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Abstract. The paper shows that mathematics as an applied tool – when used consistently 

at the elementary, secondary, and post-secondary educational levels – has true potential to 

improve the teaching of the subject matter, increase students’ interest in STEM 

disciplines, and bridge the gap between the formal and engineering approaches to 

mathematics education. The adoption of the action learning techniques that have 

successfully been used in academia in the contexts of business management, social 

sciences, and teacher development is proposed as signature pedagogy for K-20 

mathematics education. The appropriate use of technology and hands-on activities as an 

enhancement of mathematical applications to real-life projects of different degrees of 

complexity is discussed. Many examples are given. 
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1. Introduction 

1.1. A PROPOSAL 

In 2012, the President’s Council of Advisors on Science and Technology (PCAST) for the 

United States issued a report stating that economic forecasts predict the need for an 

additional one million STEM (science, technology, engineering, mathematics) jobs in the 

next decade, but currently fewer than 40% of prospective STEM students complete a 

STEM degree [26]. The PCAST report proposes five overarching recommendations, one 

of which was to “launch a national experiment in postsecondary mathematics education to 

address the mathematics-preparation gap” [26] that exists between the secondary and post-

secondary levels. The need for this experiment is due to a number of reasons that the 
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present paper aims to address. One such reason deals with an overall non-homogeneity of 

teacher preparation programs – both across the nation and around the world – that 

sometimes pay insufficient attention to mathematical content. As a consequence, 

“programs that compromise on subject matter training with the result that teacher 

candidates develop only a limited mathematical understanding of the content covered at 

specific levels, have detrimental effects on PCK [pedagogical content knowledge] and 

consequently negative effects on instructional quality and student progress” [12]. Another 

reason deals with a disagreement among post-secondary faculty of how mathematics has 

to be taught at that level. Many students come to tertiary STEM programs with high 

expectations for learning – only to discover that the four letters of the word STEM are not 

really close to each other, and the four subject matters that the acronym comprises have 

little connection. Mathematics is often taught in a rather dry and unnecessarily rigorous 

way when “mathematicians overemphasize [the role of systems, axiomatic, and other 

formal aspects of mathematics] without appreciating the nature and role of meaning in 

students’ mathematical learning” [73]. By the same token, inappropriate use of technology 

as an enabler of problem solving can lead to “an automatic transport phenomenon” [35] – 

where the outcome of a tool-based mathematical practice depends entirely on one’s ability 

to enter data into the tool correctly – without a bit of conceptual understanding. Finally, 

the third reason is due to another extreme position when the “M” component of STEM is 

completely outsourced to those who – while doing true applied research – have little, if 

any, appreciation of the genesis of mathematics as an experimental science [13,10]. 

As a way of addressing the above inconsistences in the teaching of mathematics, the 

authors propose 1) the adoption of action learning techniques and 2) the incorporation of 

diverse technological tools across all levels of mathematics education. These two 

pedagogies can be combined through the use of hands-on and technology-enabled 

mathematics application projects. The effectiveness of these pedagogies can be measured 

at all educational levels in terms of increasing the motivation, while decreasing the 

anxiety, for learning mathematics. In particular, one goal of the action learning pedagogy 

at the K-12 level is to increase the percentage of students who attempt and ultimately 

succeed in advanced mathematics courses (Pre-calculus, Probability & Statistics, and 

Calculus), which has been shown to be a strong predictor for the completion of a post-

secondary STEM degree [19]. At the post-secondary level, a successful outcome of the 

action learning pedagogy can be measured by the percentage of students attempting and 

completing the terminal mathematics course for their STEM track (Calculus, Differential 

Equations, Statistics, etc.), as well as an increase in the engagement of undergraduate 

research activities involving mathematics applications. 

This paper is written by a STEM team of researchers and educators with different 

affiliations, teaching responsibilities, and research interests. At the same time, the notion 

of mathematics as an applied tool – used in a multitude of real-life contexts – comprises 

the common thread that enables the authors to join forces in thinking about the 

improvement of mathematics education as a whole. Indeed, the joint experience that the 

authors possess spans several industrial environments and all three academic educational 

levels: elementary, secondary, and post-secondary. 

At the elementary level, this experience includes work with young children and their 

future teachers on interactive mini-projects. At the secondary level – work with middle 

and high school students and their teachers on open-ended interactive 

mathematics/engineering design projects, and at the post-secondary level – work with 

soon-to-be professionals who have to learn mathematics as an important component of 
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their university STEM education on a real-world problem guided by mathematics and 

subject area advisors (see Table 1).  

In that way, the ideas of the paper can be seen as a proposal in support of the concluding 

words from the keynote to the 1996 Conference on the Future of Mathematics Education 

at Research Universities, calling on the participants to “begin to see our concerns for 

graduate, undergraduate and K-12 education as parts of an integrated educational 

enterprise, in which we have to communicate and collaborate across cultural, disciplinary, 

and institutional borders” [11]. It also attempts to bridge the dichotomy between the 

recommendations to outsource post-secondary mathematics teaching to non-

mathematicians [26] with the response of the American Mathematical Society to the 

PCAST proposal [29]. 

Primary 

 Interactive mathematics mini-projects (games) 

 Single teacher supervision 

 Incorporate technology in a meaningful way 

Secondary 

 Open ended, interactive engineering design projects 

 Mathematics and science teachers’ guidance 

 Incorporate modern technologies, common among STEM 

fields 

Post-Secondary 

 Individual mathematics application projects 

 Double guidance: mathematics and subject area advisors 

 Incorporate field specific technologies 

 Research opportunities: conferences and publications 

Table 1. Proposed structure for action learning of mathematics across all academic levels 

1.2. EXPLANATION OF THE PROBLEM IN STEM EDUCATION 

The Georgetown Center on Education and the Workforce reported that there will be 55 

million job openings by 2020 and STEM will be one of the fastest expanding sectors of 

the labor force [76]. It is estimated that 95% of the STEM jobs may require a post-

secondary degree [17]. To meet these challenges, colleges and universities need to provide 

an increasing number of graduates knowledgeable in STEM areas [60] by overcoming the 

current situation where a majority of students 

are not attracted to these areas [72]. For 

example, if the current trend continues, 

according to the National Center for Education 

Statistics, only 4% of the U.S. high school 

graduates (regardless of gender or ethnicity) 

will obtain an undergraduate degree in mathematics or physical sciences [20]. This lack of 

student interest in STEM subjects has complex origins, and can be seen to emerge at pre-

college levels. One of the reasons can be found in students’ mathematics learning 

experiences, which are often associated with little or no connection to real-life problems 

and methods of solving them. Without practical examples that motivate problem-solving 

strategies, most pre-college students struggle to retain the theoretical lessons they have 

learned [6]. Furthermore, studies show that pressure for standardized testing – which some 

educators think reduces the quality of course content [54] and blocks creativity [28,34] – 

Without practical examples, most 

pre-college students struggle to 

retain theoretical lessons 
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is placing mathematics education in an unfortunate position where students are asked to 

learn how to schematically do problems, and are not asked to critically think about how to 

solve them [76]. 

On the other hand, most STEM professionals seem to agree that the overall quality of 

STEM education and research is closely connected with the quality of college level 

mathematics education: over 89% of multidisciplinary STEM faculty and 93% of STEM 

students polled by the authors strongly support it. This suggests that the difficulty in 

gearing students towards STEM disciplines during their mathematics classes is a 

symbiosis of K-12 legacy issues (under-preparedness to deal with routine mathematics 

questions combined with underdeveloped creativity for deciphering real-life problems) 

and the widespread abstractness of teaching mathematics at the college level. Thus, while 

taking pure mathematics classes, many STEM students outside of mathematics lose 

interest in completing a STEM degree. For example, solutions to numerous industrial, 

business, and research problems require calculus methods and computers; but when 

calculus is taught from a purely mathematical standpoint (starting from the theory of 

limits), many STEM students have difficulty understanding the subject, and the reason for 

studying it becomes elusive. 

1.3. ACTION LEARNING PEDAGOGY FOR MATHEMATICS EDUCATION 

Action learning is a problem solving method characterized by taking an action and 

reflecting on the results, and was developed by Reginald Revans in the period of 1940-

1980 as an educational pedagogy for business development and problem solving 

[67,68,14]. Since that time, action learning has come to describe a variety of experiential 

learning activities [68,53,62,56], though Dilworth [25] describes the fundamental features 

of action learning as: 

 Questioning insight is always the starting point. 

 The problem must be real. The problem to be solved can be tactical or strategic, 

but the learning is strategic. 

 Reflection is as important as action. 

 Three basic questions commonly begin the action learning process in addressing a 

real problem. 

 First, what should be happening?  

 Second, what is stopping us from doing it?  

 Third, what can we do? 

 Learning is the primary goal, even though the problem solving is real and 

important. Learning is facilitated, to include breaking out of well-established mind 

sets by having the setting, the problem, and colleagues to some degree unfamiliar. 

The concepts of action learning and action research have been traditionally used in 

academia for teaching business management and the social sciences [48,44,57], 

conducting scientific research [31,22], and teacher development [61,64,63]. However, 

action learning – as a teaching method – has yet to be adopted as pedagogy for 

mathematics education. In this paper, the authors present a technology-assisted, action 

learning pedagogy for teaching mathematics through real-world problems – guided by 

STEM instructors and community professionals. 



 

69 

 

1.3.1. Teaching with applied projects 

By critically analyzing the traditional teaching style with its emphasis on formal 

mathematics, the authors suggest that an application-based reform – directed towards the 

improvement of the effectiveness of K-16 mathematics education – has great potential to 

become the signature pedagogy of mathematics (discussed in Section 2). Though the 

weakness in mathematics education is more 

visible at the tertiary level, the starting point of 

the suggested reform is elementary 

mathematics education. The goal of the reform 

is a better quality and preparedness of the 

future STEM workforce for global competition 

in the 21
st
 century. It involves mathematics application projects integrated throughout the 

entire K-16 curricula. At the primary level, the mini-projects may deal with solving and 

posing mathematical problems in context. At the secondary level interactive mathematics 

projects may deal with open ended engineering design problems. At the tertiary level, the 

projects may deal with the application of mathematics to non-mathematical components of 

STEM. 

2. Signature pedagogy of teaching mathematics through applications 

In this section we use the framework of signature pedagogies to assess the theoretical 

merits of the action learning pedagogy in mathematics education. This section is primarily 

intended for researchers in educational theory. Practical implementations of the action 

learning pedagogy appear in Section 3. 

