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Abstract: Understanding linkages between environmental changes and disease emergence in human and

wildlife populations represents one of the greatest challenges to ecologists and parasitologists. While there is

considerable interest in drivers of amphibian microparasite infections and the resulting consequences, com-

paratively little research has addressed such questions for amphibian macroparasites. What work has been done

in this area has largely focused on nematodes of the genus Rhabdias and on two genera of trematodes (Ribeiroia

and Echinostoma). Here, we provide a synopsis of amphibian macroparasites, explore how macroparasites may

affect amphibian hosts and populations, and evaluate the significance of these parasites in larger community

and ecosystem contexts. In addition, we consider environmental influences on amphibian–macroparasite

interactions by exploring contemporary ecological factors known or hypothesized to affect patterns of infec-

tion. While some macroparasites of amphibians have direct negative effects on individual hosts, no studies have

explicitly examined whether such infections can affect amphibian populations. Moreover, due to their complex

life cycles and varying degrees of host specificity, amphibian macroparasites have rich potential as bioindicators

of environmental modifications, especially providing insights into changes in food webs. Because of their

documented pathologies and value as bioindicators, we emphasize the need for broader investigation of this

understudied group, noting that ecological drivers affecting these parasites may also influence disease patterns

in other aquatic fauna.

Keywords: parasite, global change, bioindicators, infectious disease, community ecology, malformations,

deformities, trematode, helminth, emerging disease

INTRODUCTION

The rapid and widespread emergence of human and wild-

life diseases underscores the importance of determining

how environmental change alters host–parasite dynamics as
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well as the subsequent impacts of these altered interactions

(Daszak et al. 2000; Jones et al. 2008; Ostfeld et al. 2008).

With nearly a third of all species extinct or in decline,

amphibians have become the most imperiled class of ver-

tebrates worldwide (Stuart et al. 2004; Collins and Crump

2009). Alongside habitat loss and destruction, directly

transmitted microparasites, such as ranaviruses and the

amphibian chytrid fungus Batrachochytrium dendrobatidis

(Bd), have been directly linked to population die-offs and

species losses (Skerratt et al. 2007; Gray et al. 2009; Kil-

patrick et al. 2010). However, macroparasite infections also

have the potential to influence amphibian hosts in more

subtle and complex ways, as seen in other host taxa. For

example, macroparasites influence host growth and

reproductive rates, playing a key role in population fluc-

tuations (Hudson et al. 1998; Albon et al. 2002; Holmstead

et al. 2005). Additionally, the complex life cycles of many

macroparasites makes them effective bioindicators of

environmental change (MacKenzie et al. 1995; Marcogliese

2005; Hudson et al. 2006), suggesting that changes in

macroparasitic infections also have potential as a conser-

vation tool in amphibian-based research.

Here, we highlight three fundamental reasons why

amphibian macroparasites have immediate relevance to the

study of amphibians and wildlife disease ecology in general.

First, although macroparasites were once thought to cause

little pathology in amphibian hosts (Prudhoe and Bray

1982), growing evidence from experimental and field

research has revealed important exceptions to this long-

held dictum (see Table 1). These parasites can cause

pathology directly to individual hosts and/or indirectly

through interactions with other pathogens and forms of

environmental change (e.g., Koprivnikar 2010). Second,

environmental factors such as pesticides, eutrophication,

and landscape are important drivers of amphibian macro-

parasite infections (Kiesecker 2002; Johnson et al. 2007;

King et al. 2007; Rohr et al. 2008a; Koprivnikar and Red-

fern, in press), suggesting that global environmental

changes will have significant influences on infections.

Third, stemming from the above, macroparasites of

amphibians have important potential as biological and

environmental indicators. Owing to their complex life cy-

cles and varying dependency on species distributed across

multiple trophic levels, many alterations in the food web

will affect the parasites moving through it (Marcogliese

2005). Helminths, in particular, can provide an inexpensive

yet reliable method of obtaining information about host

activity, distribution, and sensitivity to environmental

perturbations while also exhibiting direct vulnerability to

factors such as contaminants (Marcogliese and Cone 1997;

Pietrock and Marcogliese 2003; Byers et al. 2011).

