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1 Introduction

1.1 What are these web pages about

This article is written as web pages posted at
http://shell.cas.usf.edu/quandle under the title Application: Tangle

Embedding.
The purpose of this paper is to present our results on using quandle

cocycle invariants to study tangle embeddings. This is a group research
project, with group members: Khiera Ameur, Mohamed Elhamdadi, Tom
Rose, Masahico Saito, and Chad Smudde.

1.2 What are tangles and tangle embeddings?

A tangle is a properly embedded arcs in a (3-)ball B, also represented by
a pair T = (B,A) of arcs A in B, but often T is simply regarded as the
arcs A if no confusion occurs. In this article a tangle will have four end
points unless otherwise specified. A tangle T is embedded in a link (or a
knot) L if there is a ball B in 3-space such that T = (B,B ∩ L). Tangles
are represented by diagrams in a manner similar to knot diagrams. Usually
the end points are located at four corners of a circle at angles π/4, 3π/4,
5π/4 and 7π/4, and these end points are labeled by NE, NW, SW, and SE,
respectively.

Tangle embeddings have been studied by several authors recently [CL05*,
Kre99, KSW00, PSW04*, Rub00]. In this section we prove our main theo-
rem, that uses quandle cocycle invariants for obstructions to tangle embed-
dings.

In this article we use the table of tangles presented in [KSS03], in par-
ticular those with two arcs in a ball. The tangles are parametrized by a pair
of numbers in a symbol similar to those representing knots. Those tangles
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consisting of two arcs are named 51, 61−64, 71−718 (representing that they
listed up to, including, 7 crossing tangles). Among these, some that are of
our interest are depicted in Fig. 1.

1.3 Target readers and background information

These pages are intended for undergraduate students, as well as professionals
who want to get the current status of the project. For background informa-
tion on quandle cocycle invariants of knots and their applications, we refer
the reader to the article posted at http://shell.cas.usf.edu/quandle under
the title Background.

2 Preliminary

2.1 Quandles, colorings, and cocycle invariants

Again we refer the reader to the article posted at http://shell.cas.usf.edu/quandle
under the title Background, for the following terms we use: quandles, Alexan-
der quandles, colorings of knot diagrams, coloring of regions of a knot dia-
gram, quandle 2- and 3-cocycles, 2- and 3-cocycle invariants of knots.

Here we review a definition of cocycle invariants in terms of multisets,
that will be used in this article.

Let K be a knot diagram on the plane. Let X be a finite quandle and
A an abelian group. Let φ : X × X → A be a quandle 2-cocycle, which can
be regarded as a function satisfying the 2-cocycle condition

φ(x, y) − φ(x, z) + φ(x ∗ y, z) − φ(x ∗ z, y ∗ z) = 0, ∀x, y, z ∈ X

and φ(x, x) = 0,∀x ∈ X. Let C be a coloring of a given knot diagram K by
X.

The Boltzmann weight B(C, τ) = Bφ(C, τ) at a crossing τ of K is then
defined by B(C, τ) = ε(τ)φ(xτ , yτ ), where (xτ , yτ ) is the ordered pair of
colors at τ and ε(τ) is the sign (±1) of τ . Then the 2-cocycle invariant
Φ(K) = Φφ(K) in a multiset form is defined by

Φφ(K) =

{

∑

τ

B(C, τ)

∣

∣

∣

∣

∣

C ∈ ColX(K)

}

,

where ColX(K) denotes the set of colorings of K by X. (A multiset a
collection of elements where a single element can be repeated multiple times,
such as {0, 0, 1, 1, 1}).
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Let θ : X × X × X → A be a quandle 3-cocycle, which can be regarded
as a function satisfying

θ(x, z, w) − θ(x, y,w) + θ(x, y, z) − θ(x ∗ y, z, w)

+θ(x ∗ z, y ∗ z,w) − θ(x ∗ w, y ∗ w, z ∗ w) = 0, ∀x, y, z, w ∈ X,

and θ(x, x, y) = 0 = θ(x, y, y),∀x, y ∈ X.
Let C be a coloring of arcs and regions of a given diagram K. Let

(x, y, z)(= (xτ , yτ , zτ )) be the ordered triple of colors at a crossing τ . Then
the weight in this case is defined by B(C, τ) = ε(τ)φ(xτ , yτ , zτ ). The (3-
)cocycle invariant is defined in a similar way to 2-cocycle invariants by the
multiset Φθ(K) = {

∑

τ B(C, τ) | C ∈ ColX(K)}, where ColX(K) denotes the
set of colorings with region colors of K by X.