2.1. THE NOTION OF SIGNATURE PEDAGOGY 

The notion of signature pedagogy was introduced by Lee Shulman [70] in the context of 

professional education who argued that “to understand why professions develop as they 

do, study their nurseries, [that is], their forms of professional preparation” (p. 52, italics in 

the original). This notion was then explored for a variety of disciplines [36], including 

mathematics. According to Shulman [70], one can characterize signature pedagogies by 

three distinct attributes – surface, deep, and implicit – 

called the structures of pedagogy. The idea of the 

three structures of pedagogy was extended further in 

[3] by considering two parallel universes – the 

universe of teaching and the universe of learning – 

each comprised the three structures. This extension 

enabled considering students as the very recipients of 

their instructors’ signature pedagogy. It goes without 

saying that teaching affects learning; by the same token, the way students learn can alter 

the way instructors teach – consider, for example, the effect of student course evaluations 

on college instructors. Due to such reciprocity, two parallel universes of teaching and 

learning with three, perhaps overlapping, domains – surface, deep, and implicit domains – 

may be considered in the spirit of Shulman [70]. Using this extended construct, one can 

characterize teaching and learning mathematics through projects linked to genuine real-

life applications in terms of the three domains (structures). Surface level structure of 

learning can be illustrated by the case when mathematical model of a real-life situation 

selected by a student is way too approximate. For example, when finding the area of a 

restored wetland one can use contour integral taken along the wetland’s boundary. 

Mathematics application projects 

should be integrated throughout 

the entire K-16 curricula 

To understand why 

professions develop as they 

do, study their nurseries 

– Lee Shulman 
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Alternatively, one can approximate the area through simple polygons such as triangles and 

parallelograms. The latter kinds of approximation if used in a project by a student belong 

to the surface structure of learning mathematics. 

Likewise, the surface structure of learning mathematics through projects can be illustrated 

by the use of artificial situations with little or no connection to real-life problems or when 

students (by using mathematics) arrive at conclusions violating geometrical, physical, or 

biological meaning of the situation involved. A classic example of that kind from the 

elementary school curriculum is one’s response to the problem of arranging twenty 

students to do six team presentations: after correctly dividing twenty into six one offers a 

contextually meaningless statement “three and remainder two students in each team” as an 

answer (see also a bussing problem in [18]). 

A deep structure of the action learning pedagogy occurs when a problem is jointly 

explored by a STEM major and his/her mathematics advisor. At the secondary level, a 

deep structure of the pedagogy occurs when a student assimilates the critical aspects of an 

engineering design and generalizes the solution for novel applications. Finally, a deep 

structure of the action learning pedagogy emerges at the primary level when pupils ask 

questions and integrate answers they receive with their activities from which the questions 

stem. 

2.2. COMPUTER-ASSISTED SIGNATURE PEDAGOGY 

In the modern technological context, a signature pedagogy can be supported by powerful 

digital tools. This innovation brings about the notion of a computer-assisted signature 

pedagogy (CASP). The surface structure of a CASP – both in terms of teaching and 

learning – is mostly concerned with the pedagogy of entertainment when a computer 

provides an easy-to-use learning environment which, while visually appealing and 

conveniently interactive, is not aimed at in-

depth study of a subject matter but rather, 

enables students merely to have a good time 

in the classroom. In mathematics, at the pre-

college level, teaching and learning at the 

surface structure level of CASP supports 

teachers’ focus on using a drill-and-practice 

software program designed for a mathematics lesson. Alternatively, at the surface 

structure, different images (iconic or symbolic) afforded by a specific computer 

application can be visualized; yet a teacher does not expect students to start making 

connections among the images. Likewise, at the tertiary level, an instructor’s goal may be 

to have their students practice integration through the use of a similar type program, and 

in doing so be dependent on an “automatic transport phenomenon” [35] for which one’s 

ability to carry out flawless integration simply requires entering all of the data into a 

computer correctly. 

The surface structure level of using technology in education was termed by Maddux [51] 

as its Type I application, seeing it markedly different from Type II application, which is 

supposed to manifest “new and better ways of teaching” (p. 38, italics in the original). 

More recently, Maddux and Johnson [52] warned that “the boring and mundane uses to 

which computers were often being applied (at the very outset of their educational 

applications) had set the stage for a major backlash against bringing computers into 

schools” (p. 2). This suggests that CASP may not be viewed as a means of successful 

Computer-assisted signature pedagogy 

cannot be viewed as a successful tool 

unless a teacher employs the deep 

structure of the signature pedagogy 
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educational innovation unless a teacher employs the deep structure of the signature 

pedagogy. 

The CASP approach aims at gravitating away from the surface structures of teaching and 

learning and, instead, they integrate, whenever possible, their deep structures. This 

requires an active interaction among different levels of the Teaching and Learning 

Universes. 

In the case of mathematics teacher education, a project can be rooted in the application of 

technology to mathematics teaching and learning. In the learning universe, one can use 

ready-made programs (at the surface structure level), and create new computational 

learning environments (at a deeper level). For example, one can use a spreadsheet to 

generate the natural number sequence by using only formatting features of the program: 

font type, size, color, etc.; that is, creating an attractive interface of the learning 

environment. At a deeper level, one can parametrize the level of mathematical complexity 

of the natural number sequence to allow for the variation of the first term, the difference 

between two consecutive terms, the length of the sequence, and so on. 

2.3. SURFACE STRUCTURE OF TEACHING AND LEARNING THROUGH APPLIED 

PROJECTS 

A less trivial attribute of teaching and learning through projects is that it offers the 

students an opportunity to own their project topic, and custom-tailor it to their individual 

interests – in a specific real-life problem situation. Nonetheless, at the surface structure of 

learning, a student, for example, may disregard the fact that the results of integration can 

yield negative values for area or volume. Also, students can have different dimensions in 

the left- and right-hand sides of their equations/inequalities. Younger students may 

disregard the irrelevance of large numbers in measuring certain characteristics of real life. 

Furthermore, mathematical models and related machinery that a student selects for a 

project may be too simple and naive. For example, often in the context of statistical 

analysis, a student may select linear regression and, consequently, obtain confusing 

results. Likewise, a student can select a model for 

a physical or biological phenomenon that is 

described by a linear model (e.g., in the form of 

differential equation), again, leading to the results 

that are in contradiction with a physical or 

biological meaning of the phenomenon. Another 

student may come up with a non-linear model, yet a mathematical method selected to deal 

with a non-linear phenomenon may be based on linearization that, once again, leads to the 

results that are in contradiction with a physical sense of the situation involved. That is 

why a subject matter advisor is needed because a mathematics instructor may not know all 

the peculiarities of the real-life situation. 

A grade-appropriate experience at the primary level is desirable to be prepared to learn 

mathematics through projects at the tertiary level. For example, as described by 

Abramovich, Easton, and Hayes [3], within a spreadsheet-based project, the use of 

multiple worksheets – both linked to and independent of each other – allows for the 

creation of learning environments of different levels of technological sophistication. 

Students can progress through the worksheets of a spreadsheet like through the pages of a 

book. 

A project can allow a student to 

custom-tailor their education and 

diversity their pathway to a 

STEM career 
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2.4. DEEP STRUCTURE OF TEACHING AND LEARNING THROUGH PROJECTS 

The deep structure of signature pedagogy was defined by Shulman [70] as the best way 

“to impart a certain body of knowledge and know-how” (p. 55). The value of using 

project-based option is that it relieves the demands of understanding abstract mathematical 

concepts in the pursuit of using mathematics as a tool. This feature enables students’ 

comprehension of basic mathematical 

concepts as valuable instruments rather than 

artificially selected topics to be included into 

undergraduate mathematics curriculum. That 

is why, at the deep structure of the project-

based signature pedagogy, the effort of an 

instructor should be for a student to 

appreciate the applied value of mathematics and the critical role of the subject matter in 

improving the world around us. Furthermore, the intent should include demonstration that 

such an improvement is in the hands of students, should they acquire mathematical ideas. 

For the project-based approach to mathematics teaching and learning to be successful at 

the deep structure of the two universes, an empirical approach to the development of 

knowledge can be utilized. This approach was strongly emphasized by John Dewey, the 

most notable reformer of American education in the first part of the 20
th
 century. Dewey 

[24] argued that experience is educative if one’s intellectual growth is its main outcome 

and towards this end promoted the reflective inquiry approach to the development of 

knowledge. Reflection on experience occurs at the deep structure of both teaching and 

learning universes. New knowledge about real-life problems can be developed through a 

professor-guided reflection, as students are encouraged to inquire about the applied 

meaning of their mathematical experience. Whereas a professor determines the level of 

guidance, the ideas (as Pólya [65] put it) “should be born in students’ minds and the 

teacher should act only as midwife.” 

2.5. IMPLICIT STRUCTURE OF TEACHING AND LEARNING THROUGH PROJECTS 

According to Shulman [70], implicit structure of signature pedagogy is comprised of 

“beliefs about professional attitudes, values, and dispositions” (p. 55). Can a student solve 

a real-life problem? Can one learn mathematics through apprenticeship? Can real-life 

problems be expressed mathematically? Can real-life problems be solved through 

mathematics? A professor’s professional 

attitudes and beliefs regarding project-based 

learning of undergraduate mathematics strongly 

affect his or her students’ learning abilities. In 

the case of the mathematics application project, 

one may believe that a critical attribute of 

signature pedagogy is the absence of the final exam. That is, if a professor’s belief about 

the usefulness of projects as a teaching and learning tool does not answer the above 

questions in affirmative, teaching and learning through projects would not occur at the 

deep structure levels of the two universes. 

For example, a teacher may believe that the speed and efficiency of calculations provided 

by an electronic spreadsheet is the most important feature of CASP integrating this tool. In 

that case, the teacher’s implicit structure of teaching will be oriented toward students’ 

learning of basic skills in using Excel such as creating and saving files, navigating 

The intent of an instructor should be 

for a student to appreciate the critical 

role that mathematics serves in 

improving the world around us 

A professor’s professional attitudes 

and beliefs strongly affect a 

student’s ability to learn 
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directories, managing different platforms, as well as improving spreadsheet programming 

abilities. However, if a teacher believes that the speed and efficiency of calculations have 

to be utilized for complex mathematical explorations, an emphasis of instruction would be 

on problem solving, mathematical connections, and grade-appropriate experimentation 

with mathematical ideas in the context of a spreadsheet. 