Our objectives are to (1) provide background on

amphibian macroparasites known to cause pathology, (2)

review key recent findings regarding drivers of amphibian

macroparasite infections and critically assess their complex

effects on individuals and populations, and (3) suggest

future directions for amphibian–macroparasite research to

address pressing gaps in our knowledge of these parasites,

particularly with respect to their use as biological indica-

tors. While these objectives have applied significance to

understanding amphibian macroparasites, we believe that

they have further conceptual importance in exploring the

ecology of host–pathogen interactions in the context of

global change.

MACROPARASITES AND AMPHIBIANS

Macroparasites typically include helminths (monogeneans,

trematodes, cestodes, nematodes, acanthocephalans, ne-

matomorphs) and some arthropods (mites, ticks, cope-

pods, lice). Macroparasites differ from microparasites (e.g.,

viruses, fungi, bacteria, and protists) by their larger size,

their lack of asexual replication in vertebrate hosts, and

their intensity-dependent pathology based on the number

of parasites infecting a host. Importantly, this means that

host pathology (e.g., mortality or morbidity) is most likely

to occur under conditions of high infection intensity. Many

macroparasites have complex life cycles requiring a period

of development in one or more intermediate hosts before

maturation in the definitive host. As both generalist pre-

dators and prey to larger predators, amphibians function as

intermediate and definitive hosts to a variety of parasites in

aquatic and terrestrial food webs. Individual frogs may

support dozens of macroparasite species and several

thousand individual parasites (Sutherland 2005; Schott-

hoefer et al. 2011). In most studies, at least half of surveyed

amphibians are infected with parasitic helminths (see

Supplementary material). However, helminth taxon dom-

inance varies by amphibian host order and ecology (Fig. 1).

For example, nematodes are more common in relatively

terrestrial amphibian species, while trematodes dominate

the macroparasite fauna of ranids, tree frogs, and aquatic

amphibians generally. Knowledge of such amphibian hel-

minth infection patterns is crucial for their development as

environmental bioindicators (see Table 2).

Janet Koprivnikar et al.
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Representative Groups and Life Cycles

Amphibians can be infected with larval macroparasites as

intermediate or paratenic (transport) hosts, or with adult

parasites as definitive hosts. As intermediate hosts,

amphibians typically become infected by free-living para-

site stages during their larval development. For instance,

free-swimming trematode stages (cercariae) emerge from

snail first intermediate hosts, invade tadpoles, and develop

into an encysted stage (metacercaria) or an additional

mobile larval stage (mesocercaria). Some larval trematodes,

such as Ribeiroia ondatrae and the echinostomes, can cause

substantial pathology during this process (Table 1; Fig. 2).

Amphibian larvae can also become infected by ingesting

cercariae (e.g., Gorgodera). As definitive hosts for trema-

todes, amphibians become infected when they ingest a

second intermediate or paratenic host (usually an arthro-

pod or another amphibian) carrying a larval stage (e.g.,

Gorgoderina, Haematoloechus, and Halipegus spp.), or

consume cysts found in their own shed skin (e.g., Glyp-

thelmins and Megalodiscus spp.) or on vegetation (Fig. 3).

In these cases, the trematode reproduces sexually within the

amphibian and releases reproductive stages (eggs) that

leave the host’s body.

Nematodes (roundworms), cestodes (tapeworms), and

acanthocephalans (spiny-headed worms) are also impor-

tant and common parasites of amphibians. Amphibians can

serve as intermediate or paratenic hosts of spirurid nema-

todes (e.g., Spiroxys, Gnathostoma, physalopterids), which

are likely acquired by ingesting a wide range of other

intermediate or paratenic hosts (Anderson 2000). However,

the most common are adult forms that infect the host by

direct penetration, ingestion of juveniles/eggs, or ingestion

of paratenic hosts (e.g., Cosmocercoides, Gyrinicola, Falcu-

stra, Oswaldocruzia, Rhabdias spp.). For instance, larval

nematodes in the genus Rhabdias reside in moist soil and

invade the skin of their anuran hosts, subsequently

migrating to the lungs. Amphibians are definitive, inter-

mediate, or paratenic hosts for many cestodes (e.g., Both-

riocephalus, Cylindrotaenia, Distoichometra, Mesocestoides,

Ophiotaenia, Proteocephalus spp.) and acanthocephalans

(e.g., Acanthocephalus, Pseudoacanthocephalus). Virtually all

cestodes and acanthocephalans use arthropods as their first

intermediate hosts, which are then ingested by the next host

in the life cycle.

