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Abstract. Let F0 and H be a pair of k-graphs. An F0-packing of H is a family F of pairwise edge-
disjoint copies of F0 in H. Let νF0

(H) denote the maximum size |F | of an F0-packing of H. Already

in the case of graphs, computing νF0
(H) is NP-hard whenever F0 has a component with three or more

edges [5]. Rödl et al. [17] (cf. [11, 10]) proved that, for any fixed k-graph F0, one can approximate
νF0

(H) within an error of o(|V (H)|k) in time polynomial in |V (H)|. For k = 3, we establish an

algorithm which, for all ζ > 0 and 3-graphs F0 and H, constructs in time polynomial in |V (H)| an

F0-packing F of H of size |F | ≥ νF0 (H)− ζ|V (H)|3.
Our result is in the same vein as two earlier works of its type. Such an algorithm was originated

for graphs by Haxell and Rödl [11], and was recently extended to linear k-graphs F0 by Dizona and

Nagle [4]. Our result follows the original approach of Haxell and Rödl, and uses hypergraph regularity
tools of Haxell, Rödl and the author [8, 9], together with some details proven here.

1. Introduction

Let F0 and H be k-uniform hypergraphs (k-graphs for short, written F0 and H when k = 2). An
F0-packing of H is a family F of pairwise edge-disjoint copies of F0 in H. Let νF0(H) denote the
maximum size |F | of an F0-packing in H. Already in the case of graphs, computing νF0

(H) is NP-hard
for any graph F0 having a component with 3 or more edges (Dor and Tarsi [5]).

Rödl et al. [17, 11, 10] (see Theorem 1.4 below) proved that, for a fixed k-graph F0, one can approx-
imate νF0

(H) within an error of o(nk) in time polynomial in n = |V (H)|. For graphs (k = 2), more is
known, where Haxell and Rödl [11] proved the following constructive counterpart.

Theorem 1.1 (Haxell and Rödl [11]). For every graph F0, and for all ζ > 0, there exists n0 = n0(F0, ζ)
so that, for a given graph H on n > n0 vertices, an F0-packing of size at least νF0

(H) − ζn2 can be
constructed in time polynomial in n.

(Theorem 1.1 also holds for n ≤ n0 by exhaustive search.)
Recently, Theorem 1.1 was extended to linear k-graphs F0, where a k-graph F0 is linear if every pair

of its edges overlap in at most one vertex (which is always true of simple graphs F0).

Theorem 1.2 (Dizona and Nagle [4]). For every k ≥ 2, for every linear k-graph F0, and for all ζ > 0,
there exists n0 = n0(k,F0, ζ) so that, for a given k-graph H on n > n0 vertices, an F0-packing of size
at least νF0

(H)− ζnk can be constructed in time polynomial in n.

We shall prove an analogue of Theorems 1.1 and 1.2 for k = 3 and arbitrary 3-graphs F0.

Theorem 1.3 (Main result). For every 3-graph F0, and for all ζ > 0, there exists n0 = n0(F0, ζ) so
that, for a given 3-graph H on n > n0 vertices, an F0-packing of size νF0

(H) − ζn3 can be constructed
in time polynomial in n.

Theorem 1.3 was thought to be possible by Haxell, Rödl and the author in [9], in light of the tools
proven there, at least if one followed the approach of Haxell and Rödl for Theorem 1.1. (We outline this
approach momentarily.) This paper is the corresponding realization (see the Acknowledgment at the
end of this Introduction). It was also anticipated in [9] that further details would need to be developed
(see Remark 1.6 below), which this paper considers. We believe some of the auxiliary tools proven here
could be of use in other contexts, and may be of some independent interest.
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The proofs of Theorems 1.1–1.4 all rely on two main ingredients: fractional packings and regularity
methods. (In particular, Theorems 1.1–1.3 can be proven because graphs, linear hypergraphs, and 3-
graphs, resp., are precisely where regularity methods have known algorithms.) We next define fractional
packings and present Theorem 1.4 (which is in terms of fractional packings). Afterward, we outline some
regularity tools employed in the proof of Theorem 1.1 (to motivate upcoming parallels in this paper).

1.1. Fractional packings. For k-graphs F0 and H, let
(H
F0

)
denote the family of all copies of F0 in

H. For an edge e ∈ H, let
(H
F0

)
e

denote the family of copies F ∈
(H
F0

)
containing the edge e. In this

notation, an F0-packing of H is a family F ⊆
(H
F0

)
satisfying that, for each fixed e ∈ H,∣∣∣∣F ∩ (HF0

)
e

∣∣∣∣ ≤ 1. (1)

Fractional F0-packings generalize F0-packings, and can be defined when H has edge-weights. For a set
V and function ω :

(
V
k

)
→ [0, 1], write H = ω−1(0, 1] and Hω = {(e, ω(e)) : e ∈ H}. (In the unweighted

case when ω :
(
V
k

)
→ {0, 1}, we identify H = Hω.) A function ψ :

(H
F0

)
→ [0, 1] is a fractional F0-packing

of Hω if, for each edge e ∈ H, ∑{
ψ(F) : F ∈

(
H
F0

)
e

}
≤ ω(e). (2)

Define |ψ| =
∑{

ψ(F) : F ∈
(H
F0

)}
as the size of ψ. Denote by ν∗F0

(Hω) the maximum size |ψ| of a

fractional F0-packing of Hω.
To motivate Theorem 1.4 below, we relate the parameters νF0

(H) and ν∗F0
(H) (for a fixed F0 and an

unweighted H = Hω), in terms of relative size and relative complexity. First, consider an F0-packing F
of H. Then the characteristic function χF :

(H
F0

)
→ {0, 1} of F is a fractional F0-packing of H (cf. (1)

and (2)), and so νF0(H) ≤ ν∗F0
(H). Second, while computing νF0(H) is known to be a difficult problem,

building a fractional F0-packing ψ of H with optimal size |ψ| = ν∗F0
(H) is a linear programming problem,

and is constructable in time polynomial in n = |V (H)|. The following result is therefore significant.

Theorem 1.4 (Rödl, Schacht, Siggers, Tokushige [17]). For every k ≥ 2, for every k-graph F0, and for
all ζ > 0, there exists n0 = n0(k,F0, ζ) so that, for every k-graph H on n > n0 vertices,

ν∗F0
(H) ≤ νF0

(H) + ζnk.

Thus, νF0
(H) can be approximated within an error of ζnk in time polynomial in n.

Various cases of Theorem 1.4 had been earlier considered. Haxell and Rödl initiated Theorem 1.4
when, for graphs (k = 2), they proved Theorem 1.4 in the stronger form of Theorem 1.1. Yuster [21]
gave an alternative proof of Theorem 1.4 for graphs (k = 2) which allowed F0 to be replaced by a fixed
family of graphs. For k = 3, Theorem 1.4 was proven by Haxell, Nagle and Rödl [9].

1.2. Regularity and the proof of Theorem 1.1. We outline the regularity tools in the proof of
Theorem 1.1, and outline the proof of Theorem 1.1 in the case that F0 = K3 is the triangle.

The main tool from [11] is the Szemerédi Regularity Lemma. Let G be a bipartite graph with vertex
bipartition V (G) = X ∪ Y . For non-empty X ′ ⊆ X and Y ′ ⊆ Y , the density of G w.r.t. X ′ and Y ′

is dG(X ′, Y ′) = |G[X ′, Y ′]|/(|X ′||Y ′|), where G[X ′, Y ′] is the subgraph of G induced on X ′ ∪ Y ′. For
d ≥ 0 and ε > 0, we say that G is (d, ε)-regular if, for every X ′ ⊆ X, where |X ′| > ε|X|, and for every
Y ′ ⊆ Y , where |Y ′| > ε|Y |, we have |dG(X ′, Y ′) − d| < ε. For ε > 0, we say that G is ε-regular if it is
(d, ε)-regular for some d ≥ 0.

Theorem 1.5 (Szemerédi’s Regularity Lemma [18, 19]). For all ε > 0, and for every integer t0 ≥ 1,
there exist integers T0 = T0(ε, t0) and N0 = N0(ε, t0) so that every graph H on n > N0 vertices admits a
vertex partition Π : V (H) = V0 ∪ V1 ∪ · · · ∪ Vt, for some t0 ≤ t ≤ T0, satisfying the following conditions:

(1) Π is t-equitable, meaning |V1| = · · · = |Vt|
def
= m ≥ bn/tc;

(2) Π is ε-regular, meaning for all but ε
(
t
2

)
pairs Vi, Vj, 1 ≤ i < j ≤ t, H[Vi, Vj ] is ε-regular.
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In the proof of Theorem 1.1, one needs a constructive version of Szemerédi’s Regularity Lemma, which
was established by Alon, Duke, Lefmann, Rödl and Yuster [1]. Their result guarantees that the partition
Π in Theorem 1.5 can be constructed in time O(M(n)), where M(n) = O(n2.3727) (cf. [20]) is the time
required to multiply two n × n binary matrices over the integers. Kohayakawa, Rödl and Thoma [13]
later improved the constructive Regularity Lemma to run in time O(n2). (Either constructive version
of the Regularity Lemma serves our purposes here.)

Proof-sketch of Theorem 1.1 for triangles. Fix k = 2 and F0 = K3.

Input. Let ζ > 0 be given. It is possible to fix ζ ′, β, ζ ′′, ε′, ε > 0 and t0, T0, n ∈ N satisfying

ζ > ζ ′ =
ζ

4
� β � ζ ′′ � ε′ � ε =

1

t0
� 1

T0
≫

1

n
, (3)

in such a way as to support all details in the sketch below. (In particular, the notation x � y, z, . . .
appearing in (3) means that x > 0 can be chosen as a sufficiently small function of y, z, . . . > 0 to
satisfy an upcoming list of computations involving x, y, z, . . . . The notation 1/n ≪ . . . appearing
in (3) means the integer n will be chosen sufficiently large with respect to all constants in (3).) Let
H be a graph on n vertices. We build, in time polynomial in n, a triangle packing T of H of size
|T | ≥ ν∗K3

(H)− ζn2 ≥ νK3(H)− ζn2.

Step 1: Applying the Regularity Lemma. With ε = 1/t0 from (3), use the algorithm of Kohayakawa
et al. [13] (cf. [1]) to construct, in time O(n2), an ε-regular, t-equitable partition Π : V (H) = V0 ∪ V1 ∪
· · · ∪ Vt, where t0 ≤ t ≤ T0 = O(1). (Record also, in time O(n2), the densities d(Vi, Vj), 1 ≤ i < j ≤ t,
and the pairs (Vi, Vj), 1 ≤ i < j ≤ t, which are1 ε-regular.) Construct, in time O(t2) = O(1), the

corresponding (weighted) cluster graph Hω
0 , as follows. For {h, i} ∈

(
[t]
2

)
, define ω({h, i}) = dH(Vh, Vi)

if H[Vh, Vi] is ε-regular, and ω({h, i}) = 0 otherwise. Set H0 = ω−1(0, 1] and Hω
0 = {(e, ω(e)) : e ∈ H0}.

A standard argument shows that

ν∗K3
(Hω

0 ) ≥
ν∗K3

(H)

m2
− ζ ′t2, (4)

where m = |V1| = · · · = |Vt|. We now pause to reveal a few points of strategy.

Pause (strategy). A main tool for building T is the following so-called Packing Lemma (see Lemma 5
in [11]). Suppose that for some 1 ≤ h < i < j ≤ t, each of H[Vh, Vi], H[Vi, Vj ], H[Vh, Vj ] is (d, ε)-regular
with d ≥ β (cf. (3)). In time polynomial in m, the Packing Lemma constructs a triangle packing T hij

of H[Vh, Vi, Vj ] covering all but ζ ′′m2 edges of H[Vh, Vi, Vj ] (cf. (3)), in which case∣∣T hij
∣∣ ≥ (d− ε− ζ ′′)m2 ≥ (d− 2ζ ′′)m2

(3)

≥
(

1−
√
ζ ′′
)
dm2 (recall d ≥ β). (5)

Unfortunately, it is unlikely that we find H[Vh, Vi], H[Vi, Vj ], H[Vh, Vj ] which are all (d, ε)-regular with
the same d. The so-called Slicing Lemma (see Lemma 6 in [11]) allows us to overcome this problem.

Suppose H[Vh, Vi], H[Vi, Vj ], H[Vh, Vj ] are, resp., (dhi, ε), (dij , ε), (dhj , ε)-regular. Write Ghi =
H[Vh, Vi], and suppose we choose (in a careful way (see Step 2 momentarily)) numbers σhi1 , . . . , σ

hi
shi
≥ β

(cf. (3)) where
∑shi

a=1 σ
hi
a ≤ dhi. The Slicing Lemma constructs, in time O(m2), a partition Ghi =

Ghi0 ∪Ghi1 ∪ · · · ∪Ghishi
, where each Ghia , 1 ≤ a ≤ shi, is (σhia , ε

′)-regular (cf. (3)). Now, if there are slices

Ghia ∪G
ij
b ∪Ghjc with

σhia = σijb = σhjc
def
= σhijabc, (6)

1Recognizing when H[Vi, Vj ], 1 ≤ i < j ≤ t, is ε-regular is co-NP-complete (see Theorem 2.1 in [1]). However, the
algorithms of Alon et al. [1] and Kohayakawa et al. [13] will have already recognized ‘most’ of the H[Vi, Vj ] which are
ε-regular (see [1, 13] or Section 1.1 of [9] for details). For the concept of hypergraph regularity that we use in this paper,
we will always be able to recognize all ‘regular parts’.
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then the Packing Lemma builds a triangle packing T hij
abc of Ghia ∪G

ij
b ∪Ghjc of size∣∣∣T hij

abc

∣∣∣ (5)

≥
(

1−
√
ζ ′′
)
σhijabcm

2. (7)

Now, to choose the numbers σhi1 , . . . , σ
hi
shi
≥ β above, we appeal to a so-called Bounding Lemma (see

Lemma 7 in [11]), which returns us to Step 2 of the algorithm.

Step 2: Applying the Bounding Lemma. The Bounding Lemma is a tool which constructs, in
time depending on t ≤ T0 = O(1), a fractional K3-packing ψ0 of Hω

0 (recall Hω
0 and H0 from Step 1)

satisfying (cf. (3))

|ψ0| ≥ ν∗K3
(Hω

0 )− ζ ′t2, and which is β-bounded, meaning that for each {h, i, j} ∈
(
H0

K3

)
,

ψ0({h, i, j}) ≥ β, or else, ψ0({h, i, j}) = 0. (8)

Set (
H0

K3

)+

=

{
{h, i, j} ∈

(
H0

K3

)
: ψ0({h, i, j}) ≥ β

}
. (9)

The function ψ0 defines the numbers σhij ≥ β, as follows. For {h, i} ∈ H0 and {h, i, j} ∈
(
H0

K3

)+
, set

σhij = ψ0({h, i, j})
(9)

≥ β. (10)

We now apply the Slicing Lemma.

Step 3: Applying the Slicing Lemma. Fix {h, i} ∈ H0. With
{
σhij : {h, i, j} ∈

(
H0

K3

)+}
from Step 2,

apply the Slicing Lemma to Ghi = H[Vh, Vi] to construct, in time O(n2), a partition H[Vh, Vi] = Ghi =

Ghi0 ∪
⋃{

Ghij : {h, i, j} ∈
(
H0

K3

)+}
satisfying that, for each {h, i, j} ∈

(
H0

K3

)+
, Ghij is

(
σhij , ε

′)-regular. Re-

peat over all at most
(
t
2

)
≤ T 2

0 = O(1) many {h, i} ∈ H0 so that Step 3 runs in time O(n2).

Step 4: Applying the Packing Lemma. Fix {h, i, j} ∈
(
H0

K3

)+
. Apply the Packing Lemma to the

slices Ghij ∪G
ij
h ∪G

hj
i , noting that σhij = σijh = σhji = ψ0({h, i, j}) ≥ β (cf. (10)). The Packing Lemma

constructs, in time polynomial in m, a triangle-packing T hij = T hij
jhi of Ghij ∪G

ij
h ∪G

hj
i of size∣∣T hij

∣∣ (7)

≥
(

1−
√
ζ ′′
)
ψ0({h, i, j})m2. (11)

Repeat over all at most
(
t
3

)
≤ T 3

0 = O(1) many {h, i, j} ∈
(
H0

K3

)+
in time polynomial in n.

Output. Construct the family T =
⋃{

T hij : {h, i, j} ∈
(
H0

K3

)+}
in time O(n2). (That is, collect

O(m2) triangles over at most
(
t
3

)
≤ T 3

0 = O(1) indices.)