3. Action learning of mathematics at each educational level 

Action learning includes two fundamental features: an action (decision) and the reflection 

upon that action. As students gain technological proficiency, progressing along the STEM 

track, their chosen actions should gain in consequence and their reflections should 

increase in depth (see Table 1). The proposed manifestations of the project-based 

signature pedagogy for mathematics education at the post-secondary, secondary, and 

primary levels are detailed in Sections 3.1, 3.2, and 3.3, respectively. 

3.1. POST-SECONDARY SCHOOL 

At the undergraduate level, action learning in mathematics begins to resemble the 

activities of academic and industrial STEM professionals. Rather than responding to a 

series of formulaic questions that may have little relevance to her/his major interest, a 

student takes the action of choosing 1) a mathematics advisor, 2) a subject area advisor, 

and 3) a real-word problem from the surrounding community. Occasionally, students 

select a project topic and then find a suitable subject area professional; however, many 

students use the opportunity to network into a 

professional community by first approaching a 

professor or an industrial specialist who can 

propose a current problem from their field. 

During the project work, students are often 

required to utilize certain field-specific technologies that are essential for solving state of 

the art challenges, rather than using technology merely as a prop. After reaching a solution 

to the initial problem, a student – in the action learning pedagogy – reflects upon her/his 

work by writing a summary report that includes: a statement of the problem, the 

motivation for choosing the problem, a mathematical approach to reach the resolution, and 

finally a discussion of the results. In the conclusion section, many students reflect (as a 

part of the deep structure) by exploring the issues that they encountered while working on 

the project, discussing how well their results matched their intuition of the problem, and 

suggesting directions for future research. 

As in other forms of action learning, the impact of a student’s action – in creating a 

doubly-supervised mathematics project – can be 

substantially more consequential than other forms 

of assessment, e.g., homework, exams, etc. For 

instance, some students decide to undertake an 

issue relating to their local community, using the 

project as form of service learning [34], for 

which a resolution yields a meaningful and lasting improvement for the society. Whereas, 

some STEM majors leverage the opportunity to begin their research careers by publishing 

their summary reports in an undergraduate research journal or presenting their results at a 

conference. Once a student has used mathematics in an essential way to solve a 

meaningful problem in their life, the subject of mathematics can be reframed as a tool for 

making life easier rather than harder. 

Action learning in mathematics 

resembles the activities of academic 

and industrial STEM professionals 

Once a student uses mathematics 

in an essential way, the subject 

then becomes a tool for making life 

easier rather than harder 
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3.1.1. Action Learning at the Post-Secondary Level 

The Mathematics Umbrella Group (MUG) at the University of South Florida (USF), 

initiated by Arcadii Grinshpan in 1999, bridges the gap between mathematics education 

and applications, while inspiring STEM students to attain the mathematics skills essential 

for success in their respective disciplines. The MUG program is aimed at bringing 

creative, experiential learning into the curricula of undergraduate mathematics courses 

(first of all, engineering and life sciences calculus) through an optional project that can 

substitute for some course requirements. It forges a 

mutually beneficial partnership along educational 

lines between mathematics faculty and the non-

mathematical community, which is an effective way 

of mathematics faculty development [34]. Students 

embark on individualized business/science projects 

with mathematics application guided by both a 

mathematician and a subject area specialist (see Figure 11), so that this pedagogy is not 

restricted by a lack of content knowledge [12]. The projects are chosen from an area 

outside mathematics, often closely related to either the field of a student’s study or a real-

life problem within the Florida business community. This ensures that mathematics 

content is relevant to the students’ interests and aptitudes [5,37]. According to Milligan 

[55], the MUG program is the first organization to endorse personalized mathematics 

projects – advised by both a mathematics and subject area advisor – for teaching non-

mathematics majoring STEM students. 

3.1.1.1. Scope of the Mathematics Umbrella Group 

Over the course of its 16-year experience, MUG has fostered 2,100 interdisciplinary 

projects involving over three thousand of STEM students, USF faculty, and community 

professionals from a variety of fields [33], as depicted in Figure 1. Since its inception, the 

MUG program has sponsored projects in 162 calculus sections, taught by 25 calculus 

instructors, which contained over 7,400 USF STEM students. In addition to developing 

guidelines for project participants, supporting students by providing a network of 

community and university advisors, and maintaining an online submission and evaluation 

system for mathematics instructors to use, the MUG also promotes a number of 

undergraduate research experiences. In response to the increasing trend of the projects, the 

open-access Undergraduate Journal of Mathematical Modeling: One + Two (UJMM), 

located at http://scholarcommons.usf.edu/ujmm, was created in 2008 to showcase the best 

projects of each semester. The journal is free for both student authors and readers alike, 

and features a spectrum of STEM topics that have led to its popularity. In 2015, over 

70,000 UJMM articles were downloaded, and this number continues to grow. 

MUG advisors also encourage all students with high quality projects to participate in local 

research conferences. For example, some student projects were presented at Oktoberfest: 

Research Symposium and Undergraduate Research and Arts Colloquium at USF in 2012-

14. In addition, the MUG program has organized student poster conferences (STEP Up for 

Applied Calculus: Undergraduate Research) and collaborated to host workshops for the 

Florida mathematics faculty, both of which were held at USF on September, 2012 and 

April, 2014. 

Interdisciplinary projects forge 

mutually beneficial 

relationships between students, 

faculty, and the community 

http://ciim.usf.edu/confernces
http://scholarcommons.usf.edu/ujmm
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3.1.1.2. Effectiveness of MUG’s Action Learning Activities 

The success of the project-based method of education can be evidenced through: (a) 

calculus passing rate for students who have completed projects is over 20% higher 

compared to those who had chosen not to do one, (b) a jump from 30% to 58% passing 

rate for African American students in the project-based sections, (c) an increase in number 

of students taking and passing follow-up mathematics and engineering courses, (d) about 

17% higher graduation rate for engineering “project option students” as compared to 

historical records, and (e) an increase in undergraduate research interest in all STEM areas 

[39,40]. 

 

 Significantly increased 

motivation and STEM 

retention 

 Real-life problems in the field 

of interest 

 Better understanding and 

retention of calculus 

 Connecting with the 

professional community 

 Opportunities for research 

Figure 1. Applied mathematics projects connect students with academic and industrial STEM 

professionals 

3.1.2. Introducing Projects into the Classroom 

There are a variety of ways to incorporate applied projects into the curriculum of any 

mathematics course, providing a means to scale the pedagogy for any college or university 

environment. For instance, the projects can either be compulsory, offered as an option to a 

final exam, or for extra credit. Administratively, project sections can pool their network of 

advisors and support each other through a larger organization such as MUG at USF, or 

each mathematics instructor can operate autonomously. 

At the beginning of each semester, calculus students should be provided instructions for 

the applied mathematics project that contain guidelines outlining how to choose their 

advisors, pick a topic, format the final report, and submit their project online. 

Additionally, the guidelines contain links to other external resources, such as the UJMM – 

which showcases quality examples of projects from former students – technical writing 

tips, technology tutorials, and a timeline for completion of the project. 

Generally instructors offer a few extra office hours at the end of the semester to 

accommodate the increase of project related questions ahead of the deadline. Most 

instructors set a deadline to submit a project around their regularly scheduled final exam 
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time, but considerations should be made to allow a reasonable amount of time for the 

subject area advisors to leave their reviews of the projects. 

3.1.2.1. Recommended mathematics course level 

The MUG program originally offered the applied mathematics project opportunity as a 

part of the calculus sequence (including differential equations) in order to strengthen the 

relationships between the USF mathematical community and its surrounding businesses, 

bridging the gap between the theory and practice of mathematics. In particular, the 

program was initially offered to the Calculus II and III evening sections, which contain a 

majority of working students. On average, upper level calculus students have shown to be 

sufficiently responsible and mathematically adequate to contribute to the resolution of real 

world problems in a reasonable way. However, other courses, such as probability, 

statistics, and linear algebra, provide an ideal threshold for engagement in doubly-

supervised interdisciplinary projects for the non-calculus tracks. 

The action learning pedagogy has been implemented at USF at the Calculus I level, but on 

a relatively smaller scale than the doubly-supervised projects sponsored by the MUG 

program at the Calculus II & III levels. The Calculus I activities showed an increase in 

motivation and mathematical confidence among the students, which is consistent with the 

findings of other problem based-learning pedagogies [66]. 

The student demographics for pre-Calculus, and the preceding mathematics courses, are 

dominated by non-STEM majoring students, which extends beyond the focus of this 

current proposal. However, we advise the use of other successful active learning 

pedagogies for these levels, such as those reviewed by Prince in [66] and the PCAST in 

[26]. 

Courses designed to contextualize mathematics for a specific field have also been shown 

to effectively motivate students within that field. For instance, the Wright State Model for 

Engineering Mathematics Education has led to an increase of motivation [47] and 

retention [46] for engineering students. 

3.1.2.2. Project-option classes 

In a project-option class, the standard knowledge assessment is administered throughout 

the semester where in-class tests cover the most basic concepts. As a follow-up, a student 

either does a project – allowing them to participate in doubly-supervised interdisciplinary 

(mathematics application) activities – or takes a comprehensive final exam. The project 

option has been offered in 148 calculus sections at USF and continues to be offered in the 

Engineering and Life Sciences calculus classes. 

An instructor’s beliefs about action learning (an implicit structure) can greatly influence 

how many students will choose to partake in the project option. For instance, an instructor 

can dissuade their class from the option by insinuating that the project will require a 

substantially greater amount of work or be graded stricter than a final. Along this line, 

unless the project guidelines are covered in class, students may be unclear about the 

expectations of the project and choose the more familiar final – even though it is more 

likely that they will score higher by submitting a project. 
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3.1.2.3. Project-only classes 

At USF, some evening calculus classes – which are predominately filled by working 

students – are designated as project-only sections, where students are encouraged to seek 

topics for projects within their own work environments. In project-only sections, most of 

the subject area advisors are industrial experts – external to USF (see Figure 4) – that 

contribute in a one-off fashion. However, since the local STEM industrial community is 

considerably larger than the academic community, the limited participation of external 

professions is sustainable (see Figure 3). 