While endohelminths generally dominate the macro-

parasite fauna of amphibians, external macroparasites can

also be present, particularly monogeneans, although these
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also can be found in organs such as the bladder (e.g.,

Polystoma nearcticum, Pseudodiplorchis americanus, Proto-

polystoma xenopodis). Monogeneans have a direct life cycle

that does not involve intermediate hosts. Typically, eggs are

shed into the water and hatch into a free-swimming stage

that locates and infects another host. Arthropods are also

known ectoparasites of amphibians. The copepod Lernaea

cyprinacea has been found to infect tadpoles and mites (e.g.,

Hannemania spp., Endotrombicula pillersi) have been

reported on adult frogs (Table 1). In addition, flies (e.g.,

Bufolucilia bufonivora, Lucilia caesar) can use amphibians as

hosts and leeches (e.g., Desserobdella picta) are also often

found on both larval and adult amphibians.

KEY FINDINGS FROM STUDIES OF AMPHIBIAN

MACROPARASITES

How and When are Amphibian Macroparasite

Infections Important?

In contrast to the historical perspective of amphibian

macroparasites being relatively benign, recent studies have

revealed that some species can exert considerable effects on

their hosts (Table 1). For example, trematode metacerca-

riae have traditionally been thought of as ‘‘resting’’ stages

causing little host pathology: ‘‘Even those parasites that

utilize amphibians as intermediate hosts generally seem to

do no more than inconvenience their hosts…’’ (Prudhoe

and Bray 1982). This assumption is now being challenged

in light of greater recognition that, for certain parasite

species and over particular ranges of infection intensity, the

pathology associated with macroparasite infections can be

considerable. In North America, for instance, R. ondatrae

has been linked through field and experimental research to

severe limb malformations in amphibian species, which can

affect a significant proportion (e.g., 20–100%) of larval and

metamorphic individuals in a population (Sessions and

Ruth 1990; Johnson et al. 1999, 2002, 2011; Schotthoefer

et al. 2003a; Rohr et al. 2010). These malformations impair

host mobility and feeding while dramatically reducing the

survival of affected individuals to maturity (Johnson et al.

2001; Goodman and Johnson 2011a, b). Similarly, echi-

nostome trematodes that form cysts in tadpole kidneys,

which sometimes number in the thousands, can be detri-

mental for young tadpoles (Fried et al. 1997; Schotthoefer

et al. 2003b; Beasley et al. 2005; Holland 2010), causing

renal failure and mortality at high infection levels.

Other helminth infections of amphibians also nega-

tively impact their hosts, although considerably less is

known about these groups. For example, the large cysts of

Clinostomum spp. can cause scoliosis and Diplostomulum

scheuringi can damage host eyes and brain (see Table 1),

while adult lung flukes (Haematoloechus spp.) commonly

found in adult frogs are now known to cause substantial

tissue damage (see Table 1; Fig. 2). Such effects also can

manifest indirectly through interactions with other factors.

For instance, pathology from nematodes such as Rhabdias

spp. and Oswaldocruzia filiformis (Table 1) likely influences

host ecology under natural conditions. Cestode infections,

such as that of Nematotaenia dispar, sometimes result in

host pathology and death at high intensities (Elkan 1960)

and monogenean infection in desert toads may affect their

ability to survive hibernation and breed (Tinsley 1995).

Importantly, the most substantial effects of macro-

parasites are often sublethal and context dependent

(Marcogliese and Pietrock 2011). Both abiotic and biotic

Fig. 1. General helminth diver-

sity in amphibians based on

Supplementary material with

breakdown of helminth commu-

nity composition (white bars

trematodes, gray bars nematodes,

black bars cestodes) based on

a amphibian host habitat type,

b general host type. Note that

data represent only adult and

metamorph host stages and the

three most common helminths

found across studies.

Amphibian Macroparasites
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factors can mediate how macroparasites impact their hosts

(Lafferty and Holt 2003), with contaminants and predators

playing important modulatory roles. For example, echi-

nostome infection rarely has significant negative effects on

tadpoles at low intensities (Schotthoefer et al. 2003b;

Orlofske et al. 2009), but a combination of infection and

pesticide exposure resulted in the decreased mass and

survival of tadpoles relative to individuals subjected to

stressor alone (Koprivnikar 2010). Similarly, a biomarker of

host stress (dehydroretinol) was highest in bullfrogs both

exposed to pesticides and infected with strigeid trematode

cysts (Marcogliese et al. 2009) and nematode maturation in

frog hosts was accelerated by host pesticide exposure

(Gendron et al. 2003).

