Next: About this document ...
Up: Cocycle Invariants of Knots
Previous: Ribbon concordance
  Contents
-
- Ad94
-
C. C. Adams,
The knot book, An elementary introduction to the mathematical theory of knots.,
W. H. Freeman and Company, New York
(1994).
- Ame06
-
K. Ameur,
Polynomial quandle cocycles, their knot invariants and applications,
Ph.D. Dissertation, University of South Florida
(2006).
- AERSS
-
K. Ameur; M. Elhamdadi; T. Rose; M. Saito; C. Smudde,
Application of quandle cocycle knot invariants - Tangle embeddings,
http://shell.cas.usf.edu/quandle/Applications
.
- AG02
-
N. Andruskiewitsch; M. Graña,
From racks to pointed Hopf algebras,
Adv. in Math.
178 (2003) 177-243.
- AS03*
-
M. Asami; S. Satoh,
An infinite family of non-invertible surfaces in -space,
to appear in: Bull. London Math. Soc..
- BN97
-
ÊD. Bar-Natan,
Non-associative tangles,
in ``Geometric topology (Athens, GA, 1993)''
139-183
AMS/IP Stud. Adv. Math., 2.1, Amer. Math. Soc., Providence, RI
(1997).
- Brs88
-
E. Brieskorn,
Automorphic sets and singularities,
in ``Braids (Santa Cruz, CA, 1986),''
Contemp. Math. 78,
Amer. Math. Soc.
(1988) 45-115.
- Brw82
-
K. S. Brown,
Cohomology of Groups,
Graduate Texts in Mathematics 87,
Springer-Verlag (1982).
- CEGS05
-
J.S. Carter; M. Elhamdadi; M. Graña; M. Saito,
Cocycle knot invariants from quandle modules and generalized
quandle cohomology,
to appear in Osaka J. Math..
- CENS01
-
J. S. Carter; M. Elhamdadi; M. A. Nikiforou; M. Saito,
Extensions of quandles and cocycle knot invariants,
J. Knot Theory Ramifications 12 (2001) 725-738.
- CES02
-
J. S. Carter; M. Elhamdadi; M. Saito,
Twisted Quandle homology theory and cocycle knot invariants,
Algebraic and Geometric Topology
2 (2002) 95-135.
- CESS05*
-
J.S. Carter; M. Elhamdadi; M. Saito; S. Satoh,
A lower bound for the number of Reidemeister moves of type III,
Preprint, arXive.math.GT/0501490.
- CHNS02
-
J. S. Carter; A. Harris; M. A. Nikiforou; M. Saito,
Cocycle knot invariants, quandle extensions, and Alexander matrices,
Suurikaisekikenkyusho Koukyuroku,
(Seminar note at RIMS, Kyoto)
1272 (2002) 12-35,
available at
http://xxx.lanl.gov/math/abs/GT0204113.
- CJKLS03
-
J. S. Carter; D. Jelsovsky; S. Kamada; L. Langford; M. Saito,
Quandle cohomology and state-sum invariants of knotted curves and
surfaces, Trans. Amer. Math. Soc.
355 (2003) 3947-3989.
- CJKS01a
-
J. S. Carter; D. Jelsovsky; S. Kamada; M. Saito,
Computations of quandle cocycle invariants of knotted curves
and surfaces,
Adv. in Math.
157 (2001) 36-94.
- CJKS01b
-
J. S. Carter; D. Jelsovsky; S. Kamada; M. Saito,
Quandle homology groups, their Betti numbers, and virtual knots,
J. Pure Appl. Algebra
157 (2001) 135-155.
- CJKS01c
-
J. S. Carter; D. Jelsovsky; S. Kamada; M. Saito,
Shifting homomorphisms in quandle cohomology and skeins
of cocycle knot invariants,
J. Knot Theory Ramifications
10 (2001) 579-596.
- CKS00
-
J. S. Carter; S. Kamada; M. Saito,
Surfaces in 4-space,
Encyclopedia of Mathematical Sciences142,
Springer Verlag (2000).
- CKS01
-
J. S. Carter; S. Kamada; M. Saito,
Geometric interpretations of quandle homology,
J. Knot Theory Ramifications
10 (2001) 345-386.
- CKS03
-
J. S. Carter; S. Kamada; M. Saito,
Diagrammatic computations for quandles and
cocycle knot invariants,
Contemp. Math.318(2003)
Amer. Math. Soc. 51-74.
- CrSt98
-
J. S. Carter; M. Saito,
Knotted surfaces and their diagrams,
Surveys and monographs 55, Amer. Math. Soc.
(1998).
- CrSt03
-
J. S. Carter; M. Saito,
Quandle Homology Theory and Cocycle Knot Invariants,
in ``Proceedings of Georgia Topology Conference (2001)''
Proceedings of Symposia in Pure Math. 71 (2003)
249-269.