Clearly the algorithm above runs in time polynomial in n. To see that T is a triangle-packing of H,
let {x, y, z}, {x, y, z′} ∈ T . Then there exist, w.l.o.g., 1 ≤ h < i < j, j′ ≤ t so that {x, y, z} ∈ T hij

and {x, y, z′} ∈ T hij′ . Then {x, y} ∈ Ghij ∩ Ghij′ , which implies j = j′ since Ghij and Ghij′ are classes of

a partition. Then {x, y, z}, {x, y, z′} ∈ T hij , which implies z = z′ since T hij is a family of pairwise
edge-disjoint triangles. Finally,

|T | =
∑{∣∣T hij

∣∣ : {h, i, j} ∈
(
H0

K3

)+
}

(11)

≥
(

1−
√
ζ ′′
)
m2
∑{

ψ0({h, i, j}) : {h, i, j} ∈
(
H0

K3

)+
}

=
(

1−
√
ζ ′′
)
m2 |ψ0|

(8)

≥
(

1−
√
ζ ′′
)
m2
(
ν∗K3

(Hω
0 )− ζ ′t2

) (4)

≥
(

1−
√
ζ ′′
) (
ν∗K3

(H)− 2ζ ′t2m2
)
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which by (3) is at least ν∗K3
(H)− 4ζ ′n2 = ν∗K3

(H)− ζn2. 2

1.3. Itinerary of paper. To prove Theorem 1.3, we shall follow the same approach outlined above
for the graph case. As such, we need 3-uniform hypergraph analogues of each of the tools sketched in
the previous section. We proceed along the following itinerary. In Section 2, we present algorithmic
(3-uniform) tools of the following forms:

• a Regularity Lemma (upcoming Theorem 2.12) due to Haxell, Nagle and Rödl [9].
• a Packing Lemma (upcoming Lemma 2.7), which we prove in Sections 4–6;
• a Slicing Lemma (upcoming Lemma 2.4), which we prove in Section 7;
• a Bounding Lemma (upcoming Lemma 2.18), taken from [11, 10].

In Section 3, we use these tools to prove our main result, Theorem 1.3.

Remark 1.6. The most important tools in this paper are the Regularity Lemma and the Packing
Lemma. In essence, the Packing Lemma is a consequence of a so-called Counting Lemma from [9] (see
Theorem 6.2 in this paper). Since the Regularity Lemma and the Counting Lemma were developed
in [9], Theorem 1.3 seemed possible if one followed the approach of Haxell and Rödl [11] outlined above.

In the hypergraph setting, deriving the Packing Lemma from the Counting Lemma is somewhat
technical, despite following standard lines. We derive the Packing Lemma from a so-called Extension
Lemma (see Lemma 4.2 in this paper), which we in turn derive from the Counting Lemma. These tools
could be of potential use in other settings.

The algorithmic aspects of the Slicing Lemma are of a less standard nature. The Slicing Lemma could
be of use in other contexts, and it may be of independent interest. 2

1.4. A minor technicality. In our outline, we took F0 = K3 to be the triangle, which illustrates all
but one detail in the work of Haxell and Rödl [11]. In particular, whenever F0 is not complete, one also
needs a so-called Crossing Lemma from [11] (see Lemma 4 there), which we now state for 3-graphs. For

3-graphs F0 and H, and for a partition Π0 : V (H) = U1 ∪ · · · ∪ Uk, we say that F ∈
(H
F0

)
crosses Π0 if

|V (F) ∩ Ui| ≤ 1 for all 1 ≤ i ≤ k. We write
(H
F0

)
Π0

for the family of all crossing copies of F in H.

Lemma 1.7 (Crossing Lemma [11]). For every 3-graph F0 on f vertices, and for all ξ > 0, there exists
K0 = K0(ξ,F0) so that the following holds.

Let H be a 3-graph on n vertices, and let ψ be a fractional F0-packing of H. There exists an algorithm
which constructs, in time O(nf ), a vertex partition Π0 : V (H) = U1 ∪ · · · ∪ Uk, for some k ≤ K0, where

|U1| ≤ · · · ≤ |Uk| ≤ |U1|+ 1, satisfying that |ψΠ0 |
def
=
∑{

ψ(F) : F ∈
(H
F0

)
Π0

}
≥ (1− ξ)|ψ|.

Haxell and Rödl [11] proved Lemma 1.7 (see Lemma 11 there) in a setting more general than that of
(k-uniform) hypergraphs and fractional packings. (See Remark 2.10 in [4] for some related comments.)

In our previous outline, if F0 were not complete, the Crossing Lemma would appear as Step 0. We
would construct a fractional F0-packing ψ of H of size |ψ| = ν∗F0

(H) (via linear programming, running
in time polynomial in n). We would then apply the Crossing Lemma to H and ψ to construct Π0 in
time O(nf ). In Step 1, we would require Π to refine Π0 in the usual way (which is always possible with
a regularity lemma). All remaining details would proceed as we described.

Acknowledgment 1. The author would like to thank the referees for their extremely careful reading, and
for their very thoughtful suggestions which led to an improved presentation of this paper.

Acknowledgment 2. The author would like to thank P. Haxell and V. Rödl for their support of this
project.

2. Algorithmic 3-graph Regularity Tools

In this section, we present (1) the Slicing Lemma (Lemma 2.4), (2) the Packing Lemma (Lemma 2.7),
(3) the Regularity Lemma (Theorem 2.12), and (4) the Bounding Lemma (Lemma 2.18), where this
order is determined by inclusion of the concepts needed to present each statement.
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2.1. (α, δ)-minimality. For graphs, ε-regularity may be viewed as the central concept of the Intro-
duction. For 3-graphs, we shall consider the corresponding concept of (α, δ)-minimality (see upcoming
Definition 2.3). For that concept, triples of a 3-graph G will be defined on pairs from an underlying graph
P . To make this precise, for a graph P , write K3(P ) = {{v1, v2, v3} : {vi, vj} ∈ P for all 1 ≤ i < j ≤ 3}
for the family of all triangles K3 of P . We then say P underlies G if G ⊆ K3(P ). Whenever P ′ ⊆ P
satisfies K3(P ′) 6= ∅, we define the density dG(P ′) of G w.r.t. P ′ by dG(P ′) = |G ∩ K3(P ′)|/|K3(P ′)|.
Unless otherwise indicated, we reserve the symbol α for α = dG(P ) = |G|/|K3(P )|.

In the context above, the underlying graphs P will be 3-partite, balanced, and well-behaved. We call
the following environment a triad.

Definition 2.1 (triad). Let d ≥ 0, ε > 0, and m ∈ N be given. We call a graph P a triad if P =
P 12 ∪ P 23 ∪ P 13 is 3-partite with vertex partition V (P ) = V1 ∪ V2 ∪ V3, where |V1| = |V2| = |V3| = m,
and where each P ij = P [Vi, Vj ] is (d, ε)-regular, 1 ≤ i < j ≤ 3.

Throughout this paper, we use the following well-known fact (cf. upcoming Lemma 8.2).

Fact 2.2 (triangle counting lemma). For all d, τ > 0, there exists ε = εFact 2.2(d, τ) > 0 so that whenever
P is a triad with the parameters d, ε > 0 and m sufficiently large, then |K3(P )| = (1± τ)d3m3.

Now, let P be a triad and let G ⊆ K3(P ) be given with α = dG(P ). As usual, let K
(3)
2,2,2 denote the

complete 3-partite 3-graph with 2 vertices in each vertex class. We then define the family K2,2,2(G) ={
J ∈

(
V (G)

6

)
: J induces a copy of K

(3)
2,2,2 in G

}
. In the context of Definition 2.1, if ε = ε(α, d) > 0 is

sufficiently small and m = m(α, d, ε) is sufficiently large, it is not difficult to prove (see [9] for a proof)

that |K2,2,2(G)| ≥ α8d12
(
m
2

)3 (
1− ε1/10

)
. The following concept is therefore motivated.

Definition 2.3 ((α, δ)-minimality). Let P and G ⊆ K3(P ) be given as in Definition 2.1 with α = dG(P ).

For δ > 0, we say G is (α, δ)-minimal w.r.t. P if |K2,2,2(G)| ≤ α8d12
(
m
2

)3
(1 + δ).

2.2. The Slicing Lemma. With the definitions above, we can already present the Slicing Lemma. (In
what follows, x = y ± z denotes y − z ≤ x ≤ y + z.)

Lemma 2.4 (Slicing Lemma). For all α0, δ
′ > 0, there exists δ = δLem.2.4(α0, δ

′) > 0 so that, for all
d > 0, there exists ε = εLem.2.4(α0, δ

′, δ, d) > 0 so that the following statement holds.
Let P be a triad with parameters d, ε and a sufficiently large integer m. Let G ⊆ K3(P ) be (α, δ)-

minimal w.r.t. P , for some α ≥ α0. Suppose σ1, . . . , σs ≥ α0 are given with
∑s
i=1 σi ≤ α. Then, in

time O(m3), one can construct a partition G = G0 ∪ G1 ∪ · · · ∪ Gs so that, for each 1 ≤ i ≤ s, Gi is
(αi, δ

′)-minimal w.r.t. P , where αi = dGi(P ) = σi ± δ′.

We prove Lemma 2.4 in Section 7.

2.3. The Packing Lemma. To present the Packing Lemma (Lemma 2.7), we require some additional
considerations. We summarize these conditions in the following environment and subsequent definition.

Setup 2.5 (Packing Setup). Suppose α, δ, d, ε > 0 and f,m ∈ N are given together with a fixed 3-graph
F0 on the vertex set [f ] = {1, . . . , f}. (This will be the same F0 appearing in Theorem 1.3.) Suppose

(1) P =
⋃
{P ij : 1 ≤ i < j ≤ f} is an f -partite graph with vertex partition V1 ∪ · · · ∪ Vf , where

|V1| = · · · = |Vf | = m, and where each P ij = P [Vi, Vj ] is (d, ε)-regular, 1 ≤ i < j ≤ f ;
(2) G =

⋃
{Ghij : 1 ≤ h < i < j ≤ f} ⊆ K3(P ) is a 3-graph satisfying that, for each 1 ≤ h < i <

j ≤ f , Ghij = G[Vh, Vi, Vj ] is (αhij , δ)-minimal w.r.t. Phi ∪ P ij ∪ Phj , where αhij = α ± δ if
{h, i, j} ∈ F0, and αhij = 0 otherwise (i.e., Ghij = ∅ otherwise).

Definition 2.6 (partite-isomorphic). Let F0, P and G be given as in Setup 2.5. Let F ⊂ G be a
subhypergraph of G on vertices v1, . . . , vf , where v1 ∈ V1, . . . , vf ∈ Vf . We say that F is a partite-
isomorphic copy of F0 if for every 1 ≤ i < j ≤ f , {vi, vj} ∈ P ij , and if vi 7→ i defines an isomorphism
from F to F0.
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Lemma 2.7 (Packing Lemma). Let F0 be a fixed 3-graph with V (F0) = [f ]. For all α0, ρ > 0, there
exists δ = δLem.2.7(F0, α0, ρ) > 0 so that, for all d−1 ∈ N, there exists ε = εLem.2.7(F0, α0, ρ, δ, d) > 0 so
that the following holds.

Let P and G satisfy the hypothesis of Setup 2.5 with F0 and some α ≥ α0, with δ, d, ε > 0 above, and
with a sufficiently large integer m. Then, one may construct, in time polynomial in m, an F0-packing
FG of G covering all but ρ|G| edges of G, where FG consists entirely of partite-isomorphic copies of F0

in G. One has, in particular, |FG | ≥ (1− 2ρ)αd3m3.

We prove Lemma 2.7 in Section 4.

Remark 2.8. Lemma 2.7 holds whether d > 0 satisfies d−1 ∈ N or not. We make the assumption here
because results we use from [9] to prove Lemma 2.7 made the same assumption. (Moreover, it suffices
to take d−1 ∈ N because the Regularity Lemma always provides this condition.) 2

Remark 2.9. The last assertion of Lemma 2.7 is an easy consequence of its predecessor. To see this,
we may assume, w.l.o.g., that 2δ ≤ ρ × α2

0 and that, with τ = δ, we have ε ≤ εFact 2.2(d, τ). Now, let
G′ ⊆ G denote the set of edges covered by FG . Then every element F ∈ FG covers precisely |F0| edges
of G′, and every edge of G′ is covered by precisely one element F ∈ FG . Thus,

|FG | × |F0| = |G′| ≥ (1− ρ)|G| = (1− ρ)
∑{

|Ghij | : {h, i, k} ∈ F0

}
= (1− ρ)

∑{
αhij |K3(Phi ∪ P ij ∪ Phj)| : {h, i, j} ∈ F0

}
≥ (1− ρ)(α− δ)

∑{
|K3(Phi ∪ P ij ∪ Phj)| : {h, i, j} ∈ F0

}
Fact 2.2
≥ |F0| × (1− ρ)(α− δ)(1− δ)d3m3 ≥ |F0| × (1− ρ)

(
1− δ

α0

)
(1− δ)αd3m3,

and so now the result follows by a few routine calculations. 2

2.4. The Regularity Lemma. We now present the Regularity Lemma from [9] (see Theorem 2.5
there). For a 3-graph H, the Regularity Lemma from [9] will partition the vertices V = V (H) and

partition the pairs
(
V
2

)
, in such a way that the following holds.

Definition 2.10 ((`, t, ε)-partition). Let `, t ∈ N and ε > 0 be given, and suppose V is a set with size
|V | = n. An (equitable) (`, t, ε)-partition of V is a pair (Π,P) of partitions of the following form:

(1) Π : V = V0 ∪ V1 ∪ · · · ∪ Vt is a t-equitable partition of V , i.e, |V1| = · · · = |Vt|
def
= m ≥ bn/tc;

(2) P is a partition of K[V1, . . . , Vt] with classes, for each 1 ≤ i < j ≤ t, K[Vi, Vj ] = P ij1 ∪ · · · ∪P
ij
` ,

where every P ija ∈P is (`−1, ε)-regular.

For a 3-graph H, the Regularity Lemma from [9] will construct an (`, t, ε)-partition of V (H) and a
‘large’ subhypergraph H′ ⊆ H with the following property.

Definition 2.11 ((α0, δ)-minimal partition). Let `, t ∈ N and α0, δ, ε > 0 be given, and suppose H is
a 3-graph and (Π,P) is an (`, t, ε)-partition of V (H). For a subhypergraph H′ ⊆ H, we say (Π,P) is
(α0, δ)-minimal w.r.t. H′ if for every {x, y, z} ∈ H′, there exist 1 ≤ h < i < j ≤ t and 1 ≤ a, b, c ≤ ` so

that {x, y, z} ∈ K3(Phia ∪P
ij
b ∪Phjc ), whereH∩K3(Phia ∪P

ij
b ∪Phjc ) is (αhijabc, δ)-minimal w.r.t. Phia ∪P

ij
b ∪Phjc

for some αhijabc ≥ α0.

We now give the regularity lemma from [9] (see Theorem 2.5 there).

Theorem 2.12 (Regularity Lemma [9]). For all α0, δ > 0, and for all functions ε : N → (0, 1), there
exist positive integers T0 = T0(α0, δ, ε), L0 = L0(α0, δ, ε), and N0 = N0(α0, δ, ε) so that the following
holds.

Let H be a 3-graph with vertex set V = V (H), where |V | = n > N0. Then, in time O(n6), one can
construct an (`, t, ε(`))-partition (Π,P) of V , for some ` ≤ L0 and some t ≤ T0, and a subhypergraph
H′ ⊆ H, where |H′| > |H| − (α0 + δ)n3 − tn2, and with respect to which (Π,P) is (α0, δ)-minimal.
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We make the following Remark for future reference.

Remark 2.13. In Theorem 2.12, suppose a fixed integer k ≥ 1 is given with α0, δ, and ε : N→ (0, 1).
(The constants T0, L0 and N0 will now depend also on k.) Suppose H is given with a pre-partition
Π0 : V = U1 ∪ · · · ∪ Uk, where |U1| ≤ · · · ≤ |Uk| ≤ |U1|+ 1. If we allow |V0| to be as large as t+ k, i.e.,

|H′| > |H| − (α0 + δ)n3 − (t+ k)n2, (12)

then the proof of Theorem 2.12 allows that Π can be taken to refine Π0, in the sense that for each
1 ≤ i ≤ t, there exists 1 ≤ i′ ≤ k so that Vi ⊆ Ui′ . In this context, we shall call a triple 1 ≤ h < i < j ≤ t
transversal if Vh ⊆ Uh′ , Vi ⊆ Ui′ , and Vj ⊆ Uj′ , where h′, i′, j′ are distinct. Since the integers t ≤ T0 and
k ≤ K0 (where K0 will be given by Lemma 1.7) will always be constants in this paper, while n → ∞
whenever needed, we abbreviate (12) to say

|H′| > |H| − (α0 + δ)n3 −O(n2). (13)

2

2.5. The Bounding Lemma. We now present the Bounding Lemma from [10], which appeared as
Lemma 3.6 there. The Bounding Lemma concerns fractional packings in weighted multi-hypergraphs
related to (`, t, ε)-partitions (cf. Definition 2.10). To make this precise, we require several definitions,
taken mostly from [10].

Definition 2.14 ((`, t)-augmented (weighted) 3-graph). On vertex set [t] = {1, 2, . . . , t}, let M =
M (2)(`, t) =

{
pija : 1 ≤ i < j ≤ t, 1 ≤ a ≤ `

}
be the complete multigraph with edge-multiplicity `, where

the set of multiedges connecting 1 ≤ i < j ≤ t is {pij1 , . . . , p
ij
` }. We call M the complete (`, t)-multigraph.