Johnson et al. (2006) reported synergistic increases in

salamander malformations and growth impairment when

injury from predation and R. ondatrae infections were

combined, and a combination of trematode infection and

predation resulted in lower larval survival than factor alone

in another study (Belden and Wojdak 2011). Infection with

R. ondatrae can result in malformations that significantly

decrease frog host ability to respond to predation threats

(Goodman and Johnson 2011a, b), similar to the increased

vulnerability of helminth-infected red grouse to predators

(Hudson et al. 1992). Such parasite–host–predator

dynamics may play a large role in host population fluctu-

ations (Hudson et al. 1992). Other context-dependent

effects have also been reported, such as pathology from

larval amphibian leech infection depending on rearing

temperature, food level, and population density (Berven

and Boltz 2001), and many more likely occur, illustrating

the need for further study of such interactive effects. Belden

and Kiesecker (2005) found greater infection by the trem-

atode Alaria spp. in tadpoles exposed exogenously to glu-

cocorticoid stress hormones, indicating the importance of

considering other stressors. Accordingly, attempting to

elucidate macroparasite effects in isolation of other phe-

nomena occurring in natural settings can lead to a serious

underestimation of impacts on hosts and populations given

that context dependency with respect to disease is now

increasingly recognized as common (Marcogliese and

Pietrock 2011).

One of the most important yet largely unexplored

questions is whether the effects of macroparasites on

individual amphibian hosts translate into population-level

effects. Given that amphibians often have highly variable

recruitment and substantial mortality in early life stages

(e.g., larvae and metamorphs), pathology associated with

Fig. 2. a Malformed frog and asso-

ciated Ribeiroia ondatrae metacerca-

riae, b Echinostome metacercariae

within an amphibian kidney and

resulting edema, c Fly eggs on frog

skin surface, d Clinostomum sp.

metacercariae within frog mandible,

e External surface of a bullfrog lung

with three visible frog lung flukes,

H. floedae, scale bar mm, f Inside a

lung of a bullfrog infected with

H. floedae and R. joaquinensis

(arrow), scale bar 2 mm. (photos

a–d courtesy of PTJ Johnson, photos

e, f courtesy of MG Bolek)
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macroparasite infections may or may not have significant

ramifications for host populations. Because macroparasites

are unlikely to cause rapid die-offs or the complete extir-

pation of host populations, as is sometimes reported for Bd

and ranavirus infections (Lips et al. 2006; Gray et al. 2009),

detecting any population-level effects associated with

macroparasites presents a greater challenge. For instance,

even if trematodes, such as R. ondatrae, sharply reduce

amphibian recruitment through both direct mortality and

malformations, as seems likely when malformation fre-

quency exceeds 50%, these effects are nearly impossible to

detect without long-term data that accounts for potential

‘‘rescue’’ of affected populations from nearby sites without

infection (i.e., source-sink dynamics; e.g., Martı́nez-Solano

and González 2008). Given the ubiquity and diversity of

macroparasite infections in amphibians, their potential to

occur at very high intensities, and the documented effects

of such parasites on other host taxa (Hudson et al. 1992,

1998; Albon et al. 2002), the potential for ecological and

evolutionary effects of these parasites on amphibians is

considerable. As of yet, no study has directly tackled this

topic, which we identify as an important research priority

in the continued study of amphibian macroparasites.

What Drives Macroparasite Infection

in Amphibians and What Can This Tell Us?

Many environmental factors can affect host susceptibility to

infection, transmission pathways via impacts on interme-

diate/definitive hosts and vectors, parasite development,

and survival of parasite infectious stages (see Fig. 3;

Table 2). Alterations of food webs or local biodiversity due

to environmental stress likely will be reflected by changes in

the parasite fauna dependent on them for transmission

such that less-disturbed habitats should have a diverse array

of species at all trophic levels, and thus a more diverse

assemblage of parasites (Marcogliese 2005; Hudson et al.