Project-only classes have several advantages over project-option sections: 1) most 

students enrolled in project-only sections start working on their projects at the beginning 

of the semester, whereas students in project-option classes typically wait for their test 

results before electing to initiate a project, 2) students in project-only sections seek out a 

subject area advisor earlier in the semester, which allows them to find a replacement 

advisor in case their first choice does not accept the responsibility. Many potential subject 

area advisors are more willing to help out early in the semester, when the class loads are 

lighter. 

As of the spring of 2013, MUG has sponsored 14 project-only sections at USF. A 

disproportionately greater number of projects that are selected for publication in the 

UJMM originate in project-only sections. 

 
Figure 2. Classification of projects by subject area (left), and whether the project 

problem originated from within the university or the surrounding community (right). 

3.1.2.4. Advanced placement, honors, and summer school 

Several of the MUG projects were conducted by high school students supervised by the 

USF faculty in the USF summer school for gifted high school students, initiated by 

Manoug Manougian in 1979. High achieving secondary school students often seek 

opportunities to go beyond the standard curriculum, and the open-ended nature of a 

project can provide them with the environment to excel beyond grades alone. 

3.1.2.5. Pure mathematics track 

Teaching mathematics with doubly supervised applied calculus projects was originally 

developed to help non-mathematics majoring STEM students connect what they learn in 

their mathematics courses with their majors of choice. However, applied projects promote 

a deeper level of understanding, and can be useful to undergraduate mathematics majors 

as well. Indeed most of mathematics – including calculus – was developed to solve real 

world problems. Incorporating projects into pure mathematics classes gives students an 

opportunity to explore a topic more deeply, or connect a general core subject to a 

specialized mathematical field. 
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3.1.3. Project advisors 

Every semester dozens of non-academic professionals and USF faculty volunteer to help 

as advisors. Each project is guided by a subject area advisor and mathematics advisor 

(usually the calculus instructor), while extra advisors are also allowed. 

 
Figure 3. The total number of advisors that guided a calculus student in an applied 

mathematics project during the Fall 2008 to Spring 2016 semesters at USF. The charts 

show the number of first-time advisors compared to the number of advisors who have 

participated in the MUG program during a previous semester (left), and the number of 

USF advisors versus the advisors from the surrounding community (right). 

3.1.3.1. Mathematics Advisors 

Each application-based project is guided by at least one mathematics advisor that provides 

advice on mathematics tools and technologies. Some mathematics advisors who are 

experienced in supervising interdisciplinary problems are comfortable overseeing multiple 

projects, suggested by a variety of subject area advisors. Accumulated experience from the 

MUG program has shown that most projects can be conducted under the guidance of a 

single mathematics advisor (the course instructor), but some STEM projects involve a 

number of specialized topics that may necessitate the involvement of an additional 

mathematics advisor or the course instructor may be overloaded in her/his teaching 

responsibilities. Supplementary mathematics advisors can include other mathematics 

faculty, postdocs, and graduate assistants. 

The mathematics instructor – who is usually a mathematics advisor – brings the 

mathematical side of the project into alignment with the course curriculum, assists in 

resolving unconventional cases or problems, and assigns the final project grade (taking 

into account the evaluations of all the advisors). In assigning the final course grade, each 

mathematics instructor has full autonomy of the grading system of their class. However, 

the influence of the project grade should be significant. 

3.1.3.2. Subject Area Advisors 

Every semester dozens of non-academic professionals and USF faculty volunteer to help 

as advisors. As of the Spring 2016 semester, there have been 728 community 

professionals and 335 USF subject area advisors. The subject area may include any 

STEM-related discipline such as engineering, natural sciences, medicine, or a related 

field, e.g., business, economics, finance, etc. A subject area advisor may be a faculty 
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member, postdoc, PhD student, or a community professional in the project field (see 

Figure 4). 

Students electing the project-option can use the MUG network to find an expert in their 

chosen subject area, willing to advise their project. With the subject area advisor’s 

guidance, students decide upon a clear project topic and a plan for achieving their goal. It 

is expected that the project topic stems from current or planned workforce (company, or 

government) or scientific activities that require a mathematics application. Subject area 

advisors closely work with their students until the completion of the project, at which time 

they have an opportunity to review, evaluate and comment on the final results. These 

comments are especially valuable to the course instructor due to the broad range of the 

specialized STEM fields covered within the action learning pedagogy. 

MUG records show that while many subject area advisors narrow their focus to advising a 

single student per semester, some experienced faculty members – who have served as lab 

heads within their discipline – are comfortable supervising several projects simultaneously 

(possibly for multiple mathematics courses). In contrast, many STEM problems are 

interdisciplinary, in which case, a student may seek the assistance of additional subject 

area advisors. 

Figure 3 shows that each semester there is a large number of new advisors who choose to 

supervise a student in the action learning mathematics pedagogy, and that typically over 

half the participating advisors each semester are affiliated with USF. However, Figure 4 

indicates that over two thirds of all the subject area advisors belong to the business and 

government communities surrounding the university. This means that the majority of the 

advisors each semester belong to the academic community and participate repeatedly, 

whilst the remainder of the advisors are external to USF and contribute exclusively to a 

single project. The large number of external advisors is consistent with the fact that many 

students are employed while they are enrolled at the university, and working students are 

encouraged to seek a problem from within their workplace, suggested by their employer. 

According to the Georgetown University Center on Education and the Workforce, a 

consistent 70-80% of college students are active in the labor market [16,30], providing an 

inexhaustible source for project topics and potential advisors. 

3.1.3.3. Graduate student participation 

STEM graduate students are encouraged to participate as project advisors and journal 

content editors and reviewers. Undergraduate students may feel more comfortable 

approaching a graduate student for assistance than a faculty member, or even their 

instructor. Graduate student participation helps to distribute the workload of generating 

topic for and supervising hundreds of personalized projects. 

  
Figure 4. Classification of project advisors by their USF affiliation. External subject area 

advisors are not directly affiliated with USF. 
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Many graduate students voluntarily agree to supervise the STEM projects, but institutional 

support would have a greater impact. USF implements a unique system of vertical 

integration whereby faculty members mentor a few graduate research assistants (RAs) and 

teaching assistants (TAs) to become project leaders who supervise multiple projects and 

assist their fellow graduate students in their leadership roles. Besides helping their 

research by expanding their horizons, the RAs and TAs obtain unique mentoring and 

editing training that are not available through standard assistantships. Student advisors 

(RAs, TAs) are guided by the faculty to develop interesting project topics based on their 

own research in a way that is accessible to STEM undergraduates. Near the end of the 

semester, the graduate advisors hold extra office hours specifically designated for helping 

project students. 

3.1.4. Role of technology in projects 

3.1.4.1. Technology used by students 

In general, when considering a project topic, many students begin by either searching 

keywords related to their interests online or reading some of the UJMM publications. 

While preparing their solutions, they use data processing suites and graphing utilities, 

such as Microsoft Excel
©

, SPSS, SAS, or Wolfram Alpha
©

, and – while preparing their 

final reports – students often use general office and graphics software packages, e.g. 

Microsoft Word
©

 or Adobe Photoshop
©

. After the students have uploaded their projects to 

the MUG database, they are prompted to take an anonymous survey, leave their 

testimonial, and give their suggestions about how to improve the MUG program. 

In the context of an individual project, the technologies required to properly tackle a 

STEM problem, such as computers, software, cameras, audio equipment, robots, reagents, 

machines, etc., are often field-specific and designed to perform a particular function. For 

instance, the chemical engineering major who is interested in building a low-cost 

continuous stir reactor may have little interest in the population growth of the Florida 

Scrub-Jay. Both subject area and mathematics advisors can offer their field experiences to 

make suggestions about the appropriate technologies required to approach the problems. 

3.1.4.2. Technology used by advisors 

Advisors often use field specific technologies to get their students started on the projects, 

and to check the correctness of their students’ final solutions. Throughout the process, 

advisors use email and video conferencing to keep updated on their students’ progress. 

Finally, when a student uploads their final project to the MUG database, their advisors 

have the opportunity to review the project and leave an evaluation online for the course 

instructor. The course instructor can also choose to run anti-plagiarism software before 

assigning the final grade, according to their own rubrics. 

Please evaluate the project by assigning a rating of “Excellent”, “Very Good”, 
“Good”, “Poor”, “Very Poor”, or “Don’t Know” to each of the following six questions: 

(1) How independently did the student work? 
(2) How clearly did the student provide a context for the work? 
(3) How clearly did the student write out and define the terms in the equations? 
(4) How clearly did the student describe the methods used to analyze the 

problem? 
(5) What do you think is the quality of the student’s mathematical analysis? 
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(6) Overall, how well does the student understand what she/he has done? 

Do you have any further comments? 

Table 2. Example of the evaluation questions to be answered by the project 

advisors, which the course instructor takes into consideration while assigning the 

final project grade. 

3.1.4.3. Technology used by administrators 

To fully implement all the research opportunities that the action learning pedagogy 

affords, a program, such as MUG, must rely on technology to coordinate the network of 

students and advisors. MUG uses the database of projects, project metadata, advisor 

evaluations, and student surveys to  

 increase the retention of the students’ mathematical knowledge,  

 strengthen their confidence and motivations towards mathematics applications, 

 assess the effectiveness of these goals,  

 target areas of the program for improvement, and 

 disseminate the results. 

In particular, articles in the open access UJMM have been downloaded in almost all 

countries of the world. 

3.1.5. Examples of post-secondary applied-mathematics projects 

3.1.5.1. Volume of Lake Behnke 

For her life sciences calculus project, 

Kaitlin Deutsch [23] contacted the 

director of USF’s botanical gardens to 

obtain a current bathymetric map of 

Lake Behnke (see Figure 5), USF’s 

main storm water drainage basin. 

Using contour integration, she found 

that the lake has changed from the 

linear area-to-depth relationship – 

noted by the DPRM storm water 

management study conducted in 1998 

– to a quadratic area-to-depth relationship. This suggests that the topography of the lake 

has changed extensively over the past 14 years. 

Deutsch also presented her poster at the 2012 STEP UP for Applied Calculus poster 

conference. She was named a 2014 Goldwater Scholar. 

3.1.5.2. Sinkhole Repair 

While taking engineering calculus, Charles Griffith [32] was working for a sinkhole repair 

company which drills holes (some vertical, some askew) around the perimeter of a house, 

down to the bedrock, and fills them in with concrete. These repairs are common in Florida 

since it sits on a carbonate platform making the region highly susceptible to sinkholes. 