Define M = M(3)(`, t) =
{{

phia , p
ij
b , p

hi
c

}
: 1 ≤ h < i < j ≤ t, 1 ≤ a, b, c ≤ `

}
to be the complete (`, t)-

augmented 3-graph. Any subsetA ⊆M is called an (`, t)-augmented 3-graph. If ω :M→ [0, 1] is a weight
function, then A = ω−1(0, 1] is an (`, t)-augmented 3-graph, and we define Aω = {(A,ω(A)) : A ∈ A}
to be the (`, t)-augmented ω-weighted 3-graph.

Clearly, (`, t)-augmented and ω-weighted 3-graphs Aω provide the ‘cluster objects’ of the Regularity
Lemma (Theorem 2.12). We make this precise in the following remark.

Remark 2.15. For a set V , an (`, t, ε)-partition (Π,P) of V corresponds to the complete (`, t)-
multigraph M defined above, where Phia ∈ P corresponds to phia ∈ M . The family of all triads of
(Π,P) corresponds to the complete (`, t)-augmented 3-graph M defined above, where

A =
{
phia , p

ij
b , p

hi
c

}
∈M corresponds to the triad PA

def
= Phia ∪ P

ij
b ∪ P

hj
c ⊂P. (14)

If V = V (H) and (Π,P) is (α0, δ)-minimal w.r.t. H′ ⊆ H, then H′ and (Π,P) will correspond to an
(`, t)-augmented 3-graph A. Indeed, for A ∈M, write

HA def
= H ∩K3

(
PA
)

and αA
def
= dH

(
PA
)
, (15)

and so one would take

A ∈ A ⇐⇒ HA is (αA, δ)-minimal w.r.t. PA for some αA ≥ α0. (16)

More generally, we can define weight function ω :M→ [0, 1] by

ω(A) =

{
αA if αA ≥ α0 and HA is (αA, δ)-minimal w.r.t. PA,
0 otherwise.

(17)

Then A = ω−1(0, 1] is the (`, t)-augmented 3-graph defined in (16), and Aω = {(A,ω(A)) : A ∈ A} is
an (`, t)-augmented ω-weighted 3-graph. When Π has refined a pre-partition Π0 of V (cf. Remark 2.13),
we alter (17) to say

ω(A) =

{
αA if A is transversal, αA ≥ α0, and HA is (αA, δ)-minimal w.r.t. PA,
0 otherwise,

(18)

and define A and Aω identically to before. 2
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For an (`, t)-augmented 3-graph A, we next define copies F ⊂ A of a fixed 3-graph F0 in A, and
copies containing a fixed edge A ∈ A.

Definition 2.16 (copy, edge containment). Let F0 be a 3-graph and let A be an (`, t)-augmented 3-
graph. A copy F of F0 in A is a pair (φ1, φ2) of functions, where the first function φ1 : V (F0)→ [t] is an

injection and where we write Φ1
def
= φ1(V (F0)), and where the second function φ2 :

(
Φ1

2

)
→ [`] satisfies

{u, v, w} ∈ F0 =⇒
{
phia , p

ij
b , p

hj
c

}
∈ A where

{h, i, j} = φ1({u, v, w}) and (a, b, c) = (φ2({h, i}), φ2({i, j}), φ2({h, j})).

In reverse, suppose A = {phia , p
ij
b , p

hj
c } ∈ A and F = (φ1, φ2) is a copy of F0 in A. We say F contains

A, and write A ∈ F , if φ−1
1 ({h, i, j}) ∈ F0 and if (a, b, c) = (φ2({h, i}), φ2({i, j}), φ2({h, j}). Finally, we

write
(A
F0

)
to denote the family of all copies of F0 in A, and

(A
F0

)
A

=
{
F ∈

(A
F0

)
: A ∈ F

}
.

In what follows, we define a fractional F0-packing of an (`, t)-augmented weighted 3-graph Aω (the
definition is identical to (2)), and we also define a concept of boundedness.

Definition 2.17 ((β-bounded) fractional F0-packing of Aω). Let Aω be an (`, t)-augmented ω-weighted

3-graph. A fractional F0-packing of Aω is a function ψ :
(A
F0

)
→ [0, 1] satisfying that, for each

A ∈ A,
∑{

ψ(F) : F ∈
(A
F0

)
A

}
≤ ω(A). For a fractional F0-packing ψ of Aω, we write |ψ| =∑{

ψ(F) : F ∈
(A
F0

)}
for the size of ψ, and we write ν∗F0

(A) for the maximum size of a fractional

F0-packing of A. For β > 0, we say that ψ is β-bounded if for every F ∈
(A
F0

)
, ψ(F) ≥ β, or else,

ψ(F) = 0.

We may finally state the Bounding Lemma from [10] (see Lemma 3.6 there).

Lemma 2.18 (Bounding Lemma). For every 3-graph F0 and for all positive η, there exists β =
βLem.2.18(F0, η) > 0 so that, for every (`, t)-augmented ω-weighted 3-graph Aω, there exists a β-bounded
fractional F0-packing ψ of Aω so that |ψ| ≥ ν∗F0

(Aω)− η`3t3. Moreover, ψ may be constructed in time
depending on ` and t.

Remark 2.19. Lemma 2.18 was proven in [10], but without regard to the constructive assertion. How-
ever, this assertion follows easily from the proof in [10], which consists of an application of a statement
of Haxell and Rödl appearing as Theorem 18 in [11]. Theorem 18, in turn, is proven by a standard
probabilistic argument on a family of sets on `3t3 = O(1) vertices, which one exhaustively derandomizes.
Algorithmic aspects are briefly discussed by Haxell and Rödl in [11] (see Section 3). 2

3. Proof of Main Result

In this section, we prove Theorem 1.3 in Steps 0–4. In particular, Step 0 will apply the Crossing
Lemma (Lemma 1.7), and Steps 1–4 will align with those in the Introduction. We begin by discussing
our input, and by defining some auxiliary constants and parameters. The Reader not interested in these
details may refer to the hierarchies provided below in (22), (26) and (28).

Input and auxiliary constants. Let F0 be a fixed 3-graph on f vertices, and let ζ > 0 be given. Set

ξ = ρ = η = τ =
ζ

8
. (19)

We now define some constants related to the Crossing and Bounding Lemmas. With ξ given above,
let

K0 = K0(ξ,F0) (20)

be the constant guaranteed by the Crossing Lemma (Lemma 1.7). With η > 0 given above, let

β = βLem.2.18(F0, η) > 0 (21)
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be the constant guaranteed by the Bounding Lemma (Lemma 2.18). We have the first hierarchy

ζ > ξ = ρ = η = τ � 1

K0
, β. (22)

We next define some constants related to the Packing and Slicing Lemmas. With β given above, set

α0 = β. (23)

With ρ in (19) and α0 above, let δLem.2.7 = δLem.2.7(F0, α0, ρ) > 0 be the constant guaranteed by the
Packing Lemma (Lemma 2.7). With α0 in (23) and δ′ = δLem.2.7, let δLem.2.4 = δLem.2.4(α0, δLem.2.7) > 0
be the constant guaranteed by the Slicing Lemma (Lemma 2.4). It is the case that δLem.2.4 < δLem.2.7

(as will be seen in the proof of Lemma 2.4), and so we set

δ = δLem.2.4. (24)

Continuing, let ` ∈ N be an integer variable. With ρ in (19), α0 in (23), δLem.2.7 above and d = 1/`, let
εLem.2.7(`) = εLem.2.7(F0, α0, ρ, δLem.2.7, 1/`) > 0 be the function (of integer variable `) guaranteed by the
Packing Lemma (Lemma 2.7). With α0 in (23), δ′ = δLem.2.7 above, δ = δLem.2.4 in (24) and d = 1/`,
let εLem.2.4(`) = εLem.2.4(α0, δLem.2.7, δ, 1/`) > 0 be the function guaranteed by the Slicing Lemma
(Lemma 2.4). Finally, with τ > 0 given in (19) and d = 1/`, let εFact 2.2(`) = εFact 2.2(1/`, τ) > 0 be the
function guaranteed by the Triangle Counting Lemma (Fact 2.2). Set

ε(`) = min {εLem.2.7(`), εLem.2.4(`), εFact2.2(`)} . (25)

With integer variable `, we have the second hierarchy (cf. (22))

β � δLem.2.7 � δLem.2.4 = δ ≥ min

{
1

`
, δ

}
� εLem.2.7, εLem.2.4, εFact 2.2(`) ≥ ε(`). (26)

Finally, we define some constants related to the Regularity Lemma. Let k be an integer variable.
With constants α0 in (23) and δ in (24), and with function ε in (25), let T 0(k) = T 0(k, α0, δ, ε),
L0(k) = L0(k, α0, δ, ε), and N0(k) = N0(k, α0, δ, ε) be the functions (of integer variable k) guaranteed
by Theorem 2.12 (cf. Remark 2.13). (These are not functions of `.) With K0 from (20), let

T0 = max
1≤k≤K0

T 0(k), L0 = max
1≤k≤K0

L0(k), N0 = max
1≤k≤K0

N0(k). (27)

We take integer n0 so that, in the final hierarchy (cf. (22), (26))

min
1≤`≤L0

ε(`)� 1

T0
,

1

L0
,

1

N0
≫

1

n0
. (28)

Now, let H be a given 3-graph on n ≥ n0 vertices. We construct, in time polynomial in n, an
F0-packing FH of H of size

|FH| ≥ ν∗F0
(H)− ζn3. (29)

Since ν∗F0
(H) ≥ νF0(H), this will prove Theorem 1.3. We proceed to the first step of the algorithm.

Step 0: Applying the Crossing Lemma. Our first step is to apply the Crossing Lemma to H.
(We do so in order to prove (32) below.) For that purpose, construct a maximum fractional F0-packing

ψ :
(H
F0

)
→ [0, 1], i.e., one for which |ψ| = ν∗F0

(H) (which is a linear programming problem running

in time polynomial in n). With ξ > 0 in (19), we apply the Crossing Lemma (Lemma 1.7) to H and
ψ to construct, in time O(nf ), a partition Π0 : V (H) = U1 ∪ · · · ∪ Uk, where k ≤ K0 (see (20)) and
|U1| ≤ · · · ≤ |Uk| ≤ |U1|+ 1, and where

|ψΠ0
| =

∑{
ψ(F ) : F ∈

(
H
F0

)
Π0

}
≥ (1− ξ)|ψ| = (1− ξ)ν∗F0

(H). (30)

(recall the notation
(H
F0

)
Π0

from Lemma 1.7).
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Step 1: Applying the Regularity Lemma. Our next step is to apply the Regularity Lemma
(Theorem 2.12) to H and its vertex partition V (H) = U1 ∪ · · · ∪Uk from Step 1. To that end, recall the
constants α0 in (23) and δ in (24), the integer k above (where k ≤ K0 (cf. (20))), and the function ε
in (25). With these parameters, Theorem 2.12 constructs, in time O(n6), an (`, t, ε(`))-partition (Π,P)
of V (H), for some ` ≤ L0 and some t ≤ T0 (cf. (27)), which refines Π0 (cf. Remark 2.13), and constructs
a subhypergraph H′ ⊆ H, where |H′| > |H| − (α0 + δ)n3 − O(n2), and with respect to which (Π,P)
is (α0, δ)-minimal. To simplify notation slightly, now that Theorem 2.12 has been applied, the integers
` ≤ L0 and t ≤ T0 are fixed (they are no longer variables), and so we shall write (cf. (25))

ε = ε(`), εLem.2.7 = εLem.2.7(`), εLem.2.4 = εLem.2.4(`), εFact 2.2 = εFact 2.2(`). (31)

We construct the corresponding (`, t)-augmented (ω-weighted) 3-graph A (Aω) for H′ and (Π,P)
above using (16) ((18)) from Remark 2.15. Clearly, A and Aω are constructed in time O(n6). Indeed,
for fixed A ∈ M (of which there are |M| = t3`3 ≤ T 3

0L
3
0 = O(1) many), testing αA ≥ α0 takes time

O(n3), and verifying Definition 2.3 (by greedy count) takes time O(n6). In Section 3.1, we shall prove
that (cf. (4))

m3

`3
ν∗F0

(Aω) ≥ |ψΠ0 | − (α0 + δ + τ + o(1))n3
(30)

≥ (1− ξ)ν∗F0
(H)− (α0 + δ + τ + o(1))n3, (32)

where o(1)→ 0 as n→∞.

Step 2: Applying the Bounding Lemma. We now apply the Bounding Lemma (Lemma 2.18) to
Aω. To that end, with η > 0 in (19) and β > 0 in (21), we apply Lemma 2.18 to Aω to construct a
β-bounded (cf. Definition 2.17) fractional F0-packing ψ0 of Aω satisfying

|ψ0| ≥ ν∗F0
(Aω)− η`3t3. (33)

Recall from Lemma 2.18 that ψ0 is constructed in time depending on ` ≤ L0 = O(1) and t ≤ T0 = O(1).
Let us also define (construct) a few related objects. To begin, for A ∈ A (recall Definition 2.16), set(

A
F0

)+

=

{
F ∈

(
A
F0

)
: ψ0(F) ≥ β

}
and

(
A
F0

)+

A

=

(
A
F0

)+

∩
(
A
F0

)
A

. (34)

For A ∈ A and F ∈
(A
F0

)+
A

, define

σAF = ψ0(F)
(34)

≥ β. (35)

Note that the sets and numbers above are constructed in time O(1), since in an (`, t)-augmented 3-graph
A, there are at most (recall f = |V (F0)|)∣∣∣∣(AF0

)∣∣∣∣ ≤ tf `3|F0| ≤ T f0 L
3f3

0 = O(1) (36)

copies F ∈
(A
F0

)
.

Step 3: Applying the Slicing Lemma. Fix A ∈ A. With
{
σAF : F ∈

(A
F0

)+
A

}
from Step 2, we wish

to apply the Slicing Lemma (Lemma 2.4) to G = HA (cf. (15)), but first check that it is appropriate
to do so. Since A ∈ A = ω−1(0, 1] (cf. (18)), we have that HA is (αA, δ)-minimal w.r.t. PA, where

αA ≥ α0 = β (cf. (23). From (35), every σAF , F ∈
(A
F0

)+
A

, satisfies σAF ≥ β = α0, and moreover,

∑{
σAF : F ∈

(
A
F0

)+

A

}
(35)
=
∑{

ψ0(F) : F ∈
(
A
F0

)+

A

}
=
∑{

ψ0(F) : F ∈
(
A
F0

)
A

}
≤ ω(A)

(18)
= αA,

where the second equality holds on account that ψ0 vanishes outside of
(A
F0

)+
A

, and the inequality

holds since ψ0 is a fractional F0-packing of Aω. From (24) and (25) (cf. (31)), we have that δ =
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δLem.2.4(α0, δ
′ = δLem.2.7) and ε ≤ εLem.2.4(α0, δ

′ = δLem.2.7, δ, 1/`) are appropriately chosen for an ap-
plication of Lemma 2.4. Applying the Slicing Lemma to G = HA, we construct, in time O(m3), a
partition

HA = HA0 ∪
⋃{

HAF : F ∈
(
A
F0

)+

A

}
(37)

satisfying that, for each F ∈
(A
F0

)+
A

, the 3-graph HAF is
(
αAF , δ

′ = δLem.2.7

)
-minimal with respect to PA,

where αAF = σAF ± δ′. Repeat over all at most
(
t
3

)
`3 ≤ T 3

0L
3
0 = O(1) many A ∈ A in time O(n3).

Step 4: Applying the Packing Lemma. Fix F ∈
(A
F0

)+
. We apply the Packing Lemma to the

following subhypergraph G = HF ⊂ H:

V (HF ) =
⋃

i∈V (F)

Vi and HF =
⋃
A∈F
HAF . (38)

Said differently, for each 1 ≤ i ≤ t, we include Vi ⊂ V (HF ) if, and only if, i ∈ V (F), and for each A ∈ A,
we take (recall (37))

HF ∩ K3

(
PA
)

=

{
HAF A ∈ F ,
∅ A ∈ A \ F . (39)

Let us check that it is appropriate to apply the Packing Lemma (Lemma 2.7) to G = HF .
We first confirm that HF meets the conditions of Setup 2.5 (the Packing Setup). For simplicity, but

w.l.o.g., we assume V (F) = [f ] ⊂ [t] = V (A). For the function φ2 = φ2(F) in Definition 2.16, we write

aij = φ2({i, j}) for each 1 ≤ i < j ≤ f . Then, the graph PF =
⋃{

P ijaij : 1 ≤ i < j ≤ f
}

underlies HF ,

i.e., HF ⊆ K3(PF ), since for each A = {phiahi
, pijbij , p

hj
chj
} ∈ F , we have by (15) and (37) (resp.) that

HAF ⊆ HA ⊆ K3(PA). Note that PF is an f -partite graph with vertex partition V1 ∪ · · · ∪ Vf , where
|V1| = · · · = |Vf | = m and where, for each 1 ≤ i < j ≤ f , P ijaij is (`−1, ε)-regular. Finally, suppose A =

{phiahi
, pijbij , p

hj
chj
} ∈ F . By (39), we see that HF ∩ K3(PA) = HAF , which by Step 3 is (αAF , δ

′ = δLem.2.7)-

minimal w.r.t. PA. Moreover, by the Slicing Lemma, αAF = σAF ± δ′, where σAF
(35)
= ψ0(F) ≥ β

(23)
= α0 is

constant and bounded over all A ∈ F . (In other words, ψ0(F) plays the role of α in Setup 2.5.) Note
that our constants are also chosen appropriately for an application of the Packing Lemma (Lemma 2.7).
Indeed, for α0 above and ρ > 0 in (19), we defined δ′ = δLem.2.7(F0, α0, ρ) > 0 (cf. (24)) to be the constant
guaranteed by the Packing Lemma, and we defined ε ≤ εLem.2.7(F0, α0, ρ, δ

′, 1/`) in (25) (cf. (31)) to be
appropriate for an application of the Packing Lemma.