2006). Owing to their typically complex life cycles, often

depending on the co-occurrence of and interactions among

multiple host species, macroparasites consequently have

much potential for use as indicators of environmental

stress, food web structure, and also biodiversity (Marco-

gliese 2004, 2005) given that host and macroparasite

diversity are intricately linked (Hechinger and Lafferty

2005; Thieltges et al. 2011). Simply put, the more complex

the life cycle and the greater the degree of parasite spe-

cialization on intermediate and definitive hosts, the greater

Fig. 3. The potential use of

amphibian macroparasites as bio-

indicators by virtue of their com-

plex life cycles, varying degrees of

host specialization, and capacity

for disruption by environmental

perturbations (artwork by Mary

Jansen). Solid lines basic trematode

life cycle, long dashed lines basic

cestode life cycle, short dashed lines

basic nematode life cycle, dashed

dotted lines basic acanthocephalan

life cycle. Note that in addition to

direct effects, climate change has

indirect impacts via effects on

other environmental drivers

(Marcogliese 2001)
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the chances that one of the hosts or the parasite itself will be

sensitive to a stressor, thus disrupting transmission and

preventing the macroparasite from persisting in that hab-

itat (Hudson et al. 1998, 2006; Lafferty and Holt 2003).

These ideas have been explored for parasites of fishes in

marine and freshwater environments (e.g., MacKenzie et al.

1995; Marcogliese 2004), but have not been widely

extended to amphibians and wetland communities.

Because amphibians occur in many habitats (aquatic to

terrestrial), have biphasic life cycles, occupy diverse trophic

niches, and have a highly permeable integument, they have

long been considered sentinel species for environmental

perturbations (Hopkins 2007; but see Kerby et al. 2010).

We suggest that macroparasites of amphibians could have

even greater potential as sensitive bioindicators. This can

come in (at least) two primary forms. First, the overall

richness and composition of amphibian macroparasite

communities can provide valuable information about food

web structure and the intact linkages between aquatic and

terrestrial ecosystems. Second, the presence and abundance

of particular, highly pathogenic parasites can provide

information about disease-related threats and, in some

cases, forms of environmental perturbation. Below, we

highlight the general roles of eutrophication, pesticides,

climate change, habitat modification, and biodiversity on

amphibian macroparasite interactions and also provide

links with similar findings for other wildlife and human

diseases.

Eutrophication

Nutrient run-off from erosion, fertilizers, and livestock has

demonstrated impacts on amphibian trematode infections.

Notably, these effects appear not to be driven by influences

on amphibians themselves (Belden 2006), but on other

hosts involved in the complex life cycle. Field correlations

have been reported among nutrient levels, snail host

density, and R. ondatrae infection in amphibians (Johnson

and Chase 2004), and Skelly et al. (2006) suggested a

similar pattern might apply to echinostome infections in

amphibians from urban wetlands. Johnson et al. (2007)

showed that eutrophication enhanced R. ondatrae infec-

tion through two related mechanisms: increases in the

density of R. ondatrae-infected snails and per-snail pro-

duction of cercariae, both driven by nutrient-mediated

increases in algal growth. After controlling for an herbi-

cide, Rohr et al. (2008a) found that phosphate, a common

ingredient in fertilizer, was a significant positive predictor

of larval trematode abundance in amphibians. These

studies with amphibians have clear applicability to other

systems such that environmental nutrient enrichment may

play a large role in disease emergence in humans and

wildlife (McKenzie and Townsend 2007; Johnson et al.

2010a).

Contaminants

Pesticides can alter patterns of amphibian infection

through changes in host immunity, host behavior, or host

and parasite abundance (Kiesecker 2002; Christin et al.

2003; Rohr et al. 2008b). The herbicide atrazine has been

shown to suppress amphibian immune function, increasing

host susceptibility to various parasites (reviewed in Rohr

and McCoy, 2010) and this type of effect has now been

reported for other pesticides and host–macroparasite sys-

tems (e.g., Kelly et al. 2009). Of great concern is the dis-

covery that short-term exposure of amphibian larvae to

pesticides can result in their increased susceptibility to

trematode infections later in development (Budischak et al.

2008), indicating that chronic contaminant exposure is not

necessary. These laboratory-based results using amphibian

macroparasites are supported by field observations, a rarity

in most systems. Rohr et al. (2008b) reported that atrazine

was the most important predictor of overall larval trema-

tode abundance in leopard frogs among 18 Minnesota

wetlands, verifying the causal relationship with a mesocosm

experiment.

Habitat Alteration

Studies with amphibian macroparasites demonstrate that

landscape can have considerable influences not necessarily by

impacting amphibians, but other species involved in the often

complex life cycles, thereby affecting parasite transmission.