Figure 5. Bathymetric map of Lake Behnke [23] 
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The profitability of a sinkhole repair company 

is contingent on mixing the proper amount of 

concrete for each job (concrete should be 

poured continuously as it hardens if mixed and 

not used). 

By using Riemann sums to approximate the 

modeled area between the surface of the 

ground and the bedrock, Griffith estimated the 

total amount of concrete needed for the repair 

pictured in Figure 6 to within 8% of what was 

actually needed. 

In the problem of section 3.1.5.1, the 

measurements for the boundary of the lake 

were acquired directly from aerial photography. However in the problem of section 

3.1.5.2, the geometry of the sinkhole was unknown, so its boundary was estimated from 

the depth of the bedrock below the house. 

3.1.5.3. Peak Oil 

Trang Luong [50], while taking a life sciences calculus class, estimated the remaining 

level of U.S. oil reserves. She modeled the crude oil production from 1859 to 2010 using 

the records published by the U.S. Energy Information Administration (Figure 7, right). 

She modeled the U.S. oil production 𝑦(𝑡) in terms of 𝑡 years as: 

𝑦(𝑡) =
𝐴 𝑒−𝑏(𝑡−𝑐)

(1 + 𝑎 𝑒−𝑏 (𝑡−𝑐))2
 , 

and used least squares regression to fit the unknown parameters 𝐴, 𝑎, 𝑏, 𝑐 to her data. Next, 

she computed the “peak oil” by finding the derivative of the modeled crude oil production 

over time. By integrating the model from the present to the projected end of the oil 

production, she was able to estimate the remaining U.S. oil reserves. 

Figure 7. Regression of the US crude oil production during 1856 to 2006 (left) used in [50] to 

calculate the peak oil production levels from the data provided by the [77] (right). 
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Luong won a cash prize for her poster at the STEP UP for Applied Calculus: 

Undergraduate Student Poster Conference. Subsequently she received a DAAD (German 

Academic Exchange Service) RISE scholarship for an internship in Germany. 

3.1.5.4. Complexity of Genomic Sequences 

With the advent of next generation sequencing, the field of bioinformatics has grown into 

an industry. For his life sciences project, Brandon Toun [74] discussed the topological 

entropy and compressibility of the mitochondrial DNA sequences for nine organisms (see 

Figure 8). As part of his study, Brandon compressed DNA sequences using the Deflater 

algorithm implemented in the Java standard library, and compared the size of the plaintext 

sequences to the resulting compressed sequences. He found that the Laminaria digitata (a 

large brown algae) mitochondrial genome had the highest rate of compression, whereas 

the Elaeis guineensis (an oil palm) mitochondrial genome had the lowest compression 

rate. He also noted that the number of mutations to a genome can be quickly estimated by 

comparing the compression rate of the mutated genome to a compressed normal 

(reference) genome.  

 

Figure 8. Bar graph comparing the original mitochondrial sequence lengths of nine organisms to 

their compressed lengths [74]. 

 

3.1.5.5. Pallet Physics 

Each night at Publix, delivery trucks arrive and need to 

be unloaded. Occasionally the pallet jacks break and 

the employees have to unload the trucks by hand. 

Lauren Woodbridge [80], a high school student taking 

engineering calculus, explored whether it was safe to 

unload a pallet from a supply truck by sliding it down a 

metal ramp (see Figure 9). First she calculated the 

critical angle for which the pallet would overcome the 

friction of the wood on the metal and begin to slide. 

After calculating the pallet’s acceleration, velocity, and 

displacement, she concluded that it would not be safe to 

unload the truck in this manner. 

Figure 9. Unloading a Publix 

supply truck by sliding a pallet 

down a ramp [80]. 
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This problem involves a combination of physical considerations, such as the height and 

length of the ramp, the material composition of the ramp and pallet, and the weight and 

shape of the cargo. Its solution concerns Newton’s second law of motion, frictional forces, 

and plane geometry. 

 

3.1.5.6. Area of a Baseball Field 

Motivated by his interest in baseball, Jacob Courchaine 

[21] wanted to identify the costs of building a baseball 

field to Major League Baseball’s specifications. In 

particular, he considered the amount of clay need to 

cover the catcher’s box, pitcher’s mound, and infield, 

and the amount of fertilizer necessary to grow the grass 

for the infield diamond and outfield. 

Most of a baseball field’s design follows basic 

geometric patterns (circles and squares), however the 

back wall of the outfield is an arc of an ellipse, i.e., 

center field is farther from home plate than the left and 

right outfields. Courchaine divided his model into 

smaller parts and used the inverse trigonometric 

integration techniques that he learned in engineering 

calculus to find the area of each of the subregions (see Figure 10). 

 

3.1.6. Student Reflections of the Project Pedagogy 

Since the Spring 2013 semester, all students that upload a project to the MUG database 

are given the opportunity to participate in an anonymous survey. As of the Fall 2016 

semester, 446 out of 600 students who uploaded a project completed the survey and the 

results are reported below in Table 3. 

 Question Agree Disagree 

1. The quality of STEM education and research is 

closely connected with the quality of collegiate 

mathematics education. 

418 

(93.7%) 

28 

(6.3%) 

2. The calculus sequence is a significant part of the 

collegiate mathematics education for STEM majors. 

 

406 

(91.0%) 

40 

(9.0%) 

3. When calculus is taught as a pure mathematical 

content, most STEM students understand the subject 

and realize why they need to study it. 

237 

(53.1%) 

209 

(46.9%) 

Table 3. Results of the survey given to students after they complete their interdisciplinary 

mathematics application project. 

Figure 10. A baseball field 

with half the outfield 

highlighted in blue [21]. 
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After answering the three questions shown in Table 2, the survey participants were given 

the chance to provide a free response testimonial of their project experience, and 

suggestions of how to improve the program. A few of the testimonials appear below: 

Connection of mathematics with other STEM disciplines: 

“The combining of different fields is at the core of my project subject. 

NMR research combines multiple fields in order to provide a powerful 

tool in spectroscopy. Working on this project helped highlight the 

importance of interdisciplinary cooperation among the fields of 

mathematics, chemistry, physics, and many more.” 

 “I had a pleasant experience working with two advisors; subject area 

advisor (physics) and the mathematics advisor (calculus). The physics 

advisor assisted me with finding a topic and gave me brief explanations 

to multiple approaches for the suggested problem. Whereas, the calculus 

advisor helped with suggesting to look at a published paper that was 

written in calculus about the same general topic to get a better 

understanding about the type of calculus that should be used for my 

project. Their assistant was very useful.” 

“I think it was a great experience. I felt more connected to what I would 

like to do as a career. Fields like engineering can get pretty theoretical in 

classes.” 

 

Students learn the technologies associated with their discipline: 

“Very informative, I learned how to use new computer programs that 

have been useful in all of my classes, and for the first time I have gotten 

to see how important mathematics is for the life sciences.” 

“I really liked having this project to do. It made me realize how what I 

had learned over the semester was actually used rather than a bunch of 

numbers and letters. My tutor also explained to me how excel was doing 

partial derivatives and matrices and it helped the information click. 

Instead of it being an abstract concept it became concrete and applied. I 

also learned more about algae than I ever thought I would know. It was 

also kind of fitting because I studied this particular algae back in high 

school at an internship.” 

 

Education is what remains beyond the classroom: 

“I enjoyed the opportunity to take on the challenge of this project and 

found that there was so much to learn from this experience. I have truly 

grasped the concept found in the project and I am looking forward to 

applying it when I graduate.” 
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“I feel that applying the formulas covered in my course to a real world 

example we beneficial, and help me to understand how the math works. 

in addition i did research on topics not yet cover and i feel this was 

helpful to connect concepts and strengthen overall understanding. A final 

exam would have been just cram and forget. This will likely stay with me 

longer.” 

 

Building a connection with the professional communities: 

“Learning to relate with and to develop connections in the staff is 

perhaps one of the most valuable outcomes of this experience” 

“I took Calculus because I want to improve my ability to do STEM 

research - not because of a degree requirement. So, this assignment was 

perfect for me as I could actually practice what I was learning under the 

mentorship of experts.” 

 

Increasing motivation to study mathematics: 

“To tell you the truth I never really felt like a numbers guy and never 

even tried of applying what I’ve learned in class to the real world and 

this project has shown me the light! I’m actually pretty excited to see 

what else I can apply to the real-world, and even though it is just theory, 

It’s definitely pushed me past my comfort zone and really allowed me to 

see that I too, can come up with my own models (it doesn’t have to be 

someone with an extremely high IQ.)” 

“Knowing how the math we learn can be applied is just as important as 

becoming familiar with the process of manipulating it. Context allows 

the student to find his or her own bearings and realize the importance of 

their own work; a significant motivator.” 

“Many students attending these classes often think they are pointless and 

in turn do not pay full attention to the mathematics being presented 

during the course. Having to work side by side with a graduate student 

and seeing the actual applications of the math being thought in class was 

a truly beneficial experience.” 
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3.1.7. Structure of Undergraduate Research Activities Inspired by MUG 

 

1 Students collaborate with at least one mathematics and one subject area advisor to 

develop an interdisciplinary applied calculus project. A student’s calculus instructor 

usually serves as their mathematics advisor. 

2 Students submit their projects online to the Mathematics Umbrella Group (MUG) 

which authenticates their advisors’ identity. Registered advisors are granted access 

to their students’ projects. 

3 Subject area advisors review their advised projects and submit evaluations to MUG. 

4 MUG securely sends the subject area advisors’ evaluations to the corresponding 

mathematics advisors who assign grades to the projects. Mathematics advisors may 

then choose to recommend certain projects for publication. 

5 Based on the evaluations of the mathematics and subject area advisors, MUG 

recommends the highest rated projects for publication in the open access online 

Undergraduate Journal or Mathematical Modeling: One + Two (UJMM). 

6 Out of the projects recommended by MUG, the UJMM selects the most interesting 

projects from each semester for publication. Graduate students guide the chosen 

authors through any necessary revisions before the articles are posted online. 

7 MUG invites their recommended students to participate in a conference and helps 

them to prepare their presentations. 

Figure 11. Structure of undergraduate research activities inspired by MUG 
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3.2. SECONDARY SCHOOL 

The 21
st
 century standards for technological literacy [42] describe engineering design as a 

purposeful, often collaborative, activity with an explicit goal, shaped by specifications and 

constraints, leading to multiple solutions through systematic reasoning and iterative 

process. 