Applying Lemma 2.7 to G = HF and P = PF above, we construct, in time polynomial in m, an
F0-packing FHF of HF of size

|FHF | ≥ (1− 2ρ)ψ0(F)
m3

`3
, (40)

where every element of FHF is a partite-isomorphic copy of F (cf. Definition 2.6). Repeat over all

F ∈
(A
F0

)+
, of which there are at most O(1) many (cf. (36)).

Output. Construct the family FH =
⋃{

FHF : F ∈
(A
F0

)+}
in time O(n3). (That is, collect O(m3)

copies of F0 over at most O(1) indices F ∈
(A
F0

)+
(cf. (36)).

It remains to check the correctness of the algorithm. To that end, the family FH was clearly con-
structed in time polynomial in n. Regarding the remaining details, we first prove that FH is an F0-
packing of H.

Proof that FH is an F0-packing of H. Let F ,F ′ ∈ FH, and for contradiction, suppose F ∩F ′ 6= ∅.
By construction, there exist F̂ , F̂ ′ ∈

(A
F0

)+
so that F ∈ FHF̂

and F ′ ∈ FHF̂′ . If F̂ = F̂ ′, then
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FHF̂
= FHF̂′ , and so F ∩ F ′ 6= ∅ contradicts the Packing Lemma (which ensured that FHF̂

= FHF̂′

was an F0-packing of HF̂ = HF̂ ′). Henceforth, we assume F̂ 6= F̂ ′.
Fix {x, y, z} ∈ F ∩ F ′. Clearly, this implies (cf. (38), (39)),

{x, y, z} ∈ HF̂ and {x, y, z} ∈ HF̂ ′ . (41)

Since F ,F ′ ⊂ H′ (recall the notation in Theorem 2.12), there exist 1 ≤ h < i < j ≤ t and 1 ≤ a, b, c ≤ `
so that

{x, y, z} ∈ K3(Phia ∪ P
ij
b ∪ P

hj
c ). (42)

Write A = {phia , p
ij
b , p

hj
c } ∈ A. By (39), we have

HF̂ ∩ K3(PA) = HAF̂ and HF̂ ′ ∩ K3(PA) = HAF̂ ′ . (43)

But now, (41)–(43) imply that {x, y, z} ∈ HAF̂ ∩ H
A
F̂ ′ , which contradicts the Slicing Lemma. (Indeed,

HAF̂ and HAF̂ ′ are distinct classes (since F̂ 6= F̂ ′) of a partition.) 2

Proof that FH has size promised in (29). By construction, we have

|FH| =
∑{

|FHF | : F ∈
(
A
F0

)+
}

(40)

≥ (1− 2ρ)
m3

`3

∑{
ψ0(F) : F ∈

(
A
F0

)+
}
≥ (1− 2ρ)

m3

`3
|ψ0|

(33)

≥ (1− 2ρ)
m3

`3
(
ν∗F0

(Aω)− ηt3`3
) (32)

≥ (1− 2ρ)
(
(1− ξ)ν∗F0

(H)− (α0 + δ + τ + o(1))n3 − ηn3
)

≥ ν∗F0
(H)− (ξ + α0 + δ + τ + η + 2ρ+ o(1))n3

(22),(26)

≥ ν∗F0
(H)− 8ξn3 (19)

= ν∗F0
(H)− ζn3,

as promised. 2

All that remains to prove Theorem 1.3 is the proof of (32).

3.1. Proof of (32). It suffices to produce a fractional F0-packing ψ̃0 :
(Aω

F0

)
→ [0, 1] for which m3|ψ̃0|/`3

has the lower bound promised in (32). To that end, we establish some notation and terminology. Write(H′

F0

)
Π0

to denote the copies F ∈
(H
F0

)
Π0

(cf. Lemma 1.7) for which F ⊂ H′ (cf. Theorem 2.12), and fix

F ∈
(H′

F0

)
Π0

. We define the following F̃ = (φ̃1, φ̃2) ∈
(A
F0

)
to be the projection of F onto A. Define

φ̃1 : V (F) → [t] by φ̃1(v) = i, if, and only if, v ∈ Vi. Then φ̃1 is an injection since F ∈
(H′

F0

)
Π0

crosses

Π0 (cf. Lemma 1.7 and Remark 2.13). Write Φ̃1 = φ̃1(V (F)), and for i ∈ Φ̃1, write vi = φ̃−1
1 (i). Define

φ̃2 :
(

Φ̃1

2

)
→ [`] by φ̃2({i, j}) = a if, and only if, {vi, vj} ∈ P ija . (φ̃2 is well-defined since {vi, vj} ∈ K[Vi, Vj ]

(cf. Definition 2.10).) To check that F̃ ∈
(A
F0

)
(cf. Definition 2.16), fix {u, v, w} ∈ F and write(

φ̃1(u), φ̃1(v), φ̃1(w)
)

= (h, i, j) and
(
φ̃2({h, i}), φ̃2({i, j}), φ̃2({h, j})

)
= (a, b, c).

We show that A = {phia , p
ij
b , p

hj
c } ∈ A. To that end, by construction we have that {u, v, w} ∈

K3(PA). Since {u, v, w} ∈ F ⊂ H′, the Regularity Lemma guarantees HA (cf. (15)) is (αA, δ)-minimal
w.r.t. K3(PA) for some αA ≥ α0. Then by (18), A ∈ A.

Set (cf. (14))

∆ = max
{
|K3(PA)| : A ∈ A

}
. (44)

Define the function ψ̃0 :
(A
F0

)
→ [0, 1] by the rule

ψ̃0(F̃) =
1

∆

∑{
ψ(F ) : F ∈

(
H′

F0

)
Π0

has projection F̃

}
. (45)
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To show that ψ̃0 is a fractional F0-packing of Aω, fix A = {phia , p
ij
b , p

hj
c } ∈ A. Then (cf. Definition 2.16)

∑{
ψ̃0(F̃) : F̃ ∈

(
A
F0

)
A

}
=

1

∆

∑{∑{
ψ(F) : F ∈

(
H′

F0

)
Π0

has projection F̃

}
: F̃ ∈

(
A
F0

)
A

}
(44)

≤ 1

|K3(PA)|
∑{∑{

ψ(F) : F ∈
(
H′

F0

)
Π0

has projection F̃

}
: F̃ ∈

(
A
F0

)
A

}
.

Note that an element F ∈
(H′

F0

)
Π0

projects to some element F̃ ∈
(A
F0

)
A

if, and only if, F ∩ HA 6= ∅
(cf. (15)). Therefore,

∑{
ψ̃0(F̃) : F̃ ∈

(
A
F0

)
A

}
≤ 1

|K3(PA)|
∑{

ψ(F) : F ∈
(
H′

F0

)
Π0

satisfies F ∩HA 6= ∅

}

=
1

|K3(PA)|
∑{∑{

ψ(F) : {u, v, w} ∈ F ∈
(
H′

F0

)
Π0

}
: {u, v, w} ∈ HA

}

≤ 1

|K3(PA)|
∑{∑{

ψ(F) : {u, v, w} ∈ F ∈
(
H
F0

)}
: {u, v, w} ∈ HA

}
cf.(2)
=

1

|K3(PA)|
∑{∑{

ψ(F) : F ∈
(
H
F0

)
{u,v,w}

}
: {u, v, w} ∈ HA

}

≤ |HA|
|K3(PA)|

= dH(P ) = αA = ω(A),

where in the last inequality, we used that ψ is a fractional F0-packing of H, and in the last equality, we
used that A ∈ A and (16) and (18).

To conclude the proof of (32), consider the quality |ψΠ0 |−∆|ψ̃0|. From (45), we see that ∆|ψ̃0| equals

∑{∑{
ψ(F) : F ∈

(
H′

F0

)
Π0

has projection F̃

}
: F̃ ∈

(
A
F0

)}
=
∑{

ψ(F) : F ∈
(
H′

F0

)
Π0

}
,

since every F ∈
(H′

F0

)
Π0

projects to a unique F̃ ∈
(A
F0

)
. Thus,

|ψΠ0
| −∆

∣∣∣ψ̃0

∣∣∣ =
∑{

ψ(F) : F ∈
(
H
F0

)
Π0

}
−
∑{

ψ(F) : F ∈
(
H′

F0

)
Π0

}

=
∑{

ψ(F) : F ∈
(
H
F0

)
Π0

\
(
H′

F0

)
Π0

}
.
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Now, F ∈
(H
F0

)
Π0
\
(H′

F0

)
Π0

if, and only if, there exists {x, y, z} ∈ F ∩ (H \H′) which crosses Π0. Thus,

|ψΠ0
| −∆

∣∣∣ψ̃0

∣∣∣ ≤∑{∑{
ψ(F) : {x, y, z} ∈ F ∈

(
H
F0

)
Π0

}
: {x, y, z} ∈ H \ H′ crosses Π0

}

≤
∑{∑{

ψ(F) : {x, y, z} ∈ F ∈
(
H
F0

)}
: {x, y, z} ∈ H \ H′ crosses Π0

}
=
∑{∑{

ψ(F) : F ∈
(
H
F0

)
{x,y,z}

}
: {x, y, z} ∈ H \ H′ crosses Π0

}

≤ |{{x, y, z} : {x, y, z} ∈ H \ H′ crosses Π0}| ≤ |H \ H′|
Thm.2.12
≤ (α0 + δ + o(1))n3,

where in the third to last inequality, we used that ψ is a fractional F0-packing of H. Using Fact 2.2, the
Triangle Counting Lemma (cf. (19), (25), (31)), the bounds above imply

(1 + τ)
m3

`3
ν∗F0

(Aω) ≥ ∆ν∗F0
(Aω) ≥ ∆

∣∣∣ψ̃0

∣∣∣ ≥ |ψΠ0
| − (α0 + δ + o(1))n3,

and so

m3

`3
ν∗F0

(Aω) ≥ 1

1 + τ

(
|ψΠ0
| − (α0 + δ + o(1))n3

)
≥ |ψΠ0

| − (α0 + δ + τ + o(1))n3,

as promised.

4. Proof of the Packing Lemma (Lemma 2.7)

The proof of the Packing Lemma (Lemma 2.7) will follow immediately from upcoming Theorem 4.1
(a well-known result of Grable [7]) and Lemma 4.2 (which we discuss in a moment). To present the
former result, we review a few standard concepts. For a j-uniform hypergraph J , a matching J in J
is a family of pairwise disjoint edges from J . For x, x′ ∈ V (J ), define NJ (x) = {I : I ∪ {x} ∈ J } to be
the neighborhood of x, and define NJ (x, x′) = NJ (x) ∩ NJ (x′) to be the co-neighborhood of x and x′.
Set degJ (x) = |NJ (x)| to be the degree of x, and set degJ (x, x′) = |NJ (x, x′)| to be the co-degree of x
and x′. Grable’s result may now be given as follows.

Theorem 4.1 (Grable [7]). For every integer j ≥ 2 and for all λ > 0, there exists β = βThm.4.1(j, λ) > 0
so that the following holds. Let J be a j-graph with a sufficiently large vertex set X = V (J ) satisfying
that, for some ∆ > 0,

(1) for all x ∈ X, degJ (x) = (1± β)∆,

(2) for all distinct x, x′ ∈ X, degJ (x, x′) < ∆/ log4 |X|.
Then, there exists a matching J of J covering all but λ|X| vertices of X. Moreover, J can be
constructed in time polynomial in |X|.

In addition to Theorem 4.1, we will need the following Lemma 4.2, which we call the Constructive
Extension Lemma. The Reader may already be familiar with ‘extension lemmas’ from hypergraph reg-
ularity literature, and indeed upcoming Lemma 4.2 is similar. However, as its title suggests, Lemma 4.2
adds a constructive element to such lemmas, which we need in the current paper. In the next section,
we will prove Lemma 4.2, and we will discuss its relationship to these earlier lemmas.

Lemma 4.2 (Constructive Extension Lemma). Let F0 be a fixed 3-graph with V (F0) = [f ]. For
all α0, γ > 0, there exists δ = δLem.4.2(F0, α0, γ) > 0 so that, for all d−1 ∈ N, there exists ε =
εLem.4.2(F0, α0, γ, δ, d) > 0 so that the following holds.

Let P and G satisfy the hypothesis of Setup 2.5 with F0 and some α ≥ α0, with δ, d, ε > 0 above, and
with a sufficiently large integer m. Then, one may construct, in time O(mf ), a subhypergraph Ĝ ⊆ G,

where |Ĝ| > (1 − γ)|G|, so that every {u, v, w} ∈ Ĝ belongs to within (1 ± γ)α|F0|−1d(f
2)−3mf−3 many

partite-isomorphic copies of F0 which reside entirely in the subhypergraph Ĝ.
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4.1. Proof of the Packing Lemma. We begin the proof by defining the promised constants. Let F0 be
a fixed 3-graph with V (F0) = [f ], and let α0, ρ > 0 be given. Set λ = ρ/2, and let β = βThm.4.1(|F0|, λ =
ρ/2) be the constant guaranteed by Theorem 4.1. Set γ = β so that

γ = β � λ =
ρ

2
. (46)

With γ = β, let δLem.4.2 = δLem.4.2(F0, α0, γ = β) be the constant guaranteed by the Extension Lemma
(Lemma 4.2). Let d−1 ∈ N be given. Let εLem.4.2 = εLem.4.2(F0, α0, γ = β, δLem.4.2, d) > 0 be the
constant guaranteed by the Extension Lemma (Lemma 4.2). We define

δ = δLem.2.7 = δLem.4.2 and ε = εLem.2.7 = εLem.4.2. (47)

Let P and G be given satisfying the hypothesis of Setup 2.5 with F0 and some α ≥ α0, with δ given
in (47), with d−1 ∈ N given above, with ε given in (47), and with a sufficiently large integer m.

To construct the promised family FG , we first apply the Extension Lemma (Lemma 4.2) to P and
G (which is appropriate to do on account of our choice of constants in (47)). The Extension Lemma

constructs, in time O(mf ), a subhypergraph Ĝ ⊆ G satisfying |Ĝ| > (1− γ)|G| and satisfying that every

edge {u, v, w} ∈ Ĝ belongs to within (1± γ)α|F0|−1d(f
2)−3mf−3 many partite-isomorphic copies of F0 in

Ĝ.
We now apply Theorem 4.1 to the following j-uniform hypergraph J , where j = |F0|. Set X =

V (J ) = Ĝ, i.e., the vertices of J are the edges of Ĝ. For {e1, . . . , ej} ∈
(
X
j

)
, we put {e1, . . . , ej} ∈

J if, and only if, {e1, . . . , ej} is the edge-set of a partite-isomorphic copy of F0 in Ĝ. Set ∆ =

α|F0|−1d(f
2)−3mf−3. In this language, the Packing Lemma (Lemma 4.2) implies that for all vertices

e ∈ X,

degJ (e) = (1± γ)α|F0|−1d(f
2)−3mf−3 = (1± γ)∆ = (1± β)∆.

Clearly, for distinct e, e′ ∈ X, we have (with m sufficiently large) degJ (e, e′) ≤ mf−4 < ∆
log4 |X| , since

∆ = Θ(mf−3) and |X| = Θ(m3). Theorem 4.1 constructs, in time polynomial in |X| = Θ(m3), a

matching J of J covering all but λ|X| vertices of X. Then J corresponds to an F0-packing of Ĝ
covering all but λ|Ĝ| ≤ λ|G| edges of Ĝ. Since |G \ Ĝ| < γ|G|, we have that J corresponds to an

F0-packing of G covering all but (γ + λ)|G|
(46)

≤ 2λ|G| (46)
= ρ|G| edges of G. Since both Ĝ and J were

constructed in time polynomial in m, the proof is complete.

5. Proof of the Constructive Extension Lemma (Lemma 5.1)

We mentioned that Lemma 5.1 is a constructive version of earlier extension-type results. The first
of these results is due to Haxell et al. [10] (see Theorem 10.12 there), and a generalization of this
result (together with a simpler proof) was given by Cooley et al. [2] (see Lemma 5 there). The following
Lemma 5.1 gives a representation of these results, and for purposes of distinction, we call it the Traditional
Extension Lemma.

Lemma 5.1 (Traditional Extension Lemma [2, 10]). Let F0 be a fixed 3-graph with V (F0) = [f ].
For all α0, ζ > 0, there exists δ = δLem.5.1(F0, α0, ζ) > 0 so that, for all d−1 ∈ N, there exists ε =
εLem.5.1(F0, α0, ζ, δ, d) > 0 so that the following holds.

Let P and G satisfy the hypothesis of Setup 2.5 with F0 and some α ≥ α0, with δ, d, ε > 0 above,
and with a sufficiently large integer m. Then, all but ζ|G| elements {u, v, w} ∈ G belong to within

(1± ζ)α|F0|−1d(f
2)−3mf−3 many partite-isomorphic copies of F0 in G.