Land use, forest cover, and urbanization are significant pre-

dictors of trematode, nematode, and ectoparasite infection

patterns in amphibians (Westfall et al. 2008; King et al. 2007,

2010; Schotthoefer et al. 2011; Koprivnikar and Redfern, in

press). For example, the prevalence of a larval trematode

using canids as final hosts in tadpoles is positively correlated

with increased forest cover surrounding wetlands whereas

that of host–generalist larval trematodes shows a different

relationship (King et al. 2007; Schotthoefer et al. 2011; Ko-

privnikar and Redfern, in press). In addition, mean parasite

species richness in individual frogs and total number of

parasites were negatively associated with agricultural and
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urban area surrounding wetlands (King et al. 2007, 2010).

Investigations of human and other wildlife diseases are also

increasingly incorporating geospatial tools, recognizing the

importance of landscape-level dynamics and processes (e.g.,

Pfeiffer and Hugh-Jones 2002; Ostfeld et al. 2005).

Climate Change

Environmental changes arising from an altered climate are

of general concern for both human and wildlife health,

including risks posed by infectious diseases (e.g., Marco-

gliese 2001, 2008; Harvell et al. 2002; Rohr et al. 2011; Paull

and Johnson, in press). These changes may result in cata-

strophic population-level effects in some systems (e.g.,

Mouritsen et al. 2005). There is now evidence that

amphibian disease caused by microparasites, such as Bd, is

linked to changes in temperature variability associated with

climate alteration (Rohr and Raffel 2010) and climatic

relationships with respect to macroparasites are also likely

(Marcogliese 2001, 2008; Rohr et al. 2011). Effects of cli-

mate change can be manifested through altered parasite

development and survival as well as impacts on amphibian

susceptibility and tolerance to disease (Raffel et al. 2006a,

2011). For example, trematode maturation and cercarial

production in snails are controlled largely by temperature

(Poulin 2006; Morley et al. 2010) and owing to their

smaller size and higher metabolic rates, these parasites may

respond more strongly to warming than their hosts, with

possible corresponding effects on pathology. Paull and

Johnson (2011) reported temperature-driven increases in

the growth of R. ondatrae-infected snails and parasite

development, possibly resulting in increased overlap

between infected snail and amphibian hosts. Tadpoles

would then be exposed to infection risk during earlier and

more vulnerable stages of development (Paull and Johnson

2011) without selection pressure on hosts to respond to

such changes (Raffel et al. 2011). In addition, small changes

in local temperatures may allow for macroparasite life cycle

completion in habitats not normally allowing this. This

could allow for amphibian macroparasite range expansions

if climate change allows introduced parasites to establish

and persist, such as the African monogenean P. xenopodis

in Wales (Tinsley et al. 2011). Changes have also been

reported for other macroparasite infections, such as faster

within-host development of nematodes and increased

prevalence of parasitic copepod infection, following

increases in temperature (Griffin 1988; Hakalahti et al.

2006; Kupferberg et al. 2009).

While temperature increases are most commonly

associated with global climate change, alterations of pre-

cipitation patterns could also have important effects on

amphibian–macroparasite dynamics. Notably, the free-liv-

ing larvae of many nematode species are greatly affected by

moisture. Infections with both Rhabdias hylae and R. buf-

onis increase in their amphibian hosts during the rainy

season (Plasota 1969; Barton 1998) and altered moisture

conditions will likely affect interactions with other mac-

roparasites as well. Kiesecker and Skelly (2001) reported

that the presence of trematode-infected snails had strong

negative effects on gray tree frog survivorship to meta-

morphosis in temporary but not permanent pools, sug-

gesting that altered water levels may play an additional role.

Biodiversity Change

Recent studies have revealed that amphibian host com-

munity composition can play an enormous role in trema-

tode parasite transmission. In lab and mesocosm

experiments, Johnson et al. (2008) found that heterospe-

cific amphibian communities containing larvae of two

different species supported roughly half as many

R. ondatrae cysts than did monospecific communities,

supporting the ‘‘dilution effect’’ hypothesis which suggests

that parasite pathology and abundance increase with

decreases in host diversity (e.g., Keesing et al. 2006, 2010).

Diverse communities can increase the number of ‘‘wasted’’

transmission events by decreasing the success of parasite

infectious stages in finding a suitable hosts, whether due to

dead-end hosts, predators, or even interactions with other

parasites (Thieltges et al. 2008; Belden and Harris 2007;

Johnson and Thieltges 2010). However, changes in host

communities could also amplify infection risk to some

species through the addition of competent hosts depending

on the relationship between competency and order of

assembly (e.g., Tompkins et al. 2000).