At the middle and high school levels, the mathematics and science teacher can coordinate 

to provide interdisciplinary engineering design experiences. Rather than starting with a 

mathematical tool, the teacher first poses a hands-on challenge that lets their students take 

an action that compels them to apply creativity and imagination to design the desired 

product, and have fun doing so. When 

students begin their designs the 

mathematics content is often incidental 

– requiring them to make a few 

calculations that may not be essential 

in the initial part of the design stage – 

and many may wonder if there is any 

connection at all to their understanding of mathematics content. Research suggests that, in 

a broad sense, engineering skills represent a combination of mathematical abilities and 

interest in technical problems [75,78]. Therefore, it is important to demonstrate that 

mathematical and scientific knowledge are integral to the engineering design process and, 

at the very least, may be used to make the design process less labor intensive. 

3.2.1. Action Learning Pedagogy at the Secondary Level 

At secondary schools, many students within a grade level have the same set of teachers, 

yet there is often little collaboration between the subjects. Many STEM topics, however, 

span a broad range of fields, and engineering design projects provide an opportunity to 

bridge this divide while providing the students with a fun experience. 

The mathematics and science teacher at the school can collaborate to choose a project that 

highlights an appropriate mathematical and scientific challenge, and present the problem 

as a hands-on activity in one of their two classes. After the students have attempted to 

solve the problem and recorded the results of their efforts, the science teacher can discuss 

the physical factors at play in the design. During the following mathematics class, the 

mathematics teacher can discuss how to interpret the data that their class collected, and 

help them to model the design problems in abstract (mathematical) terms. Combining 

what the class learns from their mathematics and science teachers, the students should be 

guided to develop an optimal solution to the design problem and verify the result 

empirically. The project should be concluded with a one to two page description of the 

problem, the different designs that the students attempted, and summary of what they 

learned from each design. 

The engineering design challenge can either be used once per grade level, several times 

throughout the year, or offered as an afterschool activity – depending on the degree of 

collaboration between the teachers. The design project should be discussed in both 

classes, over the span of several days, to give the students enough time to consider 

alternative designs, but the overall amount of class time devoted to the design project 

should be restricted in order to satisfactorily cover the regular course curriculum. 

Engineering design activities inspire 

creative thinking in a fun way, while 

highlighting the interdependence of the 

STEM fields 



 

89 

 

3.2.2. Examples of secondary school engineering design projects 

Below we provide some examples of engineering design projects and projects that reflect 

the integration of mathematics (and science) into engineering design. 

3.2.2.1. Cardboard Raft 

Most readers are probably familiar with the activity in which participants are given 

identical materials and are challenged to construct a raft that will hold the most weight 

without sinking. On the first day of class, students in the course were given a piece of 

cardboard (9.7×13 cm) and a larger piece of aluminum foil and were told to make a raft 

that would hold the most pennies before sinking (Figure 12). A tub of water was placed at 

the front of the room and each student came forward one-at-a-time to add pennies to their 

raft until it sank. The number of pennies that each raft held was recorded and a winner was 

declared. 

At this point, the instructor gave a brief lecture 

on Archimedes principle – and students 

quickly realized that this scientific knowledge 

would have been useful in their design process. 

Archimedes principle states that the buoyant 

force on a body wholly or partially submersed 

in a fluid is equal to the weight of fluid 

displaced by the body. When equated to the 

force due to gravity on an object floating in 

water, the result is M =ρV where M is the mass 

of the floating object, ρ is the density of water 

and V is the volume of water displaced by the 

floating object. Therefore, Archimedes 

principle allowed the students to translate the 

problem from designing a raft that would hold the most weight to designing a raft that 

could displace the highest volume. 

The rafts that the students designed were, owing to the constraints of the provided 

materials, generally flat in shape with folded up edges. The students were asked to 

construct a formula for the volume of an open-topped box constructed from a flat sheet of 

dimensions AXB with variable X representing the length of the folded up edge (See Figure 

13). Next, the class prepared a spreadsheet in which the volume V = (A − 2X)(B −

2X)(X) of the raft was computed as a function of the edge length X, and discovered that 

there was a particular value of X that maximized the volume (Figure 14). The density of 

water and the mass of a penny were then used to compute how many pennies this 

 

Figure 13. Constructing an open topped box 

(raft) from a flat sheet 

 

Figure 14. Volume of the raft as a function of 

edge length X 
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Figure 12. Seeing how many pennies 

the raft can float. 
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optimum raft could theoretically hold before sinking. This number was actually 

approached by the raft of one student and it was found that the dimensions of her raft were 

very close to the optimal design computed using the spreadsheet. As an aside, it is noted 

that these students had taken calculus and asked to be shown how to formulate the 

optimization as a calculus problem as an alternative to the brute force spreadsheet 

solution. 

The students’ initial raft designs were driven almost entirely by intuition. By the end of 

the exercise they saw, in this instance, how scientific knowledge could be used to more 

easily understand the problem and how mathematics could be used to more efficiently 

arrive at a solution. 

3.2.2.2. Musical instruments 

In another engineering-project, students were given 

several identical goblets, a pitcher of water, a measuring 

cup, a chart of frequencies for a number of musical notes, 

and a smartphone with an app that would display the 

frequency of a played sound. They were challenged to fill 

the needed number of glasses with water of various levels 

so as to be able to play “Mary Had a Little Lamb” by 

rubbing the rims of the glasses with their fingers (Figure 

15). Certainly this could be accomplished by trial and 

error. However, students were challenged to look for a 

process that would be more efficient and precise. 

After some thought, they decided to add a specified 

amount of water to a goblet and measure the frequency 

that resulted from rubbing its rim. The process would be 

repeated by adding successive measured volumes of water 

and measuring the resulting frequency after each addition. 

Eventually, they used a spreadsheet to create a chart 

(Figure 16) of frequency versus volume of water in the goblet and fit a polynomial to the 

data. Since the frequencies of desired notes are known, it was then a simple matter to 

compute the volume needed to produce a specific note and to quickly prepare a series of 

goblets that would allow them to play all the notes in the song.  

Soon after this, students were exposed to how 

guitar strings play various notes and how the 

frets are spaced so as to produce the exact 

frequencies of the notes in the musical scale. To 

reinforce this new learning, they were asked to 

create a stringed instrument from a cardboard 

box and fishing line – using toothpicks to form 

the frets (Figure 17). The instructor was 

gratified to see that all of them computed the 

location of the frets from the formulas we 

developed and then placed the toothpicks at 

these exact locations – as opposed to using trial 

and error. 
Figure 16. Frequency of produced 

sound vs volume of water in the glass 

Figure 15. Producing 

musical tones by rubbing the 

rim of a glass. 
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The engineering design projects described above were used to emphasize that science and 

mathematics are tools that can be employed in the design process. A more extended and 

open-ended project was assigned next. For the lesson plan they were following, the 

engineering challenge was to design a musical non-stringed instrument that would play all 

notes of a major scale within an octave. One group decided to make a pan flute and 

brought a box of straws with them to class. They used the guitar string formulas 

developed in class to determine the required length of the straw representing each note, 

cut the straws to the required lengths, and banded them together. A scale was played on 

the first attempt and their expressions of satisfaction, rather than amazement, indicated to 

the instructor that the notion of mathematics- and science-aided design was sinking in. 

Another group decided to 

make wind chimes out of 

metal pipe. They too dutifully 

followed the process of cutting 

the pipes to different lengths 

indicated by the frequency-

length formulas developed 

earlier. The resulting chimes 

had a beautiful tone but, 

unfortunately, did not play the 

correct notes. Internet research quickly revealed that the physics of a guitar string and pan 

flute resulted in the same (inverse) relation between length (of string or air column) and 

frequency – but that the relationship was different for wind chimes, where an inverse 

square relation is followed. Students learned earlier that scientific knowledge could play a 

vital role in the design process. Now they learned that it has to be the right scientific 

knowledge. 

3.2.2.3. Spring, Rubber Band or Air Powered Car 

For their integrated STEM lesson plan, one group selected the topic of constructing a car 

powered by a rubber band, spring, or air pressure (via a balloon). The lesson plan covered 

several meetings of both a seventh year mathematics course and seventh year science 

course. Standards based content covered in those classes included kinetic and potential 

energy, how to design an experiment, dependent and independent variables, plotting, and 

proportions. 

For the culminating design project, students were provided balloons, straws, paper clips, 

coffee stir sticks, CDs, cardboard, rubber bands, scotch tape, mouse traps, empty water 

bottles, string, and dowels and tasked to design a vehicle powered by air, elasticity, and/or 

a spring that would travel a certain specified distance. 

This is a fairly standard type of project to assign middle school students and it usually 

provides an activity where the students can be creative and have fun but does not 

necessarily require them to use any science and math. The special feature of this project 

was the constraint that the vehicle travels (within a tolerance) a fixed distance. This one 

small add-on forces the students to perform experiments (for instance, distance travelled 

versus windings of the rubber band) and make a graph – so that they would have a 

calibration for their vehicle.  It seems like a minor modification to add this constraint to 

the design problem but it emphasizes that engineers have to design under constraints and, 

more importantly, it requires the use of science and mathematics skills as part of the 

design process. 

Figure 17. A cardboard box string instrument 
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3.3. PRIMARY SCHOOL 

The action learning pedagogy for teaching mathematics through technology-supported 

real-life projects can be recommended for the primary level as well. Certain differences 

between that level and the higher levels of mathematics education have to be highlighted. 

First, the authors will use the descriptor “mini-projects” to describe the context of the 

action taken at the primary level, based upon their apparent simplicity – in terms of 

content used, technological skills needed, and societal outcomes produced – as compared 

to the higher level projects. The reflection component of the action learning pedagogy is 

fulfilled throughout the mini-project as the teacher (or teacher candidate) asks their 

students a series of inquiry-based questions about the real-life consistency of their 

solutions, i.e., “how realistic is this answer?” or “how could we tell if this was the wrong 

answer?” In addition, the students (as will be shown below) may be asked to pose and 

solve their own problem similar to a problem offered by the teacher. This kind of 

reflection stems from the ideas of Freire who argued that “problem-posing education… 

corresponds to the historical nature of humankind ... for whom looking at the past must 

only be a means of understanding more dearly what and who they are so that they can 

more wisely build the future” [27]. This belief is congruent with the action learning 

pedagogy of mathematics that encourages reflection on what was already experienced 

through problem solving in order to come up with and then resolve new quires. 