The Constructive Extension Lemma (Lemma 4.2) is not a trivial corollary of the Traditional Extension
Lemma (Lemma 5.1). In the following remark, we pause to explain this reason, which may help motivate
the proof of Lemma 4.2.
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Remark 5.2. Roughly speaking, Lemma 5.1 says that most {u, v, w} ∈ G extend to essentially the
expected number of copies of F0 in G. The few edges which don’t are exhaustively identified in time
O(mf ), and can be deleted from G in time O(m3), which yields a large subhypergraph G′ ⊆ G. However,
G′ does not prove Lemma 4.2, since for a fixed {u, v, w} ∈ G′, it is possible that every copy of F0 in G
which contained {u, v, w} also contained a triple we deleted. As such, these copies reside back in G, but
none would survive in G′.

To overcome the difficulty above, we still use Lemma 5.1, but in a more careful way that also takes
into account the underlying graph P . Strictly speaking, these required details will be standard, but they
will also be somewhat technical. 2

We mentioned at the start of the section that Lemma 5.1 is a representative of the results proven
in [2, 10], but it is not identical to these results, as we now explain.

Remark 5.3. Lemma 5.1 differs from its predecessors by the condition of hypergraph regularity it
assumes. In particular, Lemma 5.1 assumes the condition of (α, δ)-minimality in order to be compatible
with the algorithmic Theorem 2.12. The predecessors in [2, 10] assume the condition of (δ, r)-regularity
(not defined in this paper) in order to be compatible with the regularity lemma of Frankl and Rödl [6].
It is known (see [3]) that (δ, r)-regularity is a stronger condition than (α, δ)-minimality, and relatedly,
the Frankl-Rödl regularity lemma currently admits no known algorithm. Since our efforts are focused on
algorithms, we can not use the Frankl-Rödl regularity lemma here, and since their concepts of regularity
are not supported by Theorem 2.12, we can not use the extension predecessors of [2, 10] here.

The incompatibility above is not, however, an essential problem. All ‘traditional’ extension lemmas
are corollaries of a so-called Counting Lemma, which was proven for (α, δ)-minimality in [9], and for
(δ, r)-regularity in [15]. With an appropriate counting lemma in place, the condition of hypergraph
regularity assumed is no longer important for deriving a traditional extension lemma. For completeness,
we sketch this derivation (the proof of Lemma 5.1) in Section 6. 2

In the next subsection, we begin to prepare graph concepts motivated by Remark 5.2

5.1. Graph concepts and facts. In this section, we describe (within the context of Setup 2.5) ‘terrible’
vertices, pairs of vertices, triangles, and pairs of triangles. (Later, we also describe ‘bad’ versions of these,
which aren’t quite as bad as their terrible counterparts.) In what follows, for a vertex v ∈ V (P ), we
write NP (v) for the neighborhood of v, and we write NP,i(v) for NP (v) ∩ Vi.
Definition 5.4 (terrible vertices, terrible pairs). Let P be a graph satisfying the hypothesis of Setup 2.5.

(1) We say that u ∈ V (P ) is a terrible vertex if there exist at least 2f2d3m2 many {u, v, w} ∈ K3(P ).
(2) We say that {u, v} ∈ P is a terrible pair if there exist at least 2fd2m many {u, v, w} ∈ K3(P ).

We continue with concepts and facts about triangles. Fix {a, b, c}, {h, i, j} ∈
(

[f ]
3

)
. We call(

{va, vb, vc}, {vh, vi, vj}
)
∈ K3(P ab ∪ P bc ∪ P ac)×K3(Phi ∪ P ij ∪ Phj)

a transversal pair of triangles if |{va, vb, vc, vh, vi, vj} ∩ Vk| ≤ 1 for all 1 ≤ k ≤ f . In this case,

note that |{a, b, c} ∩ {h, i, j}| = |{va, vb, vc} ∩ {vh, vi, vj}|
def
= s ∈ {0, 1, 2, 3}, and so we say that

({va, vb, vc}, {vh, vi, vj}) is s-overlapping. We then define

extKf ,P ({va, vb, vc}, {vh, vi, vj}) =

∣∣∣∣{U ∈ (V (P )

f

)
:

(
U

2

)
⊂ P and va, vb, vc, vh, vi, vj ∈ U

}∣∣∣∣
to be the number of cliques Kf in P extending (containing) both {va, vb, vc} and {vh, vi, vj}.

To motivate our next definition, we pause to make the following remark.

Remark 5.5. In Setup 2.5, suppose the graph P =
⋃

1≤i<j≤f P
ij satisfies that each P ij = G[Vi, Vj ; d]

is the binomial random bipartite graph with edge density d and bipartition Vi∪Vj , where 1 ≤ i < j ≤ f .
(It is well-known that, with high probability, this graph satisfies the regularity hypothesis in Setup 2.5.)
Then, for an s-overlapping triangle pair ({va, vb, vc}, {vh, vi, vj}) from P , we have

E
[
extKf ,P ({va, vb, vc}, {vh, vi, vj})

]
= d(f

2)−((3
2)+(3

2)−(s
2))mf−(3+3−s) = d(f

2)+(s
2)−6mf+s−6,
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and it is quite unlikely that any of the Θ(m6−s) many s-overlapping triangle pairs of P would deviate
much from the mean. (It is also quite unlikely for P to contain any terrible vertices, or terrible pairs of
vertices, and so almost surely, all of its s-overlapping triangle pairs would be free of such objects.) 2

Definition 5.6 (terrible triangles). Let P be a graph satisfying the hypothesis of Setup 2.5, and let
({u, v, w}, {x, y, z}) be an s-overlapping triangle pair from P . We say ({u, v, w}, {x, y, z}) is a terrible
pair of triangles if {u, v, w, x, y, z} contains any terrible vertices or any terrible pairs of vertices, or if

extKf ,P ({u, v, w}, {x, y, z}) > 2d(f
2)+(s

2)−6mf+s−6. (48)

Relatedly, we also say that {x, y, z} is

(1) (s, τ)-terrible if there exist at least
√
τm3−s many {u, v, w} ∈ K3(P ) where ({u, v, w}, {x, y, z})

is a terrible pair of s-overlapping triangles;
(2) τ -terrible if it is (s, τ)-terrible for some s;
(3) terrible when the constant τ is clear from context.

The following fact is easily proven by standard graph regularity arguments involving the so-called
Graph Counting Lemma (see upcoming Lemma 8.2). For simplicity, we omit these arguments.

Fact 5.7. For all d, τ > 0, there exists ε = εFact 5.7(d, τ) > 0 so that the following holds. Let P be a
graph satisfying the hypothesis of Setup 2.5 with d and ε above and with m sufficiently large.

(1) For each 0 ≤ s ≤ 3, at most f6 × τm6−s many s-overlapping pairs of triangles are terrible.
(2) There are at most f6 ×

√
τm3 many τ -terrible triangles.

We now proceed to the proof of Lemma 4.2.

5.2. Proof of Lemma 4.2. We begin the proof of Lemma 4.2 by defining the promised constants. Let
F0 be a fixed 3-graph with V (F0) = [f ] and let α0, γ > 0 be given. Define√

ζ =
α|F0|−1γ

200f6
(49)

Let δLem.5.1 = δLem.5.1(F0, α0, ζ) > 0 be the constant guaranteed by Lemma 5.1. Set

δ = δLem.4.2 =
α

2
× δLem.5.1. (50)

Let d−1 ∈ N be given. Let εLem.5.1 = εLem.5.1(F0, α0, ζ, δLem.5.1, d) > 0 be the constant guaranteed by
Lemma 5.1. Define

√
τ =

αζ

8f6
d(f

2). (51)

Let εFact 2.2 = εFact 2.2(d, τ) > 0 be the constant guaranteed by Fact 2.2. Let εFact 5.7 = εFact 5.7(f, d, τ) >
0 be the constant guaranteed by Fact 5.7. Set

ε = εLem.4.2 = min {εLem.5.1, εFact 2.2, εFact 5.7} . (52)

Let P and G satisfy the hypothesis of Setup 2.5 with F0 and some α ≥ α0, with δ, d, ε > 0 above,
and with a sufficiently large integer m. To define the promised subhypergraph Ĝ ⊆ G, we define several
concepts. To begin, let Gterr ⊆ G denote the set of edges {u, v, w} ∈ G so that {u, v, w} is a terrible
triangle (cf. Definition 5.6).

Claim 5.8. |Gterr| ≤ γ
2 |G|.

Proof of Claim 5.8. Indeed, by Fact 5.7 (cf. (52)), |Gterr| ≤ f6
√
τm3. However, from Setup 2.5 and

Fact 2.2 (cf. (52)), we have

|G| =
∑{∣∣Ghij∣∣ : {h, i, j} ∈ F0

}
=
∑{

αhij |K3(Phi ∪ P ij ∪ Phj)| : {h, i, j} ∈ F0

}
= (α± δ)

∑{
|K3(Phi ∪ P ij ∪ Phj)| : {h, i, j} ∈ F0

}
= |F0| × (α± δ)(1± τ)d3m3. (53)
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Thus,

|Gterr| ≤ f6
√
τm3

(53)

≤ f6
√
τ

|G|
(α− δ)(1− τ)d3

(50)

≤ 4f6

√
τ

αd3
|G|

(51)

≤ γ

2
|G|,

as promised. �

To define Ĝ, we will delete Gterr from G, but we delete other edges too. For {u, v, w} ∈ G, define

extF0,G({u, v, w}) =

∣∣∣∣∣
{
F ∈

(
G
F0

)
{u,v,w}

: F is a partite-isomorphic copy of F0 in G

}∣∣∣∣∣ . (54)

We consider the following concepts.

Definition 5.9 (bad triples, pairs and vertices).

(1) We say {u, v, w} ∈ G \ Gterr is a bad edge if extF0,G({u, v, w}) 6= (1± ζ)α|F0|−1d(f
2)−3mf−3.

(2) We say {x, y} ∈ P is a bad pair if there exist at least f
√
ζd2m many bad edges {x, y, z} ∈ G.

(3) We say x ∈ V (P ) is a bad vertex if there exist at least f2
√
ζd3m2 many bad edges {x, y, z} ∈ G.

Denote by Gbad the set of all edges {u, v, w} ∈ G \Gterr which are bad edges, or contain a bad pair, or
contain a bad vertex.

Claim 5.10. |Gbad| ≤ γ
2 |G|.

Proof of Claim 5.10. Indeed, by Lemma 5.1 (cf. (50), (52)), the number of bad edges is at most ζ|G|.
As such, we may estimate the number of edges containing a bad pair, or a bad vertex. To begin, there
are at most 4f2

√
ζdm2 bad pairs {x, y} ∈ P , since otherwise, there would be

4f2
√
ζdm2 × f

√
ζd2m ≥ ζ|F0|(α+ δ)(1 + τ)d3m3

(53)

≥ ζ|G|
many bad edges. Similarly, there are at most 4f

√
ζm many bad vertices. Now, a bad pair {x, y} ∈ P

belongs to at most 2fd2m many {x, y, z} ∈ G. Indeed, by definition, ‘many’ of these are bad edges
{x, y, z′} ∈ G \ Gterr, which can’t contain terrible pairs (cf. Definition 5.6). Similarly, a bad vertex
belongs to at most 2f2d3m2 many {x, y, z} ∈ G. We therefore conclude

|Gbad| ≤ ζ|G|+
(

4f2
√
ζdm2 × 2fd2m

)
+
(

4f
√
ζm× 2f2d3m2

)
≤ ζ|G|+ 16f3

√
ζd3m3

(53)

≤ ζ|G|+ 16f3

√
ζ

(α− δ)(1− τ)
|G|

(50)

≤ ζ|G|+ 64f3

√
ζ

α
|G| ≤ 65f3

√
ζ

α
|G|

(49)

≤ γ

2
|G|, (55)

as promised. �

To prove Lemma 4.2, define Ĝ = G \ (Gterr ∪ Gbad). It follows from Definitions 5.4, 5.6 and 5.9 that

Gterr and Gbad can each be identified in time O(mf ) (and deleted from G in time O(m3)), and so Ĝ
is constructed in time O(mf ), as promised in Lemma 4.2. It follows from Claims 5.8 and 5.10 (and

Gterr ∩Gbad = ∅) that |Ĝ| = |G| − |Gterr| − |Gbad| ≥ (1− γ)|G|, as promised in Lemma 4.2. We now verify

the final property promised by Lemma 4.2. To that end, fix {vh, vi, vj} ∈ Ĝ, where {vh, vi, vj} ∈ Ghij
for {h, i, j} ∈ F0. Define extF0,Ĝ({vh, vi, vj}) analogously to (54), i.e.,

extF0,Ĝ({vh, vi, vj}) =

∣∣∣∣∣
{
F ∈

(
Ĝ
F0

)
{vh,vi,vj}

: F is a partite-isomorphic copy of F0 in Ĝ

}∣∣∣∣∣ .
Clearly, extF0,Ĝ({vh, vi, vj}) ≤ extF0,G({vh, vi, vj}). As such, since {vh, vi, vj} 6∈ Gbad,

extF0,Ĝ({vh, vi, vj}) ≤ extF0,G({vh, vi, vj}) ≤ (1 + ζ)α|F0|−1d(f
2)−3mf−3

(49)

≤ (1 + γ)α|F0|−1d(f
2)−3mf−3.

Thus, to complete the proof of Lemma 4.2, we will show

extF0,Ĝ({vh, vi, vj}) ≥ (1− γ)α|F0|−1d(f
2)−3mf−3. (56)
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To prove (56), observe that

extF0,Ĝ({vh, vi, vj}) ≥ extF0,G({vh, vi, vj})−
∑

{va,vb,vc}∈G\Ĝ

extKf ,P ({va, vb, vc}, {vh, vi, vj})

≥ (1− ζ)α|F0|−1d(f
2)−3mf−3 −

∑
{va,vb,vc}∈G\Ĝ

extKf ,P ({va, vb, vc}, {vh, vi, vj}). (57)

For future reference, we make the following remark.

Remark 5.11.

(1) Summands in (57) are zero when ({va, vb, vc}, {vh, vi, vj}) is not transversal.

(2) Since {vh, vi, vj} ∈ Ĝ, every {va, vb, vc} ∈ G \ Ĝ satisfies |{va, vb, vc}∩{vh, vi, vj}| = s ∈ {0, 1, 2}.
2

In (57), we have G \ Ĝ = Gterr ∪ Gbad, where this union is disjoint. As such,∑
{va,vb,vc}∈G\Ĝ

extKf ,P ({va, vb, vc}, {vh, vi, vj})

=
∑

{va,vb,vc}∈Gterr

extKf ,P ({va, vb, vc}, {vh, vi, vj}) +
∑

{va,vb,vc}∈Gbad

extKf ,P ({va, vb, vc}, {vh, vi, vj}).

We proceed with the following two claims.

Claim 5.12.
∑
{va,vb,vc}∈Gterr extKf ,P ({va, vb, vc}, {vh, vi, vj}) ≤ f3

√
τmf−3.

Claim 5.13.
∑
{va,vb,vc}∈Gbad

extKf ,P ({va, vb, vc}, {vh, vi, vj}) ≤ 41f6
√
ζd(f

2)−3mf−3.

We defer the proofs of Claims 5.12 and 5.13 momentarily to finish the proof of (56). Returning to (57),

extF0,Ĝ({vh, vi, vj}) ≥ (1− ζ)α|F0|−1d(f
2)−3mf−3 − f3

√
τmf−3 − 41f6

√
ζd(f

2)−3mf−3

(51)

≥ (1− ζ)α|F0|−1d(f
2)−3mf−3 − 42f6

√
ζd(f

2)−3mf−3 =

(
1− ζ − 42f6

√
ζ

α|F0|−1

)
α|F0|−1d(f

2)−3mf−3

≥
(

1− 43f6

√
ζ

α|F0|−1

)
α|F0|−1d(f

2)−3mf−3
(49)

≥ (1− γ)α|F0|−1d(f
2)−3mf−3.

This proves (56). It remains to prove Claims 5.12 and 5.13.

Proof of Claim 5.12. For {a, b, c} ∈ F0, write Gabcterr = Gterr ∩ Gabc. Note that∑
{va,vb,vc}∈Gterr

extKf ,P ({va, vb, vc}, {vh, vi, vj}) =
∑

{a,b,c}∈F0

∑
{va,vb,vc}∈Gabc

terr

extKf ,P ({va, vb, vc}, {vh, vi, vj}).

Fix {a, b, c} ∈ F0, and let {a, b, c} ∩ {h, i, j} = s ∈ {0, 1, 2} (cf. Remark 5.11). We claim∑
{va,vb,vc}∈Gabc

terr

extKf ,P ({va, vb, vc}, {vh, vi, vj}) ≤
√
τmf−3.