- CSS03*
-
J. S. Carter; M. Saito; S. Satoh,
Ribbon concordance of surface-knots via quandle cocycle invariants,
J. Australian Math. Soc., to appear,
available at
http://xxx.lanl.gov/abs/math.GT/0309150
.
- CL05*
-
J-W. Chung; X-S. Lin,
On n-punctured ball tangles,
Preprint, arXive:math.GT/0502176.
- Deh00
-
ÊP. Dehornoy,
Braids and self-distributivity,
Progress in Mathematics, 192. Birkhuser Verlag, Basel
(2000).
- Eis02
-
M. Eisermann,
Homological characterization of the unknot,
J. Pure Appl. Algebra 177 (2003) 131-157.
- EG03
-
P. Etingof; M. Graña,
On rack cohomology,
J. Pure Appl. Algebra 177 (2003) 49-59.
- FR92
-
R. Fenn; C. Rourke,
Racks and links in codimension two,
J. Knot Theory Ramifications
1 (1992) 343-406.
- FRS95
-
R. Fenn; C. Rourke; B. Sanderson,
Trunks and classifying spaces,
Appl. Categ. Structures
3 (1995) 321-356.
- FRS*
- R. Fenn; C. Rourke; B. Sanderson,
James bundles and applications,
Preprint, available at:
http://www.maths.warwick.ac.uk/bjs/.
- Fl95
-
J. Flower,
Cyclic Bordism and Rack Spaces,
Ph.D. Dissertation, Warwick (1995).
- Fox61
-
R. H. Fox,
A quick trip through knot theory,
in ``Topology of 3-manifolds and related topics
(Georgia, 1961),''
Prentice-Hall
(1962) 120-167.
- FY89
-
P.J. Freyd; D.N. Yetter,
Braided compact closed categories with applications
to low-dimensional topology,
Adv. Math. 77 (1989) 156-182.
- Gauss1883
-
K. F. Gauss,
Zur mathematischen Theorie der electorodynamischen Wirkungen,
Werke Konigl. Gesell. Wiss. Gottingen
5:605.
- GK03
-
S. Ghoneim; T. Kepka,
Left selfdistributive rings generated by idempotents,
Acta math. Hungar.
102 (1-2) (2003) 21-31.
- Gor81
-
C. McA. Gordon,
Ribbon concordance of knots in the -sphere,
Math. Ann.
257 (1981)
157-170.
- Gra02a
-
M. Graña,
Quandle knot invariants are quantum knot invariants,
J. Knot Theory Ramifications
11 (2002) 673-681.
- Gra02b*
-
M. Graña,
Indecomposable racks of order ,
Preprint, http://xxx.lanl.gov/abs/math.QA/0203157.
- GrPr02*
-
M. Graña; A. Preygel,
Computation of quandle cocycle invariants of knots
using certain simple quandles,
Talk given at the nd AMS meeting
in Orlando, FL, Nov. 9-10, 2002.
- Gre97
-
M. T. Greene,
Some Results in Geometric Topology and Geometry,
Ph.D. Dissertation, Warwick (1997).
- Har03
-
A. Harris,
Quandle Colorings of Classical Knots and Knotted Surfaces,
Master's Thesis, University of South Alabama (2003).
- Hata04
-
E. Hatakenaka,
An estimate of the triple point numbers of surface-knots
by quandle cocycle invariants,
Topology Appl.
139 (2004) 129-144.
- HTW98
-
J. ÊHoste; M. Thistlethwaite; J. Weeks,
The first 1,701,936 knots,
Math. Intelligencer 20 (1998) 33-48.
- Ino01
-
A. Inoue,
Quandle homomorphisms of knot quandles to Alexander quandles,
J. Knot Theory Ramifications
10 (2001) 813-821.
- Iwa04
-
M. Iwakiri,
Calculation of dihedral quandle cocycle invariants of twist spun
-bridge knots
in ``Proceedings of the first East Asian School of Knots, Links, and Related Topics
(Feb. 16-20, 2004)'',
85-94,
available at: http://knot.kaist.ac.kr/2004/proceedings.php.
- Jones87
-
V.F.R. Jones,
Hecke algebra representations of braid groups and link polynomials,
Ann. of Math. (2)
126 (1987) 335-388.
- Joy82
-
D. Joyce,
A classifying invariant of knots, the knot quandle,
J. Pure Appl. Alg.
23 (1982) 37-65.
- Kama02
-
S. Kamada,
Braid and Knot Theory in Dimension Four,
Surveys and monographs 95, Amer. Math. Soc.
(2002).
- KSS03
-
T. Kanenobu; H. Saito; S. Satoh,
Tangles with up to seven crossings,
Interdisciplinary Infomation Sciences
9 (2003) 127-140.
- Kau91
-
L. H. Kauffman,
Knots and Physics,
Series on Knots and Everything 1,
World Sci. Publishing (1991).
- Kau99
-
L. H. Kauffman,
Virtual knot theory,
European J. Combin.
20 (1999) 663-690.