3.3.1. Action Learning Pedagogy at the Primary Level 

One of the authors supervised mini-projects carried out over the years by teacher 

candidates in the framework of a capstone experience in mathematics signature pedagogy 

within a professional development school [41]. The mini-project described below 

involved 2
nd

 grade students recommended by their classroom teachers for an afterschool 

activity. Five 50-minute sessions were conducted in a computer lab of a rural elementary 

school equipped with electronic spreadsheets. One of the greatest facilities of a traditional 

spreadsheet is that it allows young children to explore the results of simple yet automatic 

calculations and draw conclusions about the results. Thereby, one can learn mathematical 

concepts prior to the development of formal procedural skills. For example, the concept of 

average requires one’s proficiency in addition and division. The latter operation is not 

introduced until the 3rd grade at the earliest. Yet, a spreadsheet can be designed to allow 

the students, by using the scroll bars attached to the cells, to alter the cell values and 

interactively display the average rounded to the closest whole number—the only number 

system that conforms the 2nd grade mathematics curriculum [24]. 

Prior to the mini-project, the students were not familiar with a spreadsheet and the needed 

skills that were taught as the activities progressed. They worked individually and were 

assisted by the teacher candidate, two college of education faculty members, and 

additional parent volunteers when appropriate. Throughout the project, the students 

demonstrated a superb on-task behavior that can be ascribed to the enjoyable context of 

the activities (surface structures of teaching and learning), their natural drive for curiosity, 

the design of the computational learning environment that included reflection (deep 

structures of teaching and learning), and the project supervisor belief about what it means 

to do mathematics at that grade level (implicit structure of teaching). Reflections of young 

children solicited as part of the mini-project are presented in Figure 19 and Figure 24 

below. Reflection of other parties involved in mini-projects are presented at the 

conclusion of Section 4. 
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3.3.2. Examples of Primary School Mini-projects 

A few examples of mini-projects, designed and supervised by one of the authors, are 

presented in the sections below. 

3.3.2.1. High and Low Temperatures 

At the beginning of the mini-project, five temperatures were listed for the week and 

students were asked to find the highest and lowest temperatures (comparison of numbers 

by ordering them) and then calculate the temperature range for the week (using 

subtraction). When using subtraction, students were expected to subtract the smaller 

number from the larger number so that the range is a positive number. This might be if not 

the first but at least a true encounter of young children with a physical meaning of a 

mathematical result. Noting the need to have a positive range prepares them for the future 

when one has to reject negative areas and volumes resulting from an erroneous integration 

either by hand or using technology. Also, this skill is critical when designing a 

spreadsheet to solve the raft problem numerically. 

Then the students were asked to use the sliders to decrease the lowest temperature for the 

week by five degrees, and to find the resulting change in the temperature range (Figure 

18). This task also contributes to their appreciation of the fact that by decreasing the 

lowest temperature, they increase the range. Likewise, increasing the highest temperature 

affects the temperature range. At the same time, decreasing (increasing) temperature of 

any day may not result in the change of the temperature range for the week. 

Another notable example of a 

possibility of disregarding 

physical meaning of a situation 

is as follows. A 2
nd

 grader was 

asked to pose her own problem 

about temperature range using a 

spreadsheet and was so excited 

about the ease with which the 

program does computations, that 

she formulated a problem of 

finding a five day temperature 

range with the answer 95 

degrees. While this problem is 

numerically coherent (i.e., it has a formal solution), it is not contextually coherent (even 

when temperature is measured in Fahrenheit) just as the negative values for area and 

volume have to be rejected based on the physical meaning of these characteristics. This 

example shows the importance of the teacher’s assistance in helping a student to 

understand the deficiency of the posed problem based on real-life experience. In terms of 

Gestalt psychology, such uncritical use of technology in posing a problem can be 

interpreted as the manifestation of Einstellung effect [49] – a tendency of using a 

workable problem-solving strategy in situations that can either be resolved more 

efficiently or to which the strategy is not applicable at all. Here, the ease of computing 

was in contradiction with real-life context within which temperatures while vary, do this 

variation within a certain range only. In turn, temperature range varies across the whole 

spectrum of parameters. One might request an explanation of why weather temperatures 

can only vary within certain limits thus demonstrating how questions seeking explanation 

Figure 18. The study of temperature range. 
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differ in complexity from questions seeking information [43]. At the same time, questions 

of that kind, while cannot be adequately answered in the context of the primary school 

they do open a window on the future learning of science for the 2
nd

 graders. 

After the students used the spreadsheets to construct their charts, they were asked to 

reflect by describing what their favorite part of the activity was. Two of these reflections 

are shown in Figure 19. 

 

 

Figure 19. Two reflections on the temperature mini-project by second graders. 

Another part of the temperature mini-project is worth noting. The students worked on a 

task dealing with the concept of average (arithmetic mean) as a characteristic of outdoor 

temperature change. They had difficulty comprehending the ‘single question—multiple 

answers’ didactic construct. The students were asked: What could have happened with the 

temperature in the duration of five days if the average temperature has increased by one 

degree? The response was that there is the only one answer to this question: There was 

just one day when the temperature went up by five degrees. Without a proper intervention, 

the students were unable to overcome the concreteness of a single day, not to mention 

their inability to grasp a possible split of temperature increase over several days. 

3.3.2.2. Rings on fingers 

A proper intervention unfolded in the form of the 

following hands-on task: Find all the ways to put five 

rings on the index and middle fingers. 

Experimentally, using rings, the children found the 

answer and recorded it in the form of drawings 

(Figure 20): 

 five rings on the index finger;  

 five rings on the middle finger; 

 one ring on the index finger, four rings on the 

middle finger;  

 one ring on the index finger, four rings on the 

middle finger;  

 two rings on the index finger, three rings on the middle finger;  

 three rings on the index finger, two rings on the middle finger. 

Figure 20. Representing 5 as a 

sum of two non-negative 

integers (Source: [3]). 
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Furthermore, they were able to connect the rings activity with the possibility to 

accumulate the increase of temperature by five degrees over two days. With the 

appropriate teacher guidance, they constructed an isomorphic model using rings and 

fingers, recorded this model through a drawing, and then by writing all representations of 

the number 5 as a sum of two non-negative integers, applied their findings to the 

temperature change context. 

3.3.2.3. Frequency Assignment Problem 

Consider Figure 21 in which three same size circles – 𝐶1, 𝐶2, 𝐶3 – are arranged in a way 

that 𝐶3 overlaps with 𝐶1 and 𝐶2 but 𝐶1 and 𝐶2 don’t overlap. Other mutual arrangements 

of three circles in the plane are possible. One may be asked: 

How many different ways can three circles be mutually arranged to either overlap or not? 

The relation of the above question to the “E” component of STEM is that it has its origin 

in the following complex radio-engineering problem [7,58]: 

Consider a cellular telephone network with radio transmitters, which must be assigned 

one or more operating frequencies. If two nearby transmitters are operating on the same 

frequency, they have the potential to interfere with each other. In the simplest model, the 

frequencies assigned to any such pair of transmitters are required to be distinct, and the 

objective of an engineer is to minimize the total number of frequencies used within the 

network. 

Several rudiments of the problem can be 

introduced at different grade levels. For 

example, kindergarten students can be given 

physical materials (e.g., either paper or 

plastic circles) to explore the idea of 

overlapping/non-overlapping circles and, in 

doing so, to appreciate the multitude of their 

mutual arrangements. First and second 

graders can explore the different 

arrangements of the centers and radii of the 

circles using measurements. Third graders 

can use a dynamic geometry program to 

move the circles around, developing a 

hands-on solution to the problem by 

recording different arrangements of the 

circles in a chart. Students in grade four can 

use a tree diagram approach to answer the original question. Fifth graders can be shown 

how to extend the question to more than three circles, leading to the problem of finding 

the sum of consecutive counting numbers starting from one (these sums are known as 

triangular numbers). Finally, students in grade six can be shown the full complexity of the 

problem by using a spreadsheet as a modeling tool [7]. 

3.3.2.4. Counting M&Ms 

Students were given the following hands-on tasks: Count the number of each color 

(among red, yellow, green, blue, and orange) in your bags of plain and peanut M&Ms, and 

represent the numbers found in the form of bar graphs. Eat all M&Ms that do not belong 

to your data. Use the graphs to decide: (i) which color has the most and the least candies 

Figure 21. Cellular telephone network 

with three transmitters. 
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in the plain (peanut) M&Ms? (ii) what combination of two colors when added together 

have the most and the least candies in the plain (peanut) M&Ms? Note that these tasks 

were completed as a combination of class and home activities. In particular, the students 

were not allowed to take their candies home, and the motivational element (i.e., eating 

candies) was limited to class time only. An example of one student’s graph is depicted in 

Figure 22 and Figure 23. 

After the idea of graphing as a visual representation of data collected had been 

internalized by the students, the introduction of the computer program was highly 

conducive for the students' further conceptual development. Their ability to manipulate a 

physical environment (i.e., drawing graphs) was significantly below their intellectual 

potential to understand mathematical concepts involved. In fact, the design of the 

computer program was aimed at liberating the students from the tedium of extensive 

physical manipulation, enabling them to concentrate their attention on mathematical tasks 

and to work on increasingly difficult problems without being hindered by the lack of 

sophisticated fine motor skills required. 

On the third day the students were very excited about using computers to plug in their 

numerical data (Figure 22) and to interactively visualize the friendly production of 

familiar graphs in accustomed colors (Figure 23). The use of spreadsheet sliders 

incorporated into the computer program made it possible to keep this task at the click-and-

see level of physical manipulation. The students remained eager and focused on the task 

of creating a computer copy of their hand-made graphs, because they knew they would be 

 

Figure 22: Spreadsheet with sliders to record the 

counts of plain and peanut M&Ms by color. 

 

Figure 23. Dynamically updated bar chart 

representing the counts of the Plain and 

Peanut M&Ms in Figure 22. 

 

 

Figure 24. Two reflections on the M&M mini-project by second graders 
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printing this copy on a color printer and taking it home to share their computer skills with 

their family. These graphing activities were extended to include the early probability 

strand when the comparison of what is most probable was made possible by interpreting 

bar graphs in terms of their height: the taller – the more probable. Figure 24 shows 

students’ reflections on this mini-project, demonstrating how the use of technology 

allowed them to survive what one of the students referred to as “hard math.” This is 

another example of the importance of integrating action learning pedagogy at the primary 

level as a way of preparing students to be successful in mathematics at the higher levels. 