Indeed, every term above is at most mf+s−6. Moreover, since {vh, vi, vj} ∈ Ĝ is not an (s, τ)-terrible
triangle (cf. Definition 5.6), at most

√
τm3−s indices {va, vb, vc} ∈ Gabcterr have non-vanishing terms (cf. Re-

mark 5.11). Claim 5.12 now follows. �
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Proof of Claim 5.13. We proceed along similar lines to the proof of Claim 5.12. Fix {a, b, c} ∈ F0, and
let {a, b, c} ∩ {h, i, j} = s ∈ {0, 1, 2} (cf. Remark 5.11). Then,∑
{va,vb,vc}∈Gabc

bad

extKf ,P ({va, vb, vc}, {vh, vi, vj})

=
∑{

extKf ,P ({va, vb, vc}, {vh, vi, vj}) : {va, vb, vc} ∈ Gabcbad satisfies (48)
}

+
∑{

extKf ,P ({va, vb, vc}, {vh, vi, vj}) : {va, vb, vc} ∈ Gabcbad fails (48)
}
.

The first sum has at most
√
τm3−s terms, since {vh, vi, vj} ∈ Ĝ is not an (s, τ)-terrible triangle (cf. Defi-

nition 5.6), and every of these terms is at most mf+s−6. In the second sum above, every term is bounded
by failing (48). Write #s for the number of non-vanishing terms in the second sum. Thus,∑

{va,vb,vc}∈Gabc
bad

extKf ,P ({va, vb, vc}, {vh, vi, vj}) ≤
√
τmf−3 + 2d(f

2)+(s
2)−6mf+s−6#s. (58)

We claim that

#s ≤ 20f3
√
ζd3−(s

2)m3−s, (59)

which we prove in cases (depending on s ∈ {0, 1, 2}).

Case 0 (s = 0). We use #0 ≤ |Gabcbad| ≤ |Gbad|, and recall from (55) that

|Gbad| ≤ ζ|G|+ 16f3
√
ζd3m3

(53)

≤ 4ζf3d3m3 + 16f3
√
ζd3m3 ≤ 20f3

√
ζd3m3.

Thus, #0 ≤ 20f3d3m3, which proves (59). 2

Case 1 (s = 1). Without loss of generality, assume a = h but {b, c} ∩ {i, j} = ∅. Since {vh, vi, vj} ∈ Ĝ,
the vertex vh = va is not a bad vertex (cf. Definition 5.9), and so #1 ≤ f2

√
ζd3m2, proving (59). 2

Case 2 (s = 2). Without loss of generality, assume {a, b} = {h, i} but c 6= j. Since {vh, vi, vj} ∈ Ĝ, the
pair {va, vb} = {vh, vi} is not a bad pair (cf. Definition 5.9), and so #2 ≤ f

√
ζd2m. proving (59). 2

Employing (59) in (58), we see∑
{va,vb,vc}∈Gabc

bad

extKf ,P ({va, vb, vc}, {vh, vi, vj}) ≤
√
τmf−3+40f3

√
ζd(f

2)−3mf−3
(51)

≤ 41f3
√
ζd(f

2)−3mf−3,

which implies Claim 5.13. �

This completes the proof of Lemma 4.2.

6. Proof of the Traditional Extension Lemma (Lemma 5.1)

In this section, we prove Lemma 5.1 by deriving it from a ‘Counting Lemma’ of Haxell, Nagle and
Rödl [9]. (This derivation resembles one of Cooley et al. [2].) For that, we consider the following setup
which generalizes Setup 2.5, and which uses (for reasons seen in context) some alternative notation.

Setup 6.1 (Counting Setup). Suppose α0, δ, d0, ε > 0 and r,m ∈ N are given together with a graph R
and 3-graph H satisfying the following conditions:

(1) R =
⋃
{Rij : 1 ≤ i < j ≤ r} is an r-partite graph with vertex partition V1∪· · ·∪Vr, |V1| = · · · =

|Vr| = m, where for each 1 ≤ i < j ≤ r, Rij = R[Vi, Vj ] is (dij , ε)-regular, for some dij ≥ d0;
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(2) H =
⋃
{Hhij : 1 ≤ h < i < j ≤ r} ⊆ K3(R) is a 3-graph satisfying that, for each 1 ≤ h <

i < j ≤ r, Hhij = H[Vh, Vi, Vj ] is (αhij , δ)-minimal w.r.t. Rhi ∪ Rij ∪ Rhj , for some αhij ≥ α0,
meaning (cf. Definition 2.3)

|K(3)
2,2,2(Hhij)| ≤ α8

hij(dhidijdhj)
4

(
m

2

)3

(1 + δ). (60)

In the context of Setup 6.1, let Kr(H) =
( H
K

(3)
r

)
denote the family of r-cliques in H.

Theorem 6.2 (Counting Lemma [9]). For every r ∈ N and for all α0, ξ > 0, there exists δ =
δThm.6.2(r, α0, ξ) > 0 so that, for all d0 > 0, there exists ε = εThm.6.2(r, α0, ξ, δ, d0) > 0 so that the
following holds.

Let R and H satisfy the hypothesis of Setup 6.1 with r, α0, δ, d0, ε > 0 above, and with a sufficiently
large integer m. Then, |Kr(H)| = (1± ξ)

∏
1≤h<i<j≤r αhij ×

∏
1≤h<i≤r dij ×mr.

Remark 6.3. In [9], Theorem 6.2 was proven in the case when all αhij = α0, 1 ≤ h < i < j ≤ r, and
all dij = d0, 1 ≤ h < i ≤ r. It is well-known and standard to show that this case implies the Counting
Lemma in full. For completeness, we sketch these details in Section 8. 2

To prove Lemma 5.1, we also use the following version of the Cauchy-Schwarz inequality.

Fact 6.4 (Cauchy-Schwarz Inequality). For a1, . . . , at ≥ 0 and β ≥ 0, suppose
∑t
i=1 ai ≥ (1− β)at and∑t

i=1 a
2
i ≤ (1 + β)a2t. Then, all but 2β1/3t indices 1 ≤ i ≤ t satisfy ai = a(1± 2β1/3).

We also use the following easy fact.

Fact 6.5. For all δ, d0 > 0, there exists ε = εFact6.5(δ, d0) > 0 so that the following holds. Let R satisfy
the hypothesis of Setup 6.1 with r = 3, d0, ε > 0 above, and m sufficiently large. Let H = K3(R). Then,
H is necessarily (1, δ)-minimal w.r.t. R.

Proof. Indeed, it is well-known that for a suitable function f(ε) → 0 as ε → 0, the Graph Counting

Lemma (see upcoming Lemma 8.2) implies that R contains within (1±f(ε))(d12d23d13)4
(
m
2

)3
many copies

of the graph K
(2)
2,2,2. Thus, we take ε > 0 small enough so that f(ε) < δ, and (60) is immediate. �

6.1. Proof of Lemma 5.1. Let F0 be a fixed 3-graph with V (F0) = [f ]. Let α0, ζ > 0 be given. Define

F = 2f −3, and choose ξ > 0 to satisfy 1−
(
ζ

2

)3

≤ (1− ξ)3+f3

≤ (1+2ξ)2+2F 3

≤ 1+

(
ζ

2

)3

. (61)

With r = f , let δThm. 6.2(f) = δThm. 6.2(f, α0, ξ) > 0 be the constant guaranteed by Theorem 6.2. With
r = F , let δThm.6.2(F ) = δThm.6.2(F, α0, ξ) > 0 be the constant guaranteed by Theorem 6.2. Set

δ = δLem.5.1(F0, α0, ζ) = min {αζ, δThm.6.2(f), δThm.6.2(F )} . (62)

Let d−1 ∈ N be given. With r = 3 and d0 = d, let εFact6.5(δ, d0) > 0 be the constant guaranteed
by Fact 6.5. With r = f and d0 = d, let εThm.6.2(f) = εThm.6.2(f, α0, ξ, δ, d) > 0 be the constant
guaranteed by Theorem 6.2. With r = F and d0 = d, let εThm.6.2(F ) = εThm.6.2(F, α0, ξ, δ, d) > 0 be
the constant guaranteed by Theorem 6.2. Finally, with τ = ξ, let εFact2.2 = εFact2.2(d, ξ) > 0 be the
constant guaranteed by the Triangle Counting Lemma. Set

ε = εLem.5.1(F0, α0, ζ, δ, d) = min {εFact6.5, εFact2.2, εThm.6.2(f), εThm.6.2(F )} . (63)

Let P and G satisfy the hypothesis of Setup 2.5 with F0 and some α ≥ α0, with δ, d, ε > 0 above, and
with a sufficiently large integer m. To prove Lemma 5.1, we prove that for each fixed {h, i, j} ∈ F0, all
but ζ|Ghij | elements {u, v, w} ∈ Ghij satisfy

extF0,G({u, v, w}) = (1± ζ)α|F0|−1d(f
2)−3mf−3 (64)



CONSTRUCTIVE PACKINGS OF TRIPLE SYSTEMS 23

(recall the notation in (54)). Without loss of generality, we assume {h, i, j} = {1, 2, 3} ∈ F0. The proof
of (64) will use the Counting Lemma (Theorem 6.2) to show that

∑
{u,v,w}∈G123

extF0,G({u, v, w}) ≥

(
1−

(
ζ

2

)3
)(

α|F0|−1d(f
2)−3mf−3

)
× |G123|, (65)

and ∑
{u,v,w}∈G123

ext2
F0,G({u, v, w}) ≤

(
1 +

(
ζ

2

)3
)(

α|F0|−1d(f
2)−3mf−3

)2

× |G123|. (66)

Using (65) and (66), the Cauchy-Schwarz Inequality (Fact 6.4) immediately concludes (64).

Proof of (65). Write

# {F0 ⊆p.i. G} =

∣∣∣∣{F ∈ ( GF0

)
: F is a partite-isomorphic copy of F0 in G

}∣∣∣∣
for the number of partite-isomorphic copies of F0 in G. Observe that

∑
{u,v,w}∈G123 extF0,G({u, v, w}) =

# {F0 ⊆p.i. G}. To bound this quantity with the Counting Lemma, construct the following hypergraph

H from G: for {h, i, j} ∈
(

[f ]
3

)
, set

Hhij =

{
Ghij if {h, i, j} ∈ F0,

K3(Phi ∪ P ij ∪ Phj) if {h, i, j} 6∈ F0

and set H =
⋃{
Hhij : 1 ≤ h < i < j ≤ f

}
. Then,

∑
{u,v,w}∈G123 extF0,G({u, v, w}) = # {F0 ⊆p.i. G} =

|Kf (H)|. Since G and P satisfy the hypothesis of Setup 2.5, H and R = P satisfy the hypothesis of
Setup 6.1, specifically with αhij = α ± δ when {h, i, j} ∈ F0 and αhij = 1 otherwise, and all dij = d,
1 ≤ i < j ≤ f (cf. (62), (63) and Fact 6.5). An application of the Counting Lemma (Theorem 6.2) gives∑
{u,v,w}∈G123

extF0,G({u, v, w}) ≥ (1− ξ)
∏

1≤h<i<j≤f

αhij ×
∏

1≤i<j≤f

dij ×mf ≥ (1− ξ)(α− δ)|F0|d(f
2)mf .

To infer (65), we rewrite the inequality above. By the Triangle Counting Lemma (Fact 2.2),

|G123| = α123|K3(P 12 ∪ P 23 ∪ P 13)| = (α± δ)(1± ξ)d3m3. (67)

As such (using (1 + x)−1 ≥ 1− x),

∑
{u,v,w}∈G123

extF0,G({u, v, w}) ≥ (1− ξ)(α− δ)|F0|

(1 + ξ)(α+ δ)
d(f

2)−3mf−3 × |G123|

≥ (1− ξ)2

(
1− δ

α

)|F0|+1

α|F0|−1d(f
2)−3mf−3 × |G123|

(62)

≥ (1− ξ)3+f3

α|F0|−1d(f
2)−3mf−3 × |G123|

and so (65) follows from (61). �

Proof of (66). The proof is similar to its predecessor, but more involved. We begin by defining a graph

R, and 3-graphs F1, H and Ĥ, and use the following notation: define φ : [F ]→ [f ] (cf. (61))

φ(a) = ā =

{
a if a ∈ [f ],

a− f + 3 if a ∈ [F ] \ [f ].

For a ∈ [F ] \ [f ], let Va be a copy of Vā (where V (P ) = V (G) = V1 ∪ · · · ∪ Vf from Setup 2.5).
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Defining R. Set V (R) = V1 ∪ · · · ∪ VF . For each 1 ≤ i < j ≤ f , set Rij = P ij . For distint a ∈
{1, 2, 3, f + 1, . . . , F} and b ∈ {f + 1, . . . , F}, let Rab be a copy of P āb̄ (which is defined on Vā ∪ Vb̄)
defined on Va∪Vb. Finally, for a ∈ {4, . . . , f} and b ∈ {f+1, . . . , F}, set Rab = K[Va, Vb]. (Any complete

bipartite graph is (1, 0)-regular.) Set R =
⋃{

Rab : {a, b} ∈
(

[F ]
2

)}
. Note that P ⊆ R. By Setup 2.5 and

the construction above, R has precisely 2
(
f
2

)
− 3 many bipartite graphs Rab, 1 ≤ a < b ≤ f , which are

(d, ε)-regular, and all remaining bipartite graphs Rab of R are (1, ε)-regular.

Defining F1, H and Ĥ. Set V (F1) = [F ] = [2f−3] (cf. (61)). Set F1 =
{
{a, b, c} ∈

(
[F ]
3

)
: {ā, b̄, c̄} ∈ F0

}
.

Note that F0 ⊆ F1, and moreover, that (F1\F0)∪{1, 2, 3} is isomorphic to F0. As such, |F1| = 2|F0|−1.
Set V (H) = V1 ∪ · · · ∪ VF . For each {h, i, j} ∈ F0, set Hhij = Ghij . For each {a, b, c} ∈ F1 \ F0, let

Habc ⊆ K3(P ab∪P bc∪P ac) be a copy of Gāb̄c̄ ⊆ K3(P āb̄∪P b̄c̄∪P āc̄). Finally, for each {a, b, c} ∈
(

[F ]
3

)
\F1,

set Habc = K3(P ab∪P bc∪P ac). Set H =
⋃{
Habc : {a, b, c} ∈ F1

}
and Ĥ =

⋃{
Habc : {a, b, c} ∈

(
[F ]
3

)}
.

Note that G ⊆ H ⊆ Ĥ. By Setup 2.5 and the construction above, Ĥ has precisely |F1| = 2|F0| − 1 many
subhypergraphs Habc, 1 ≤ a < b < c ≤ F , which are (αabc, δ)-minimal, where αabc = α ± δ, and all

remaining subhypergraphs Habc of Ĥ are (1, δ)-minimal (cf. Fact 6.5).

Observe that∑
{u,v,w}∈G123

ext2
F0,G({u, v, w}) =

∑
{u,v,w}∈G123

extF1,H({u, v, w}) = # {F1 ⊆p.i. H} = |K3(Ĥ)|.

Since F0, P and G satisfy the hypothesis of Setup 2.5, R and Ĥ satisfy the hypothesis of Setup 2.5,
specifically with αabc = α ± δ when {a, b, c} ∈ F1 and αabc = 1 otherwise (cf. Fact 6.5), and all dab ∈
{d, 1}, 1 ≤ a < b ≤ F (cf. (62), (63)). As such, an application of the Counting Lemma (Theorem 6.2)
gives ∑
{u,v,w}∈G123

ext2
F0,G({u, v, w}) ≤ (1 + ξ)

∏
1≤a<b<c≤F

αabc ×
∏

1≤a<b≤F

dab ×mF

≤ (1 + ξ)(α+ δ)|F1|d2(f
2)−3m2f−3 = (1 + ξ)(α+ δ)2|F0|−1d2(f

2)−3m2f−3

(67)

≤ (1 + ξ)

(1− ξ)(α− δ)
(α+ δ)2|F0|−1d2(f

2)−6m2f−6|G123|.

Using (1− x)−1 ≤ 1 + 2x for x ∈ [0, 1/2], we further infer

∑
{u,v,w}∈G123

ext2
F0,G({u, v, w}) ≤ (1 + 2ξ)2

(
1 + 2

δ

α

)2|F0| (
α|F0|−1d(f

2)−3mf−3
)2

|G123|

(62)

≤ (1 + 2ξ)2+2F 3
(
α|F0|−1d(f

2)−3mf−3
)2

|G123|,

and so (66) follows from (61). �

7. Proof of the Slicing Lemma (Lemma 2.4)

In our proof of Lemma 2.4, we use the following two lemmas.

Lemma 7.1 (Auxiliary Slicing Lemma). For all ρ > 0 and s ∈ N, there exists S0 = SLem.7.1(ρ, s) ∈ N
so that the following statement holds.

Let K(3)[A,B,C] be the complete 3-partite 3-graph with vertex partition A∪B∪C, |A| = |B| = |C| =
S ≥ S0. Let q1, . . . , qs > 0 be given where

∑s
i=1 qi ≤ 1. Then, there exists a partition K(3)[A,B,C] =

J0 ∪ J1 ∪ · · · ∪ Js so that, for each 1 ≤ i ≤ s, |Ji| = (qi ± ρ)S3 and |K2,2,2(Ji)| ≤ q8
i

(
S
2

)3
(1 + ρ).
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Lemma 7.1 holds by the following standard probabilistic considerations. In the context above, inde-
pendently for each {a, b, c} ∈ K(3)[A,B,C], place {a, b, c} ∈ Ji with probability qi, 1 ≤ i ≤ s, and place
{a, b, c} ∈ J0 otherwise. To prove that the resulting partition has the desired properties, one appeals to
the Chernoff and Janson inequalities (cf. [12]). For simplicity, we omit these details.

