relation ~ on X \ Z7, by setting, for each z, e X\ VAT

pad = w(Gl{a) Z5a)) = w(@l'), Z3). (111)
Then, we may construct, in time O(m), the partition
XNZja=X{fu-uXy (112)
induced by ~. For future reference, let us write, for each 1 < j < ¢,

a; CH{w(Gl{a), Z2,1]) - we XE}. (113)
With the vertex z € X \ Z, fixed, observe that the partition in (112) satisfies t = t(z) <
(p+2)5~! = O(1). Indeed, for a fixed z € X \ ZZ,, each of the (s —1) many graphs Gy, 2 <i < s,
satisfies |Ng, () n Z7 1| € {0,1,...,p + 1}, i.e., [Ng,(z) n Z5 4| has (p + 2) many possible sizes.
By (103),
wi(Gil{z}, Z,14]) = j\NGi () n Z5l,

and so
S S

w(@lie). Z5n) ) Y w(Gille). Z5,]) = Y, NG (x) 0 Z

i=2 i=2
may assume at most (p + 2)*~! possible values, as claimed.
With the vertex z € X \ Z, still fixed, and with the partition X \ Z7., = X{ v - v X7
from (112), we may now compute f(z) (which is defined in (109)). To that end, fix

an integer sum a3 + - +a; =r—p—1, where 0 < a; < [Xj[, 1 <j <t (114)

For each 1 < j < ¢,

Xz ¢
let A% € ( ]> be an arbitrary a;-subset, and let A* = A*(a1,...,a;) = U A7 (115)
7 i
7=1
Define
fzran,... a) = E( Az AR T ( j)[ (G[Zp v AT v AF])]
@5

—E [W(G[ZZ,, U A*(ay,...,a)])]. (116)

P

(A, )EH ( )
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where the expectation above is taken uniformly over all sequences (A7, ..., A7) € H§:1 (ZJZ ), ie.,
the expectation above is taken uniformly over all subsets A* = A*(a1,...,a:) € X \ Z5, of the

form in (115). Then, f(z) (which is defined in (109)) is given by

NG
-y b

n—p—r f(z;ala"'vat)> (117)
ait+--tar=r—p—1 (T—p—l)

where the sum extends over all indices of the form in (114).

We now expand the expression for f(z) given in (117) by computing each term f(z;aq,...,at)
(cf. (116)), where ay + --- + a; = r —p — 1 is of the form in (114). Indeed, by linearity of
expectation, we claim that

f(za aty ..., a‘t) = W(G[Zg—i-l

(aj) a.a

2 z z 7%k

— + w(GIX:, Xi) 2. (118)
GRS

D)+ Z Qja;
j=1
+ > w(G[X3])
j=1

Indeed, the first term in (118) is w(G[Z;1]), which is the total w-weight of the edges of G[Z}].
The first sum in (118) is the expected w-weight of G[A] U --- U Af, Z7 1] (cf. (113)). The second
sum in (118) is the expected w-weight of U§:1 G[AZ]. Finally, the third sum in (118) is the
expected w-weight of U1<j<k:<t G[A3, A7]. Thus, applying (118) to (117), we have that

t’—1 |§j| t
W <W(G[ pr1]) + Z v
a;ag

(3) + > w(G[X;,X,j])>, (119)

LA XX

f(z) = >

ai+--+ar=r—p—1

s}

+ Z w(G[X7])

where the (main) sum extends over all indices of the form in (114).

To prove (110), it remains to choose, in time O(m?), a vertex 29 € X \ Z, so that f(z) <
ﬁzzex\zp f(2). For that, we use the expression in (118) for f(z). Note that, for each
z € X \ Zy, the expression for f(z) in (119) depends only on z. Moreover, since all sums above
consist of O(1) many terms, we may compute, in time O(m?), the value of f(z) for a fixed
z€ X \ Z,. Now, in time O(m?), we compute all values of f(z) over all z € X \ Z,, and select
20 € X \ Z, so that

J(z0) = 2pin, ()
Then, by our choice of zy, we have f(zp) < ﬁ ZZeX\Zp f(2), which proves (110). This proves
Claim 9.1, and hence, concludes the proof of Lemma 8.1.

9.2. Proof of Fact 3.10. The equivalence COUNT,.,,, < COUNT),q is trivial to prove.
Indeed, let H) and #U~Y be given as in Definition 3.9, where d = d(HY)|H#~D) > 0, and fix
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§ > 0. Note that, for each & = SU) < OU) = K(j)(Ul, ..., Uj), we have

EMB(SY, (1O M) = Y [EMBua(FO, (MO, HO-D))],  and
SUcFU) o)
[EMBya(S9), (D) 16-D))| = Z (_1)\f(j)|*|3(j>|‘EMB(}‘(J)7 (HD, 1G-D)y)].
SHSFHOW)

With these identities, we may apply Definition 3.9 (and the Binomial Theorem) to conclude that
(HW, 1D has COUNT g (d, 6) if, and only if, (KD, HG=D) has COUNTmq(d, 8).

Now, suppose (H),H=1) has COUNT 1, (d, 6) and that, for each i € [], we have |V;| =
O(n), and that [EMB(OU-D, #G-1)| = Q(n?). Then,

o X TT{et T K9 (ool fog0d) |

v1,0 €V} vj,U;.er

=0m¥ 1)+ Z (1— d)"s(m(—d)zj*'s(j)"EMBind(S(j), (H(j),’H(j*l)))’.
oS co)

Since (H(j),’;'-[(jfl)) has COUNT,,(d, 9), it also has COUNT,q4(d, d), and so we conclude

Z Z H{W(J):JEK(j)({v1,vi}a---v{vj7v§'})}

v1,01EV] vj,U;.EVj
< 0?1 + [EMB(OU~D #U-D)|¢¥ (1 — @)¥ x §2%
<Oom?¥ N + 52—2j|EMB(O(j—1)7H(j—1))| < 5|EMB(O(j_1),H(j_1))],

where we used d(1 — d) < 1/4.
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