4. Preparation for Mathematics Educators Teaching Action Learning 

Training groups, such as MUG, are important for facilitating the training of mathematics 

educators. Independent organizations provide a cohesiveness required to integrate 

mathematics education vertically throughout all the mathematical levels, and horizontally 

among the other STEM fields and the surrounding community. 

Primary 

 Inquire-Based Questioning Training 

 Mentorships and Group Meetings 

 In-Service Teacher Education 

Secondary 

 Project Development Workshops 

 Mentorships and Group Meetings 

 In-Service Teacher Education 

Post-Secondary 

 Graduate Student Seminars 

 Mentorships and Group Meetings 

 Faculty Development Workshops 

Table 4. Proposed structure of educator preparation for teaching mathematics through action 

learning across all academic levels 

4.1. TRAINING FOR POST-SECONDARY FACULTY AND GRADUATE ASSISTANTS 

MUG is actively engaged in training graduate students and interested faculty to teach 

mathematics with action learning. 

4.1.1. Student Development 

4.1.1.1. Undergraduate Training 

MUG collaborated with STEM Mart – the USF multidisciplinary STEM tutoring center – 

to train dozens (30 per semester) of experienced undergraduate STEM majors as tutors. In 

particular, tutors were selected on the basis of their performance in the calculus sequence, 

and a priority was given to students that produced quality interdisciplinary applied 

calculus projects. In addition to their standard tutoring responsibilities, the STEM Mart 

tutors received special training in leadership skills and assisting their peers with the 

project related activities such as sharing their project experiences with their peer, helping 

them with office software (Word, Excel, etc.), and recommending a subject area advisor. 
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4.1.1.2. Graduate Student Development 

To date, 79 STEM graduate students have been involved as project advisors and 8 in 

editing submissions for the UJMM. These students are paired with undergraduates, 

supervise their work, and help them write their final project. This is a unique and 

unorthodox training that standard mathematics TAs, who only hold help sessions or teach, 

do not obtain. 

4.1.2. Young Faculty Development 

Newly hired faculty members can be introduced to the action learning teaching program 

through the mentorship of an experienced faculty member. Before the semester begins, the 

faculty mentor should meet with the new instructor, provide her/him with the project and 

advisor guidelines, discuss how to access the program’s network of advisors, and answer 

any other questions about the action learning pedagogy. As the semester progresses, the 

faculty mentor should keep in contact with the new instructor, and answer any follow-up 

questions that may arise. 

Initially, new faculty members are advised to offer the project-option in a single class to a 

limited number of students, so as not to become overloaded by all of the different fields 

encountered while advising a multitude of interdisciplinary projects. After teaching with 

the project-option for a few semesters, the young faculty member should be adequately 

prepared to teach a project-only section without substantially increasing their overall 

workload. 

4.1.3. In-Service Faculty Development 

After each semester, the mathematics faculty members who teach with the action learning 

pedagogy should meet and reflect on their advising experiences. The mathematical tools 

that are most frequently used by their students’ projects should be identified, and special 

emphasis should be placed on those topics in the subsequent semesters. The instructors 

should also recommend the best projects from their sections for publication in the UJMM. 

To disseminate the action learning pedagogy to the surrounding colleges and universities, 

MUG hosts the biannual Workshop for Interdisciplinary and Inquiry Based Teaching of 

Calculus that introduces interested faculty to the organization’s activities alongside the 

STEP Up for Calculus Student Research Poster Conference. The past two workshops were 

attended by 52 faculty members, representing 11 Florida colleges. 

4.2. TRAINING FOR SECONDARY SCHOOL TEACHER CANDIDATES 

One of the authors is a faculty member in a College of Engineering, but is the instructor 

for the capstone course of a bachelor degree program that produces middle school science 

and mathematics teachers – offered through the College of Education. One of the goals of 

the course is that the students, upon graduating and becoming in-service teachers, are able 

to include engineering topics and concepts in their lesson plans [15,45,71]. Throughout 

their degree program, these students have been exposed to science and mathematics 

content and pedagogy. In the capstone course, they are exposed to how mathematics and 

science may be integrated with each other and into engineering as well. Since most 

students are fairly well versed at this point in what scientists do, but know little about 

what engineers do, a portion of classroom time is spent describing the different goals of 
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scientists and engineers, and covering the different tools and approaches they use to 

achieve them. The main deliverable for the course is that students (working in groups of 

two or three) produce an integrated STEM lesson plan. The lesson plan is to focus on a 

single theme (e.g. weather or conservation of energy), to be several days in duration, and 

to be shared between a middle school science and mathematics course. The plan is to 

culminate in an engineering design project. 

Before developing their own lesson plan, students work through an existing lesson plan 

that has been developed by a group of local high school teachers and which has been 

reviewed by peers, local school district personnel, and the course instructor. In addition, a 

number of stand-alone hands-on examples, utilizing parts of the engineering design 

process, are covered by the instructor. 

4.3. TRAINING FOR PRIMARY SCHOOL TEACHER CANDIDATES 

It should be noted that teacher candidates currently experience the action-learning 

pedagogy in the context of a professional development school [41] – enrolled in an 

internship (pre-student teaching) – in which they supervise afterschool activities for young 

children. Here is how one teacher candidate reflected on her experience with action 

learning, which merged into a research project – a typical arrangement within a 

professional development school: 

“I have been very happy with my decision to do research... it has given me a great 

experience, uncommon during the MST program and has really helped set me 

apart during job interviews.” 

The following reflections by several other parties involved in the projects are indicative of 

action learning taking place among the members of the community of practice [79]. 

A teacher candidate [1]: 

“I wouldn’t have been able to successfully run the project without it being 

collaborative… A supportive mentor teacher, a supportive school, and clear 

directions from the SUNY professors… The school – they have to be willing and 

almost excited at the prospect of being a host school”. 

A mentor teacher [1]: 

“Collaboration is always a win-win situation. The students were offered the 

opportunity to be involved in a technology project. They always looked forward 

to the after-school sessions and were eager to tackle the project/activity for that 

day”. 

A parent volunteer [1]: 

“Students need new and relevant ways to learn math – technology is their passion, 

so it makes sense to team them up… Ted [her son] had been hesitant about liking 

math, but loves computer… This new approach pique[d] his interest”. 

A clinical faculty member involved in one of the mini-projects [61] questioned the 

rationale for a CASP-related project expressing her belief that school children, when 

asked to do something, should have a purpose. The search for a purpose led to many new 

developments in CASP, in particular the introduction of the so-called integrated 
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spreadsheets [61] using videos within a traditional spreadsheet environment, something 

that became quite popular with the 2
nd

 grade participants. 

By carrying out the above-mentioned mini-projects (Section 3.3.2), elementary teacher 

candidates can develop powerful experiences in teaching mathematics with an engineering 

focus – that are very different from traditional educational practices with little or no 

connection to real life – by learning to model mathematical concepts within grade-

appropriate learning environments. Just as in the case of secondary school, research shows 

the importance of incorporating engineering education into the curriculum for elementary 

teacher candidates in an “ad-hoc” format (Katehi, Pearson, & Feder, 2009; Rogers & 

Portsmore, 2004). With this in mind, the mini-projects were also discussed within an 

elementary mathematics content and methods course taught by one of the authors 

demonstrating real-life applications of mathematical concepts found in the primary school 

mathematics curriculum. 

5. Conclusions 

The need for highly trained STEM workers in the United States continues to grow as our 

society becomes more reliant on science and technology, but the 60% attrition rate among 

prospective STEM majors [26] is a daunting challenge. The US President’s Council of 

Advisors on Science and Technology has recommended that college-level mathematics be 

taught “by faculty from mathematics-intensive disciplines other than mathematics” [26], 

but the American Mathematical Society is “in strong disagreement with these specific 

recommendations” and asserts “that it is essential that mathematicians be actively engaged 

in the planning and teaching of the mathematics courses that form the foundation of 

STEM education” [29]. Rather than supplanting the current mathematics teachers, we 

propose the adoption of a project-based action learning system, which incorporates 

technology in a meaningful way, to be the signature pedagogy for K-16 mathematics 

education. 

Starting at primary school, this pedagogy introduces aspects of science, engineering, and 

technology into the mathematics classroom, while engaging students and teachers on a 

surface, deep, and implicit structural level. Inquiry-based projects afford students the 

opportunity to pursue their interest and independently discover the usefulness of 

mathematical tools. Introducing mathematics as a system of critical thinking to developing 

creative solutions for real-world problems – rather than a collection of esoteric formulas to 

be memorized – can create a positive first impression upon a student, which can influence 

their decision to choose a career in STEM. As one of the prospective elementary teachers 

put it, "It's easy to memorize formulas and plug numbers in to solve a problem, but 

understanding why the formula works how it's relevant is a whole other level of 

understanding. Knowing why a mathematical procedure or formula works and how it's 

related to ‘real world’ will not only increase interest in the material itself but will allow 

students to better process and conceptualize mathematics subject matter". The authors 

believe that this comment by the teacher is true for higher levels of mathematical learning 

as well. 

As students begin to mature in their STEM education, their interests will begin to diverge, 

requiring the assistance of subject area specialists. Synergistic collaborations between 

students, mathematicians, and other STEM professionals encourage students to actively 

engage in the learning process while receiving directed feedback and guidance. 
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The action learning pedagogy for mathematics education is actualized at the primary, 

secondary, and post-secondary levels as congruous, though distinct, methodologies. When 

used in conjunction, the three action learning pedagogies form a cohesive continuum for 

all levels of mathematics education. However, the benefits for implementing the pedagogy 

at one educational level are not contingent on the adoption of the system at all levels. 

Administrative efforts can either be used to stimulate the interdisciplinary collaboration of 

the faculty and the surrounding community – facilitating action learning for many classes 

– or to develop special programs for a limited number of students, e.g., afterschool 

activities, summer programs, capstone projects, or simply incorporate the pedagogy into 

other existing programs. 

The next generation of K-12 mathematics teachers and university mathematics faculty, 

i.e., current mathematics education and mathematics graduate students, should be taught 

mathematics with some interdisciplinary background and examples. All countries need 

qualified mathematics faculty and teachers who are not looking for an excuse to avoid the 

K-16 interdisciplinary mathematics applications experience. An effective way to get such 

an experience is based on advising mathematics application student projects, generously 

suggested by many volunteers: community professionals and non-mathematics faculty. 

Such projects should be an important part of the STEM education curricula throughout the 

world. 
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