Lemma 7.2 (Inheritance Lemma). For all α0, δ0 > 0, there exists δ = δLem.7.2 > 0 so that, for all
d > 0, there exists ε = εLem.7.2 > 0 so that the following statement holds.

Let P be a triad (cf. Definition 2.1) with parameters d, ε > 0 above and sufficiently large integer m,
and suppose G ⊆ K3(P ) is (α, δ)-minimal w.r.t. P , for some α ≥ α0. Let V ′i ⊆ Vi, 1 ≤ i ≤ 3, be given
with |V ′1 | = |V ′2 | = |V ′3 | > δ0m. Then,

(1) for each 1 ≤ i < j ≤ 3, P [V ′i , V
′
j ] is (d, ε/δ0)-regular;

(2) G[V ′1 , V
′
2 , V

′
3 ] is (α′, δ0)-minimal w.r.t. P [V ′1 , V

′
2 , V

′
3 ] (cf. Definition 2.3), with α′ = α± δ0.

Statement (1) of Lemma 7.2 is well-known, but we prove Statement (2) in Section 7.2.

We shall also use the following easy fact. In what follows, K
(2)
2,2,2 denotes the complete 3-partite graph

with 2 vertices in each vertex class. For a graph R, let K2,2,2(R) denote the set of all copies of K
(2)
2,2,2 in

R.

Fact 7.3. For all d > 0, there exists ε = εFact7.3(d) > 0 so that the following statement holds. Suppose
R = R12 ∪ R13 ∪ R23 is a 3-partite graph with 3-partition U1 ∪ U2 ∪ U3, where each Rij, 1 ≤ i <
j ≤ 3, is (d, ε)-regular and where each |Ui|, 1 ≤ i ≤ 3, is sufficiently large. Then, |K2,2,2(R)| ≤
2d12

(|U1|
2

)(|U2|
2

)(|U3|
2

)
.

Fact 7.3 is a standard and well-known consequence of the Graph Counting Lemma (Lemma 8.2 in the
Appendix). We omit the proof.

7.1. Proof of Lemma 2.4. This proof involves quite a few constants, which we summarize below
in (75). Let α0, δ

′ > 0 be given. Let

0 < ρ <
1

16
min{α0, δ

′} satisfy

(
1 + 16

ρ

α0

)9

≤ 1 +
δ′

2
. (68)

With ρ > 0 given above, and for an integer 1 ≤ s ≤ 1/α0, let S0(s) = SLem.7.1(ρ, s) be the constant
guaranteed by the Auxiliary Slicing Lemma (Lemma 7.1). Set S0 = max1≤s≤1/α0

S0(s), and set

S = max

{
S0,

⌈
29 · 105

δ′α8
0

⌉}
. (69)

Set

3τ = ξ =
ρ

3
and let δThm.6.2 = δThm.6.2(r = 6, α0/2, ξ) (70)

be the constant guaranteed by the Counting Lemma (Theorem 6.2). Set

0 < δ0 ≤ min

{
1

2S
, δThm.6.2

}
to satisfy

(
1 +

δ0
α0

)8

≤ 1 + ξ. (71)

The Inheritance Lemma guarantees constant

δLem.7.2 = δLem.7.2(α0, δ0) and set δ = δLem.2.4(α0, δ
′) = δLem.7.2. (72)

Let d > 0 be given. Let

εFact2.2 = εFact2.2(d, τ), εFact6.5 = εFact6.5(δ, d), εThm.6.2 = εThm.6.2(r = 6, α0, ξ, δ0, d),

εLem.7.2 = εLem.7.2(α0, δ0, δ, d), εFact7.3 = εFact7.3(d), (73)

be the constants guaranteed by the Triangle Counting Lemma (Fact 2.2), Fact 6.5, the Counting Lemma
(Theorem 6.2), the Inheritance Lemma (Lemma 7.2) and Fact 7.3, respectively. Set

ε = εLem.2.4(α0, δ
′, δ, d) = δ0 ×min {εFact2.2, εFact6.5, εThm.6.2, εLem.7.2, εFact7.3} . (74)
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In all that follows, let m be a sufficiently large integer. The constants above can be summarized by the
following hierarchies:

α0, δ
′ � ρ > ξ > τ ;

ρ� 1

S
, δThm.6.2 � δ0 � δLem.7.2 = δ;

d� εFact2.2, εFact6.5, εThm.6.2, εLem.7.2, εFact7.3 � ε≫
1

m
. (75)

Let P = P 12 ∪ P 23 ∪ P 13 be a triad (cf. Definition 2.1) with parameters d, ε,m above, and let
G ⊆ K3(P ) be (α, δ)-minimal w.r.t. P , for some α ≥ α0. Let σ1, . . . , σs ≥ α0 be given with

∑s
i=1 σi ≤ α.

To define the partition promised by Lemma 2.4, we make two preparations.
First, we prepare an application of the Auxiliary Slicing Lemma (Lemma 7.1). Let A = {a1, . . . , aS},

B = {b1, . . . , bS}, C = {c1, . . . , cS} be auxiliary sets (cf. (69)). Set qi = σi/α > 0, 1 ≤ i ≤ s, so that

s∑
i=1

σi ≤ α =⇒
s∑
i=1

qi ≤ 1. (76)

For q1, . . . , qs > 0 defined above, let K(3)[A,B,C] = J0 ∪ J1 ∪ · · · ∪ Js be the partition guaranteed by
Lemma 7.1. (This partition can be found by an exhaustive search in time depending on S = O(1).)
Second, we construct a vertex partition of V (G) = V (P ) which ‘mirrors’ A ∪B ∪ C. Fix 1 ≤ i ≤ 3, and
let

Vi = Vi,0 ∪
S⋃
x=1

Vi,x (77)

be any partition satisfying |Vi,1| = · · · = |Vi,S | = bm/Sc. (Clearly, such a partition is constructed in
linear time O(m).)

We now define the promised partition G = G0 ∪G1 ∪ · · · ∪Gs. Fix 0 ≤ a, b, c ≤ S. If {a, b, c}∩{0} 6= ∅,
put G[V1,a, V2,b, V3,c] ⊆ G0. Otherwise, for 0 ≤ k ≤ s, put

G[V1,a, V2,b, V3,c] ⊂ Gk ⇐⇒ {a, b, c} ∈ Jk. (78)

Since s ≤ 1/α0 and S (cf. (69)) are constants, the partition G = G0 ∪G1 ∪ · · · ∪ Gs is constructed in time
O(m3). It therefore remains to show that it has the desired property. For that, and for the remainder

of the proof, fix 1 ≤ k ≤ s. We show that Gk is (αk, δ
′)-minimal w.r.t. P , where dGk(P )

def
= αk = σk ± δ′.

It is fairly easy to see that dGk(P ) = αk = σk ± δ′. Indeed,

|Gk| =
∑

{a,b,c}∈Jk

|G[V1,a, V2,b, V3,c]| =
∑

{a,b,c}∈Jk

αabc|K3(P [V1,a, V2,b, V3,c])|,

where we wrote, for each {a, b, c} ∈ Jk, αabc = |G[V1,a, V2,b, V3,c]|/|K3(P [V1,a, V2,b, V3,c])|. Now, for
each fixed {a, b, c} ∈ Jk, we will apply the Inheritance Lemma (Lemma 7.2). Since |V1,a| = |V2,b| =
|V3,c| = bm/Sc > δ0m (cf. (71)), Lemma 7.2 (cf. (72)–(74)) guarantees that αabc = α± δ0 and that each
of P [V1,a, V2,b], P [V1,a, V3,c], P [V2,b, V3,c] is (d, ε/δ0)-regular. Applying the Triangle Counting Lemma
(Fact 2.2) (cf. (73), (74)), we have

|Gk| = (α± δ0)
∑

{a,b,c}∈Jk

|K3(P [V1,a, V2,b, V3,c])| = (α± δ0)(1± τ)d3
⌊m
S

⌋3

|Jk|.

Applying Lemma 7.1 (cf. (69)) and recalling αqk = σk, we see

|Gk| = (1± o(1))(qk ± ρ)(α± δ0)(1± τ)d3m3 (75)
= (σk ± 7ρ) d3m3.
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Finally, by the Triangle Counting Lemma (Fact 2.2) (cf. (73), (74)), we see2

αk
def
= dGk(P ) =

|Gk|
|K3(P )|

=
(σk ± 7ρ) d3m3

(1± τ)d3m3

(70)
= σk ± 8ρ

(68)
= σk ± δ′, (79)

as promised.
It remains to show that Gk is (αk, δ

′)-minimal w.r.t. P , i.e.,

|K2,2,2(Gk)| ≤ α8
kd

12

(
m

2

)3

(1 + δ′), (80)

for which we establish some notation and terminology. Let O = {a, a′, b, b′, c, c′} ∈ K2,2,2(Jk) be an
octohedron of Jk, where we understand a, a′ ∈ A, b, b′ ∈ B, c, c′ ∈ C. Define GO = G[V1,a ∪ V1,a′ , V2,b ∪
V2,b′ , V3,c∪V3,c′ ] to be the subhypergraph of G induced on V1,a∪V1,a′∪V2,b∪V2,b′∪V3,c∪V3,c′ . Note that,

since O ⊆ Jk, we have GO ⊆ Gk. We call an element Ô = {v1,a, v1,a′ , v2,b, v2,b′ , v3,c, v3,c′} ∈ K2,2,2(GO)
standard if

v1,a ∈ V1,a, v1,a′ ∈ V1,a′ , v2,b ∈ V2,b, v2,b′ ∈ V2,b′ , v3,c ∈ V3,c, v3,c′ ∈ V3,c′ , (81)

where, necessarily, a 6= a′, b 6= b′, c 6= c′. We write

K+
2,2,2(GO) =

{
Ô ∈ K2,2,2(GO) : Ô standard

}
, K+

2,2,2(Gk) =
⋃{
K+

2,2,2(GO) : O ∈ K2,2,2(Jk)
}
,

and K−2,2,2(Gk) = K2,2,2(Gk) \ K+
2,2,2(Gk).

We proceed with the following claims.

Claim 7.4. For each O ∈ K2,2,2(Jk), |K+
2,2,2(GO)| ≤ α8d12bm/Sc6 (1 + ρ).

Claim 7.5.
∣∣K−2,2,2(Gk)

∣∣ ≤ 13
S d

12m6.

We postpone the proofs of Claims 7.4 and 7.5 in favor of finishing the proof of (80).
By Claims 7.4 and 7.5,

|K2,2,2(Gk)| =
∣∣K−2,2,2(Gk)

∣∣+
∣∣K+

2,2,2(Gk)
∣∣ =

∣∣K−2,2,2(Gk)
∣∣+
∑{∣∣K+

2,2,2(GO)
∣∣ : O ∈ K2,2,2(Jk)

}
≤ 13

S
d12m6 + |K2,2,2(Jk)| × α8d12bm/Sc6 (1 + ρ) .

Applying Lemma 7.1 (cf. (69)) and recalling αqk = σk ≤ αk + 8ρ (cf. (79)), we see

|K2,2,2(Gk)| ≤ (qkα)8d12m
6

8
(1 + ρ)

2
+

13

S
d12m6 ≤

(
(1 + o(1))σ8

k (1 + 3ρ) +
105

S

)
d12

(
m

2

)3

(79)

≤
(

(αk + 8ρ)
8

(1 + 4ρ) +
105

S

)
d12

(
m

2

)3

≤

((
1 + 8

ρ

αk

)9

+
105

Sα8
k

)
α8
kd

12

(
m

2

)3

.

From (79), we have that αk ≥ σk − 8ρ ≥ α0 − 8ρ
(68)

≥ α0/2 (recall, by hypothesis, σk ≥ α0). Therefore,

|K2,2,2(Gk)| ≤

((
1 + 16

ρ

α0

)9

+ 28 105

Sα8
0

)
α8
kd

12

(
m

2

)3 (68),(69)

≤ (1 + δ′)α8
kd

12

(
m

2

)3

,

which proves (80).

2We write

x =
a± b
c± d

⇐⇒
a− b
c+ d

≤ x ≤
a+ b

c− d
.
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Proof of Claim 7.4. Fix O = {a, a′, b, b′, c, c′} ∈ K2,2,2(Jk). We apply the Counting Lemma (Theo-
rem 6.2) to GO, in the following way. Define a 6-partition V1,a ∪ V1,a′ ∪ V2,b ∪ V2,b′ ∪ V3,c ∪ V3,c′ , where
|V1,a| = |V1,a′ | = |V2,b| = |V2,b′ | = |V3,c| = |V3,c′ | =

⌊
m
S

⌋
, which will be the vertex set of the fol-

lowing 6-partite graph R and 3-graph H ⊆ K3(R). For each (a0, b0, c0) ∈ {a, a′} × {b, b′} × {c, c′},
define Ra0b0 = P [V1,a0 , V2,b0 ], Rb0c0 = P [V2,b0 , V3,c0 ], Ra0c0 = P [V1,a0 , V3,c0 ]. By the Inheritance
Lemma (Lemma 7.2) (cf. (73), (74)), each of these 12 bipartite graphs is (d, 2Sε)-regular. Define

Ra,a
′

= K[V1,a, V1,a′ ], R
bb′ = K[V2,b, V2,b′ ], R

cc′ = K[V3,c, V3,c′ ]. Each of these bipartite graphs is
(1, o(1))-regular. Set

R =
⋃{

Rxy : {x, y} ∈
(
{a, a′, b, b′, c, c′}

2

)}
. (82)

For each (a0, b0, c0) ∈ {a, a′} × {b, b′} × {c, c′}, define Ha0b0c0 = G[V1,a0 , V2,b0 , V3,c0 ]. By the Inheri-
tance Lemma (Lemma 7.2) (cf. (72)–(74)), we have that Ha0b0c0 is (αa0b0c0 , δ0)-minimal with respect
to R[V1,a0 , V2,b0 , V3,c0 ], for some αa0b0c0 = α ± δ0. We now define 12 further 3-partite 3-graphs. To

that end, fix {x, y, z} ∈
({a,a′,b,b′,c,c′}

3

)
where, for some d ∈ {a, b, c}, we have {d, d′} ⊂ {x, y, z}.

Define Hxyz = K3(Rxy ∪ Ryz ∪ Rxy) so that, by Fact 6.5, (cf. (73), (74)) Hxyz is (1, δ)-minimal
w.r.t. Rxy ∪Ryz ∪Rxz. Set

H =
⋃{

Hxyz : {x, y, z} ∈
(
{a, a′, b, b′, c, c′}

3

)}
. (83)

By the construction (82) and (83), every clique K6 in H corresponds to a copy Ô ∈ K+
2,2,2(GO), and

vice-versa. Moreover, by construction, R and H satisfy the hypothesis of Theorem 6.2 with r = 6, α0,
δ0, d, 2Sε (cf. (71)–(74)). Thus, by the Counting Lemma (recall α ≥ α0),

|K+
2,2,2(GO)| = |K6(H)| ≤ (1 + ξ)

∏{
αa0b0c0 : (a0, b0, c0) ∈ {a, a′} × {b, b′} × {c, c′}

}
× d12

⌊m
S

⌋6

≤ (1 + ξ)(α+ δ0)8d12
⌊m
S

⌋6

≤ (1 + ξ)

(
1 +

δ0
α0

)8

α8d12
⌊m
S

⌋6 (71)

≤ (1 + ξ)2α8d12
⌊m
S

⌋6

,

and so Claim 7.4 follows from (70). �

Proof of Claim 7.5. Indeed, note that

Ô = {v1,a, v1,a′ , v2,b, v2,b′ , v3,c, v3,c′} ∈ K−2,2,2(Gk) ⇐⇒

either Ô ∩ Vi,0 6= ∅ for some i ∈ [3], or (81) holds with a = a′ or b = b′ or c = c′.

Clearly, at most 3Sm5 = O(m5) elements Ô ∈ K2,2,2(Gk) can satisfy Ô ∩ (V1,0 ∪ V2,0 ∪ V3,0) 6= ∅. To

enumerate Ô ∈ K−2,2,2(Gk) of the latter variety, fix 1 ≤ a, a′, b, b′, c, c′ ≤ S where, w.l.o.g., a = a′. We use
Fact 7.3 to estimate

|K2,2,2(Gk[V1,a, V2,b ∪ V2,b′ , V3,c ∪ V3,c′ ])| ≤ |K2,2,2(P [V1,a, V2,b ∪ V2,b′ , V3,c ∪ V3,c′ ])| .

To apply Fact 7.3, set U1 = V1,a, U2 = V2,b ∪ V2,b′ , U3 = V3,c ∪ V3,c′ and Rij = P [Ui, Uj ] for all
1 ≤ i < j ≤ 3. Since each |Ui| ≥ bm/Sc, 1 ≤ i ≤ s, the Inheritance Lemma (Lemma 7.2) (cf. (73), (74))
guarantees that each Rij , 1 ≤ i < j ≤ 3, is (d, 2Sε)-regular. Fact 7.3 (cf. (73), (74)) then guarantees

|K2,2,2(P [V1,a, V2,b ∪ V2,b′ , V3,c ∪ V3,c′ ])| ≤ 2d12

(
|V1,a|

2

)(
|V2,b ∪ V2,b′ |

2

)(
|V3,c ∪ V3,c′ |

2

)
≤ 4d12m

6

S6
.