As previously noted, eutrophication promotes a greater

density of gastropods serving as trematode first interme-

diate hosts. However, a predator-mediated shift in gastro-

pod community composition favoring the species serving

as hosts for R. ondatrae (Johnson and Chase 2004) illus-

trates how decreased diversity in this respect can also

impact amphibian infection patterns. In addition, compe-

tent snail hosts for R. ondatrae predominate in low richness

assemblages in the field while unsuitable hosts are

increasingly present in more diverse snail communities

(Johnson et al. 2012). Such findings are directly applicable
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to other wildlife and human diseases. For example, Johnson

et al. (2009) showed that increased snail diversity also

reduces Schistosoma mansoni transmission and human

infection risk. In addition, the presence of other species not

directly involved in macroparasite life cycles, such as pre-

dators and conspecifics, can impact exposure to macro-

parasites by affecting larval amphibian developmental rate,

altering anti-parasite behaviors, or consuming parasite

infectious stages (Thiemann and Wassersug 2000; Schott-

hoefer et al. 2007; Johnson et al. 2010b; Raffel et al. 2010;

Koprivnikar et al. 2012; Orlofske et al. 2012).

CONCLUSIONS AND FUTURE DIRECTIONS

Based on the key findings highlighted above, we suggest

future directions for research using amphibian–macropar-

asite systems that are also applicable for other host and

parasites. We emphasize throughout the need to incorpo-

rate additional scales of inquiry, such as within-host and

meta-community aspects.

Macroparasite Effects on Host Individuals

We currently lack a clear mechanistic understanding of

how many macroparasites influence the condition of their

amphibian hosts yet this is important to better understand

potential environmental influences on host–parasite inter-

actions. For instance, the effects of environmental con-

taminants on hosts may be mediated through pathways

also affected by parasite infection (e.g., alterations of cer-

tain stress biomarkers and immunity), resulting in multiple

stressors with potentially synergistic effects (Marcogliese

and Pietrock 2011). Further investigations into sublethal

effects of amphibian macroparasites on their hosts, and the

circumstances under which these occur (e.g., in combina-

tion with predators, contaminants, temperature fluctua-

tions, and other pathogens) are thus sorely needed.

Similarly, little is known about the relationship between

macroparasites and the amphibian immune system (e.g.,

Shutler et al. 2009), and examining the extent to which

various amphibians possess immune memory (i.e.,

acquired immunity) to macroparasites will aid in under-

standing infection patterns (e.g., Raffel et al. 2006b). Dis-

tinction between different components of amphibian

defenses, including host resistance and host tolerance (see

Read et al. 2008; Råberg et al. 2009), will also be helpful in

identifying the conditions under which macroparasites

cause pathology, incorporating factors such as the timing

and intensity of infection as well as the host’s immunity

and behavior (e.g., Rohr et al. 2009, 2010; Daly and

Johnson 2010; Johnson et al. 2011; Koprivnikar et al. 2012).

Using Amphibian Macroparasites as Bioindicators

To potentially use amphibian macroparasites as bioindi-

cators, we must first determine whether they constitute

specific and reliable gauges of their hosts and of impacts on

host–parasite interactions resulting from environmental

perturbations. This will require a more complete under-

standing of parasite transmission routes as some amphibian

macroparasite life cycles are not yet fully understood (e.g.,

Bolek and Janovy 2008; Bolek et al. 2009). Such studies are

now more feasible due to the development of tools such as

‘‘DNA barcodes,’’ which greatly improve macroparasite

identification (e.g., Locke et al. 2011). Furthermore, it will

be necessary to mount a concerted effort to establish and

test the efficacy of particular macroparasites as bioindica-

tors. Different parasites might be better for indicating dif-

ferent types of environmental perturbations (Blanar et al.

2009). Macroparasites with complex yet relatively host-

specific life cycles, including trematode species such as

Halipegus spp. and Alaria spp. (frog and canid final host,

respectively), might be optimal for indicating effects on

whole communities, whereas those with simpler life cycles,

such as Rhabdias spp. nematodes, might be preferable for

examining effects on amphibian host susceptibility. In

addition, are such macroparasites actually more sensitive

relative to their hosts? To be effective bioindicators,

amphibian macroparasites should demonstrate changes

resulting from perturbations before they are observed in

more obvious groups. Related to this, it remains to be

determined whether it is easier or more cost-effective to

simply directly measure the factor of interest. For example,

is it easier to sample frog macroparasites and look for

Alaria spp. than to sample coyotes?