- Kawa90a
-
A. Kawauchi,
The first Alexander modules of surfaces in 4-sphere,
in ``Algebra and Topology''
(Taejon, 1990), Proc. KAIST Math. Workshop
5, KAIST, Taejon,
Korea
(1990) 81-89.
- Kre99
-
D.A. ÊKrebes,
An obstruction to embedding -tangles in links,
J. Knot Theory Ramifications
8 (1999) 321-352.
- KSW00
-
D.A. ÊKrebes; D.S. Silver; S.G. Williams,
Persistent invariants of tangles,
J. Knot Theory Ramifications
9 (2000) 471-477.
- Liv
-
C. Livingston,
Table of knot invariants,
http://www.indiana.edu/ knotinfo
.
- Lith85
-
R. A. Litherland,
Symmetries of twist-spun knots,
in ``Knot theory and manifolds (Vancouver, B.C.,
1983),''
Lecture Notes in Math. 1144, Springer-Verlag
(1985) 97-107.
- Lith02*
-
R. A. Litherland,
Quadratic quandles and their link invariants,
Preprint,
http://xxx.lanl.gov/abs/math.GT/0207099.
- LN03
- R. A. Litherland and S. Nelson,
The Betti numbers of some finite racks,
J. Pure Appl. Algebra 178 (2003) 187-202.
- Liv93
-
C. Livingston,
Knot theory,
Carus Mathematical Monographs
24
Mathematical Association of America, Washington, DC
(1993).
- Lop03
- P. Lopes,
Quandles at finite temperatures I,
J. Knot Theory Ramifications,12(2003)159-186.
- Mat82
-
S. Matveev,
Distributive groupoids in knot theory,
(in Russian), Math. USSR-Sbornik 47 (1982) 73-83.
- Mochi03
-
T. Mochizuki,
Some calculations of cohomology groups of finite
Alexander quandles,
J. Pure Appl. Algebra 179 (2003) 287-330.
- Mochi05
-
T. Mochizuki,
The 3-cocycles of the Alexander quandles
,
Algebr. Geom. Topol. 5 (2005) 183-205.
- Mura96
-
ÊK. Murasugi,
Knot theory and its applications,
Translated from the 1993 Japanese original by Bohdan Kurpita.
Birkhuser Boston, Inc., Boston, MA
(1996).
- Nel03
-
S. Nelson,
Classification of Finite Alexander Quandles,
Proceedings of the Spring Topology and Dynamical Systems Conference. Topology Proc. 27 (2003) 245-258.
- PSW04*
-
J. Przytycki; D. Silver; S. Williams,
-manifolds, tangles, and persistent invariants,
Preprint, available at:
http://xxx.lanl.gov/abs/math.GT0405465.
- Rose98
-
D. Roseman,
Reidemeister-type moves for surfaces in four-dimensional space,
in ``Knot theory (Warsaw, 1995),''
Banach Center Publ., Polish Acad. Sci., Warsaw,
42 (1998) 347-380.
- RkSn00*
- C. Rourke; B. Sanderson,
A new classification of links and some calculations using it,
Preprint, http://xxx.lanl.gov/abs/math.GT/0006062.
- Rub83
-
D. Ruberman,
Doubly slice knots and the Casson-Gordon invariants,
Trans. Amer. Math. Soc.
279 (1983) 569-588.
- Rub00
-
D. ÊÊRuberman,
Embedding tangles in links,
J. Knot Theory Ramifications
9 (2000) 523-530.
- Sat02
-
S. Satoh,
Surface diagrams of twist-spun -knots,
in ``Knots 2000 Korea, Vol. 1
(Yongpyong)''
J. Knot Theory Ramifications 11 (2002)
413-430.
- Sat04*
-
S. Satoh,
On chirality of Suzuki's -curves,
Preprint.
- SaiSat03*
-
M. Saito; S. Satoh,
The spun trefoil needs four broken sheets,
J. Knot Theory Remifications to appear.
- StSm
-
M. Saito; C. Smudde,
Quandle cocycle knot invariants,
http://shell.cas.usf.edu/quandle
.
- SatShi01b*
-
S. Satoh; A. Shima,
Triple point numbers of surface-knots and colorings by quandles,
Preprint (2001).
- SatShi04
-
S. Satoh; A. Shima,
The -twist-spun trefoil has the triple point number four,
Trans. Amer. Mat. Soc. 356 (2004) 1007-1024.
- Tana*
-
K. Tanaka,
On surface-links represented by diagrams with two or three triple points,
Preprint.
- Taka42
-
M. Takasaki,
Abstraction of symmetric transformations,
(in Japanese), Tohoku Math. J.
49 (1942/43) 145-207.
- Win84
-
S. Winker,
Quandles, knots invariants and the -fold branched cover,
Ph.D. Thesis, University of Illinois at Chicago
(1984).
- Ze65
-
E. C. Zeeman,
Twisting spun knots,
Trans. Amer. Math. Soc.
115 (1965) 471-495.
Masahico Saito - Quandle Website
2006-09-19