Summing over all 3S5 many 5-element indices 1 ≤ a, a′, b, b′, c, c′ ≤ S, we conclude

|K−2,2,2(Gk)| ≤ O(m5) + 12S5d12m
6

S6
≤ 13

S
d12m6,

as promised. �
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7.2. Proof of Lemma 7.2. We prove Statement (2) of the Inheritance Lemma, and use the following
important concept of Frankl and Rödl [6].

Definition 7.6 ((α, δ)-regularity). Let P be a triad (cf. Definition 2.1) and let G ⊆ K3(P ) satisfy
dG(P ) = α. For δ > 0, we say that G is (α, δ)-regular if, for all Q ⊆ P with |K3(Q)| > δ|K3(P )|, we have
|dG(Q)− α| < δ.

It was shown by Nagle, Poerschke, Rödl and Schacht (see Theorem 2.1 and Corollary 2.1 in [14]) that,
with suitably defined constants, (α, δ)-minimality and (α, δ)-regularity are equivalent concepts.

Theorem 7.7 (Nagle, Poerschke, Rödl, Schacht [14]). For all α0, δ̂ > 0, there exists δ = δThm.7.7(α0, δ̂) >

0 so that, for all d > 0, there exists ε = εThm.7.7(α0, δ̂, δ, d) > 0 so that the following statement holds.
Let P be a triad with parameters d, ε and a sufficiently large integer m, and let G ⊆ K3(P ) satisfy

dG(P ) = α ≥ α0.

(1) If G is (α, δ)-minimal w.r.t. P , then G is (α, δ̂)-regular w.r.t. P .

(2) If G is (α, δ)-regular w.r.t. P , then G is (α, δ̂)-minimal w.r.t. P .

By using Theorem 7.7, the proof of Lemma 7.2 is a formality.

Proof of Lemma 7.2. Let α0, δ0 > 0 be given. With δ̂ = δ0, Theorem 7.7 ensures constant

δ1 = δThm.7.7(α0 − δ0, δ0) > 0, and set δ2 =
1

4
δ3
0δ1. (84)

With δ̂ = δ2, Theorem 7.7 ensures constant

δ3 = δThm.7.7(α0, δ2) > 0, and set δ = δLem.7.2(α0, δ0) = δ3. (85)

Let d > 0 be given. With τ = 1/2, let

ε0 = εFact2.2(d, τ = 1/2) > 0 (86)

be the constant guaranteed by the Triangle Counting Lemma (Fact 2.2). With δ̂ = δ0, let

ε1 = εThm7.7(α0 − δ0, δ0, δ1, d) > 0 (87)

be the constant guaranteed by Theorem 7.7. With δ̂ = δ2, let

ε2 = εThm7.7(α0, δ2, δ, d) > 0 (88)

be the constant guaranteed by Theorem 7.7. Set

ε = εLem.7.2(α0, δ0, δ, d) = min{δ0ε0, δ0ε1, ε2}. (89)

In all that follows, let m be a sufficiently large integer.
Let P be a triad (cf. Definition 2.1) with parameters d, ε,m above, and suppose G ⊆ K3(P ) is (α, δ)-

minimal w.r.t. P . Let V ′i ⊆ Vi, 1 ≤ i ≤ 3, be given with |V ′1 | = |V ′2 | = |V ′3 | > δ0m. To simplify notation
in the argument below, we write P ′ = P [V ′1 , V

′
2 , V

′
3 ], G′ = G ∩ K3(P ′), α′ = dG′(P ′). By Statement (1)

of Lemma 7.2, each bipartite graph P [V ′i , V
′
j ], 1 ≤ i < j ≤ 3, is (d, ε/δ0)-regular, and so by (89), each

such P [V ′i , V
′
j ] is (d, ε0)-regular and (d, ε1)-regular.

We first apply Theorem 7.7 to G and P . To that end, recall from our hypothesis that G is (α, δ)-
minimal w.r.t. P , where α ≥ α0 and where each P ij , 1 ≤ i < j ≤ 3, is (d, ε)-regular (cf. (85), (88)
and (89)). As such, Theorem 7.7 ensures that G is (α, δ2)-regular w.r.t. P . We proceed with the
following claim.

Claim 7.8. G′ is (α′, δ1)-regular w.r.t. P ′, where α′ = α± δ2.

Proof of Claim 7.8. We first check that α′ = α± δ2. Using Statement (1) of Lemma 7.2, it follows from
(two applications of) the Triangle Counting Lemma (Fact 2.2) that

|K3(P ′)| > 1

2
d3|V ′1 ||V ′2 ||V ′3 | >

1

2
δ3
0d

3|V1||V2||V3| >
1

4
δ3
0 |K3(P )|

(84)
> δ2|K3(P )|. (90)
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Setting Q = P ′ in Definition 7.6, we conclude from the (α, δ2)-regularity of G w.r.t. P that |α′−α| < δ2,
as promised.

Now, let Q ⊆ K3(P ′) be given satisfying |K3(Q)| > δ1|K3(P ′)| (84)
= (4δ2/δ

3
0)|K3(P ′)|. By the penulti-

mate bound of (90), we see |K3(Q)| > δ2|K3(P )|, and so by the (α, δ2)-regularity of G w.r.t. P , we have

|dG(Q)−α| < δ2, where clearly, dG(Q) = dG′(Q). By the Triangle Inequality, |dG′(Q)−α′| ≤ 2δ2
(84)
< δ1,

concluding the proof. �

We now apply Theorem 7.7 to G′ and P ′. To that end, we have from Claim 7.8 that G′ is (α′, δ1)-
regular w.r.t. P ′, where α′ ≥ α − δ2 ≥ α0 − δ0, and where each constituent bipartite graph P [V ′i , V

′
j ],

1 ≤ i < j ≤ 3, is (d, ε1)-regular (cf. (84), (87), and (89)). As such, Theorem 7.7 ensures that G′ is
(α′, δ0)-minimal w.r.t. P ′, as promised. �

8. Appendix: Proof of Theorem 6.2

As we mentioned in Remark 6.3, the Counting Lemma was proven in [9] in the following special case.

Theorem 8.1 (Haxell, Nagle, Rödl [9]). For every r ∈ N and for all α, µ > 0, there exists δ =
δThm. 8.1(r, α, µ) > 0 so that, for all d > 0, there exists ε = εThm. 8.1(r, α, µ, δ, d) > 0 so that the
following holds.

Let R = P and H = G satisfy the hypothesis of Setup 6.1 with r, α0 = α, δ, d0 = d, ε > 0 above, where
all αhij = α, 1 ≤ h < i < j ≤ r, and all dij = d, 1 ≤ i < j ≤ r, and where m ∈ N is sufficiently large.

Then, |Kr(G)| = (1± µ)α(r
3)d(r

2)mr.

It is not difficult to show that Theorem 8.1 implies Theorem 6.2, and we sketch this proof now. Our
proof closely follows lines from [15, 16], where these ideas were used for different notions of regularity.

Before we start, we state, without proof, two very well-known results referenced earlier in this paper:
the Graph Counting Lemma and the Graph Extension Lemma. To state these results, we use the

following notation (for a graph R satisfying the hypothesis of Setup 6.1): Kr(R) =
( R
K

(2)
r

)
and for each

{u, v, w} ∈ K3(R), ext
K

(2)
r ,R

({u, v, w}) = |{U ∈ Kr(R) : {u, v, w} ⊆ U}|.

Lemma 8.2 (Graph Counting and Extension Lemma). For every r ∈ N and for all d0, τ > 0, there
exists ε = εLem.8.2(r, d0, τ) > 0 so that the following holds.

Let R be a graph satisfying the hypothesis of Setup 6.1 with r, d0, ε > 0 above, and where m ∈ N is
sufficiently large. Then,

(1) |Kr(R)| = (1± τ)
∏

1≤i<j≤r dij ×mr;

(2) for each 1 ≤ h < i < j ≤ r, all but τm3 triangles {vh, vi, vj} ∈ K3(Rhi ∪Rij ∪Rhj) satisfy

ext
K

(2)
r ,R

({vh, vi, vj}) = (1± τ)
1

dhidijdhj

∏
1≤a<b≤r

dab ×mr.

8.1. Proof-sketch of Theorem 6.2. We omit a formal description of constants and refer to the hier-
archy 1/r, α0, ξ � δ � d0 � ε≫ 1/m, which is consistent with the quantification of Theorem 6.2. In
the hierarchy above, we introduce further constants µ, α, d, τ (cf. Remark 8.4):

1

r
, α0, ξ � µ, α� δ � d0 � d, τ � ε≫

1

m
, (91)

which is consistent with the quantification of Theorem 8.1. Now, let R and H satisfy the hypothesis of
Setup 6.1 with the constants α0, δ, d0, ε,m. We show

|Kr(H)| = (1± ξ)
∏

1≤h<i<j≤r

αhij ×
∏

1≤i<j≤r

dij ×mr. (92)

The main idea for proving (92) is to ‘randomly’ partition the graph R and 3-graph H in a standard
but suitable way. Fix 1 ≤ h < i < j ≤ r, and set phij = α/αhij (cf. (91)) and Ahij = b1/phijc. Define

Hhij = Hhij0 ∪ Hhij1 ∪ · · · ∪ HhijAhij
by the following rule: for every 1 ≤ a ≤ Ahij and {vh, vi, vj} ∈ Hhij ,
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put {vh, vi, vj} ∈ Hhija independently with probability phij . We define a random partition of R similarly.

Fix 1 ≤ i < j ≤ r, and set qij = d/dR(Vi, Vj) and Bij = b1/qijc. Define Rij = Rij0 ∪ R
ij
1 ∪ · · · ∪ R

ij
Bij

by the following rule: for every 1 ≤ b ≤ Bij and {vi, vj} ∈ Rij , put {vi, vj} ∈ Rijb independently with
probability qij . We set

H0 =
⋃{
Hhij0 : 1 ≤ h < i < j ≤ r

}
and R0 =

⋃{
Rij0 : 1 ≤ i < j ≤ r

}
. (93)

We have the following standard probabilistic fact.

Fact 8.3. With probability 1− o(1), where o(1)→ 0 as m→∞, the following hold:

(1) for all 1 ≤ i < j ≤ r and 1 ≤ b ≤ Bij, the graph Rijb is (d, 2ε)-regular;

(2) for all {h, i, j} ∈
(

[r]
3

)
and (a, bhi, bij , bhj) ∈ [Ahij ] × [Bhi] × [Bij ] × [Bhj ], the 3-graph Hhija ∩

K3(Phibhi
∪ P ijbij ∪ P

hj
bhj

) is (α± o(1), 2δ)-minimal w.r.t. Phibhi
∪ P ijbij ∪ P

hj
bhj

.

With probability at least 1/6, the following hold:

(3) the graph R0 satisfies |R0| ≤ 3
∑

1≤i<j≤r qij |Rij | = 3
(
r
2

)
dm2.

(4) for each {h, i, j} ∈
(

[r]
3

)
, |Hhij0 | ≤ 2

(
r
3

)
phij |Hhij | = 2

(
r
3

)
α|K3(Phi∪P ij∪Phj)| ≤ 4r3αdhidijdhjm

3.

We omit the proof of Fact 8.3, but indicate its key ingredients. Statement (1) is a well-known and routine
application of the Chernoff inequality. Statement (2) is a routine application of the Janson inequality.
Statements (3) and (4) are immediate applications of the Markov inequality. The last inequality in
Statement (4) follows from the Triangle Counting Lemma (Lemma 8.2) with r = 3.

We may now argue (92). We call a function a :
(

[r]
3

)
→ N an H-pattern if, for every 1 ≤ h < i < j ≤ r,

we have a({h, i, j}) def
= ahij ≤ Ahij . We call a function b :

(
[r]
2

)
→ N an R-pattern if, for every

1 ≤ i < j ≤ r, we have b({i, j}) def
= bij ≤ Bij . We call a pair of functions (a, b) an (H, R)-pattern if a is

an H-pattern and b is an R-pattern. For an (H, R)-pattern (a, b), we write

Ha =
⋃{

Hhijahij
: {h, i, j} ∈

(
[r]

3

)}
, Rb =

⋃{
Rijbij

: {i, j} ∈
(

[r]

2

)}
, Hab = Ha ∩ K3(Rb).

Since there are (exactly)∏
1≤h<i<j≤r

Ahij ×
∏

1≤i<j≤r

Bij =
∏

1≤h<i<j≤r

⌊αhij
α

⌋
×

∏
1≤i<j≤r

⌊
dR(Vi, Vj)

d

⌋
≤ α−(r

3)d−(r
2) = O(1) (94)

many (H, R)-patterns (a, b), Fact 8.3 implies that every one of them yields a pair G = Hab and P = Rb

which satisfy the hypothesis of Theorem 8.1 with the constants r, α ± o(1), 2δ, d, 2ε,m (cf. (91)). As
such, we may immediately conclude the lower bound in (92):

|Kr(H)| ≥
∑
{|Kr(Hab)| : (a, b) is an (H, R)-pattern}

Thm.8.1
≥ (1− µ)α(r

3)d(r
2)mr ×

∏
1≤h<i<j≤r

Ahij ×
∏

1≤i<j≤r

Bij

(94)

≥ (1− µ)
∏

1≤h<i<j≤r

(αhij − α)×
∏

1≤i<j≤r

(dR(Vi, Vj)− d)×mr

(91)

≥ (1− ξ)
∏

1≤h<i<j≤r

αhij ×
∏

1≤i<j≤r

dij ×mr,

where we used dR(Vi, Vj) ≥ dij − ε, 1 ≤ i < j ≤ r. It remains to prove the upper bound in (92).
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Observe that

|Kr(H)| ≤
∑
{|Kr(Hab)| : (a, b) is an (H, R)-pattern}

+

∣∣∣∣{R ∈ Kr(H) :

(
R
2

)
∩R0 6= ∅

}∣∣∣∣+

∣∣∣∣{R ∈ Kr(H) :

(
R
3

)
∩H0 6= ∅

}∣∣∣∣ . (95)

An application of Theorem 8.1 (cf. (91)) yields∑
{|Kr(Hab)| : (a, b) is an (H, R)-pattern} ≤ (1 + µ)α(r

3)d(r
2)mr ×

∏
1≤h<i<j≤r

Ahij ×
∏

1≤i<j≤r

Bij

(94)

≤ (1 + µ)
∏

1≤h<i<j≤r

αhij ×
∏

1≤i<j≤r

dij ×mr. (96)

Clearly, ∣∣∣∣{R ∈ Kr(H) :

(
R
2

)
∩R0 6= ∅

}∣∣∣∣ ≤ |R0|mr−2
Fact8.3
≤ 3r2dmr. (97)

Momentarily, we will prove the following bound (see Remark 8.4):∣∣∣∣{R ∈ Kr(H) :

(
R
3

)
∩H0 6= ∅

}∣∣∣∣ ≤ r3τmr + 8r6α
∏

1≤i<j≤r

dij ×mr. (98)

Combining (95)–(98) and applying αhij ≥ α0 and dij ≥ d0, {h, i, j} ∈
(

[r]
3

)
, we have

|Kr(H)| ≤
∏

1≤h<i<j≤r

αhij×
∏

1≤i<j≤r

dij×mr

(
1 + µ+ 3r2dα

−(r
3)

0 d
−(r

2)
0 + r3τα

−(r
3)

0 d
−(r

2)
0 + 8r6αα

−(r
3)

0

)
(91)

≤ (1 + ξ)
∏

1≤h<i<j≤r

αhij ×
∏

1≤i<j≤r

dij ×mr, (99)

as promised.

Remark 8.4. In (96), (98) and (99), the constants in (91) play a subtle role. We introduced the constant
α in (91) to satisfy δ � α � α0. Indeed, we used take α � α0 in (99), but we used δ � α in (96) (for
applying Theorem 8.1). The quantification of Theorem 6.2 allows d0 � δ, so we must accept α � d0,
which makes (98) necessarily more delicate than (97). 2

Proof of (98). Note that∣∣∣∣{R ∈ Kr(H) :

(
R
3

)
∩H0 6= ∅

}∣∣∣∣ ≤ ∑
1≤h<i<j≤r

∣∣∣∣{R ∈ Kr(H) :

(
R
3

)
∩Hhij0 6= ∅

}∣∣∣∣ . (100)

Now, fix 1 ≤ h < i < j ≤ r. Clearly∣∣∣∣{R ∈ Kr(H) :

(
R
3

)
∩Hhij0 6= ∅

}∣∣∣∣ =
∑

{vh,vi,vj}∈Hhij
0

ext
K

(3)
r ,H({vh, vi, vj})

≤
∑

{vh,vi,vj}∈Hhij
0

ext
K

(2)
r ,R

({vh, vi, vj})
Lem.8.2
≤ τmr + 2

1

dhidijdhj

∏
1≤a<b≤r

dab ×mr−3 × |Hhij0 |

Fact8.3
≤ τmr + 8r3α

∏
1≤a<b≤r

dab ×mr. (101)

Applying (101) to (100) yields (98). �
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