We particularly wish to emphasize that most

amphibian macroparasite research efforts to date have

largely focused on larval trematodes (mainly R. ondatrae

and the echinostomes) and nematodes, leaving much

opportunity for future research focused on other groups

and species. A search in the Web of Science database using

the timeframe of August 1899–2011 yielded the following

numbers of results for terms combined with amphib*:

trematode* (1004), nematode* (1975), cestod* (293),

acanthocephal* (211), and monogene* (244). Using more
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specific parasite search terms combined with amphib*, 64

results were found for Ribeiroia*, 92 for echinostom*, and

174 for Rhabdias*, respectively, illustrating the prominence

of certain macroparasite groups and species in the litera-

ture.

Identifying the Roles of Amphibian Parasites

in Ecological Communities

In addition to studies on individual hosts and parasites,

future investigations must tackle questions at larger spatial

and temporal scales. For example, there is still considerable

debate as to whether the recent apparent increases in R.

ondatrae-induced amphibian malformations constitute an

‘‘outbreak.’’ There are fewer than 10 published records of

mass malformations between 1947 and 1990 but more than

50 mass malformation sites associated with R. ondatrae

recorded since 1996, suggesting but not demonstrating an

increase in parasite-driven amphibian deformities (Johnson

et al. 2003). Given that both amphibian hosts and their

parasites exhibit dramatic oscillations in abundance over

time and among sites/hosts (Pechmann et al. 1991), a

thorough evaluation of changes in the prevalence and

occurrence of macroparasites in response to environmental

perturbations requires the establishment of field sites for

long-term monitoring.

Correspondingly, it will be very difficult to determine

how macroparasites affect host populations without field

studies encompassing significant time periods and geo-

graphic ranges. For example, R. ondatrae can cause exten-

sive host mortality and pathology (Schotthoefer et al.

2003a; Johnson et al. 2011) and studies have noted a link

between high levels of malformations and decreased host

performance and survival (Johnson et al. 2001; Goodman

and Johnson 2011a, b), but a connection to population-

level effects remains conjectural. Ideally, a combination of

long-term monitoring, mark-recapture data, and ecosys-

tem-level manipulations (e.g., parasite removal or addi-

tion) should be used to address this issue, as has been

effective in understanding the effects of macroparasites in

other systems (see Hudson et al. 1998). Any such studies

must also recognize that population-level effects of para-

sites on their hosts are likely highly context dependent with

the potential to interact with environmental stressors

(Lafferty and Holt 2003). In addition, macroparasite effects

on host populations, when present, often occur through

subtler and more complex pathways, such as increasing

predation upon infected hosts (Hudson et al. 1992; Murray

et al. 1997; Hatcher et al. 2006) or decreasing host repro-

duction (Hudson et al. 1998; Albon et al. 2002).

In the context of amphibian disease, it is particularly

important for researchers to be able to extrapolate from

empirical studies to field studies and the reverse, especially

if the goal is to relate environmental factors with naturally

occurring infection patterns. The co-ordination of findings

from multiple locations through the development of a

centralized and shared database, (e.g., http://data.whirling

disease.montana.edu, www.mammalparasites.org, amphib

ianparasites.org), would facilitate efforts at large-scale data

collection and analysis. This type of database would help

researchers examine environmental influences on infection

patterns, determine which macroparasites represent emerg-

ing diseases, and compile better records regarding parasite

range and host use.

Beyond their potential applied importance, amphibi-

ans and macroparasites represent an excellent opportunity

to address meta-community-level questions about the

general role(s) of pathogens in ecological systems (e.g.,

Leibold et al. 2004; Holyoak et al. 2005; Lafferty et al. 2008).

Numerous studies now support the importance of parasites

as vital links in communities and ecosystems (Lafferty 2008;

Lafferty et al. 2008; Poulin 2010). Because amphibian

macroparasites weave into food webs at various levels, they

have the potential to exert general effects on both terrestrial

and aquatic communities. We must, therefore, improve our

understanding of how parasites indirectly influence eco-

logical interactions, such as competition and predation, in

addition to studying direct effects on host survival and

fitness.
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