2.2 Addition and closure of tangles

The following are standard definitions and notations found in many knot
theory books.

The addition T1 + T2 of two tangles T1, T2 is another tangles defined
from the original two as depicted in Fig. 2. The closures are two methods
of obtaining a link from a tangle by closing the end points, and there are
two ways called the numerator N(T ) and denominator D(T ) of a tangle T ,
defined as depicted in Fig. 3.

There is a family of “trivial” or “rational” tangles, some of which are
depicted in depicted in Fig. 4. These are obtained from the trivial tangle of
two vertical straight arcs by successively twisting end points vertically and
horizontally. See, again, [Mura96] or [Ad94], for example, for more details.

3 Realizing tangle embeddings

A straightforward way of identifying a tangle embedded in a knot is to
construct a knot from a given tangle. Since we are interested in the knots in
the table up to 9 crossings and tangles in the table up to 7 crossings, we try
the following procedures: For a given tangle T from the table, add a rational
tangle R to obtain T + R, then take closures N(T + R) and D(T + R), and
see which knots in the table result. We list all such embeddings we find this
way.
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4 Obstructions to tangle embeddings

We use quandle cocycle invariants as obstructions to embedding tangles in
knots. To use the cocycle invariants, we first define cocycle invariants for
tangles.

Definition 4.1 Let T be a tangle and X a quandle. A (boundary-
monochromatic) coloring C : A → X is a map from the set of arcs in a
diagram of T to X satisfying the same quandle coloring condition as for
knot diagrams at each crossing, such that the (four) boundary points of the
tangle diagram receives the same element of X.

For a coloring C of a tangle diagram T , a region colorings are defined in
a similar manner as in the knot case. In this case, we allow region colors to
change (not necessarily colored by the same element as the one assigned to
the boundary points).

Denote by ColX(T ) the set of colorings of a diagram of T by X. Denote
by ColX(T, s) the set of colorings of a diagram of T by X with the color of
the leftmost region (between the boundary arcs NW and SW) being s ∈ X.
It is seen in a way similar to the knot case that the number of colorings
|ColX(T )| does not depend on a choice of a diagram of T , and that the set
of colorings are in one-to-one correspondence between Reidemeister moves.

The quandle 2- and 3-cocycle invariants are defined for tangles in a
manner similar to the knot case, and denoted by Φφ(T ).

Definition 4.2 The inclusion of multisets are denoted by ⊂m. Specifically,
if an element x is repeated n times in a multiset, call n the multiplicity of
x, then M ⊂ N for multisets M , N means that if x ∈ M , then x ∈ N and
the multiplicity of x in M is less than or equal to the multiplicity of x in N .

Theorem 4.3 Let T be a tangle and X a quandle. Suppose T embeds in a

link L. Then we have the inclusion Φφ(T ) ⊂m Φφ(L).

Proof. Suppose a diagram of T embeds in a diagram of L. We continue to
use T and L for these diagrams. For a coloring C of T , let x be the color
of the boundary points. Then there is a unique coloring C′ of L such that
the restriction of C′ on T is C and all the arcs of L outside of T receive the
color x. Then the contribution of

∑

τ∈T B(C, τ) to Φφ(T ) is equal to the
contribution

∑

τ∈L B(C′, τ) to Φφ(L), and the theorem follows. �

In this project we examine the cocycle invariants of tangles in the table
and those of knots in the table that do not satisfy the condition of the above
theorem, detecting the tangles that do not embed in knots in the tables.
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Figure 1: Some tangles
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T 1 T 2

T 1 T 2+

Figure 2: Addition of tangles

T T

N(T) D(T)

Figure 3: Closures (numerator N(T ), denominator D(T )) of tangles
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Figure 4: Some rational tangles
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