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Two classes of rational solutions to a KdV-like nonlinear differential equation are con-
structed. The basic object is a generalized bilinear differential equation based on a prime
number p ¼ 3. A conjecture is made that the two presented classes of rational solutions
contain all rations solutions to the considered KdV-like equation, which are generated from
polynomial solutions to the corresponding generalized bilinear equation.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, there has been a growing interest in rational solutions to nonlinear differential equations. One kind of
particular rational solutions are rogue wave solutions, which describe significant nonlinear wave phenomena in oceanogra-
phy [1,2].

Rational solutions to integrable equations have been systematically considered in the literature by using the Wronskian
formulation or the Casoratian formulation (see, e.g., [3–5]). Those integrable equations include the KdV, Boussinesq, and
Toda equations (see [6–8] for integrable theories). Rational solutions to the non-integrable (3 + 1)-dimensional KP I
[10,11] and KP II [9] are also considered by different approaches. In particular, rational solutions to the (3 + 1)-dimensional
KP II have been transformed into a problem of finding rational solutions to the good Boussinesq equation [9].

In this paper, we would like to consider a KdV-like nonlinear differential equation induced from a generalized bilinear
differential equation of KdV type. From a class of polynomial generating functions, a Maple search tells us two classes of
rational solutions to the considered KdV-like equation, along with some special interesting solutions. A conjecture on
rational solutions to the considered KdV-like equation is made at the end of the paper.

2. A KdV-like differential equation

Let us consider a generalized bilinear differential equation of KdV type:
ðD3;xD3;t þ D4
3;xÞf � f ¼ 2f xtf � 2f tf x þ 6ðf xxÞ

2 ¼ 0: ð2:1Þ
This is the same type bilinear equation as the KdV one [12]. The above differential operators are some kind of generalized
bilinear differential operators introduced in [13]:
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where
as
p ¼ ð�1ÞrpðsÞ; s ¼ rpðsÞ mod p: ð2:3Þ
In particular, we have
a3 ¼ �1; a2
3 ¼ 1; a3

3 ¼ 1; a4
3 ¼ �1; a5

3 ¼ 1; a6
3 ¼ 1
and thus
D3;xD3;tf � f ¼ 2f xtf � 2f tf x; D4
3;xf � f ¼ 6ðf xxÞ

2
:

In the case of p ¼ 2, i.e., the Hirota case, we have
D2;xD2;tf � f ¼ 2f xtf � 2f tf x; D4
2;xf � f ¼ 2f xxxxf � 8f xxxf x þ 6ðf xxÞ

2
;

which generates the standard bilinear KdV equation [12].
Motivated by a general Bell polynomial theory [14–16], we adopt a dependent variable transformation
u ¼ 2ðln f Þx ð2:4Þ
and then can directly show that the generalized bilinear equation (2.1) is linked to a KdV-like scalar nonlinear differential
equation
ut þ
3
2
ðuxÞ2 þ

3
2

u2ux þ
3
8

u4 ¼ 0: ð2:5Þ
More precisely, by virtue of the transformation (2.4), the following equality holds:
ðD3;xD3;t þ D4
3;xÞf � f

f 2 ¼ ut þ
3
2
ðuxÞ2 þ

3
2

u2ux þ
3
8

u4 ð2:6Þ
and thus, f solves (2.1) if and only if u ¼ 2ðln f Þx presents a solution to the KdV-like Eq. (2.5).
Resonant solutions in term of exponential functions and trigonometric functions have been considered for generalized

bilinear equations [15–17]. In this paper, we would like to discuss their polynomial solutions which generate rational solu-
tions to scalar nonlinear differential equations by focusing on the KdV-like Eq. (2.5).

3. Rational solutions

By symbolic computation with Maple, we look for polynomial solutions, with degrees of x and t being less than 10:
f ¼
X9

i¼0

X9

j¼0

cijxitj; ð3:1Þ
where the cij’s are constants, and find 29 classes of polynomial solutions to the generalized bilinear equation (2.1). The six of
those classes of solutions are
f ¼ c01x3

36
þ c20x2 þ c01t þ 12c2

20x
c01

þ c00; ð3:2Þ

f ¼ c32t2x3 þ c22t2x2 þ c31tx3 þ 36c32t3 þ c22
2xt2

3c32
þ c22c31x2t

c32
þ c30x3 þ c02t2 þ c2

22c31tx
3c2

32

þ c22c30x2

c32
þ c02c31t

c32

þ 36c30t � 36c31
2t

c32
þ c2

22c30x
3c2

32

þ c02c30

c32
� 36c30c31

c32
; ð3:3Þ

f ¼ c33t3x3 þ c23t3x2 þ c32t2x3 þ 36c33t4 þ c2
23xt3

3c33
þ c23c32x2t2

c33
þ c31tx3 þ c03t3 þ c2

23c32t2x
3c2

33

þ c23c31x2t
c33

þ c30x3

þ c03c32t2

c33
þ 36c31t2 � 36c2

32t2

c33
þ c2

23c31tx
3c2

33

þ c23c30x2

c33
þ c03c31t

c33
þ 36c30t � 36c31c32t

c33
þ c2

23c30x
3c2

33

þ c03c30

c33
� 36c30c32

c33

ð3:4Þ
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and
f ¼ c40x4 þ 1
36

c01x3 þ 144c40txþ c20x2 þ c01t þ c10xþ c01c10 � 12c2
20

144c40
; ð3:5Þ

f ¼ c41tx4 þ c31tx3 þ c40x4 þ 144c41t2xþ c21tx2 þ c31c40x3

c41
þ 36c31t2 þ c11txþ c21c40x2

c41
þ c11c31t

4c41
� c2

21t
12c41

þ c11c40x
c41

� 144c2
40x

c41
þ c11c31c40

4c2
41

� c21
2c40

12c2
41

� 36c31c2
40

c2
41

; ð3:6Þ

f ¼ c42t2x4 þ c32t2x3 þ c41tx4 þ 144c42t3xþ c22t2x2 þ c32c41x3t
c42

þ c40x4 þ 36c32t3 þ c12t2xþ c22c41x2t
c42

þ c32c40x3

c42

þ c12c32t2

4c42
� c2

22t2

12c42
þ c12c41tx

c42
þ 144c40tx� 144c2

41tx
c42

þ c22c40x2
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þ c12c32c41t

4c2
42

� c2
22c41t
12c2

42
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41t
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42

þ c12c40x
c42
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4c2
42

� c2
22c40
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42

� 36c32c40c41

c2
42

; ð3:7Þ
where the involved constants cij’s are arbitrary provided that the solutions make sense. Taking the concrete forms of the
resulting polynomial solutions to (2.1) into consideration, we can verify by Maple that among the solutions generated from
(3.1), there are two distinct classes of rational solutions to the KdV-like Eq. (2.5):
u ¼ 6ða2
1x2 þ 2a1a2xþ a2

2Þ
a2

1x3 þ 3a1a2x2 þ 36a2
1t þ 3a2

2xþ a3
ð3:8Þ
and
u ¼ 12a1ð2a1x3 þ a2x2 þ 72a1t þ 2a3xþ a4Þ
3a2

1x4 þ 2a1a2x3 þ 432a2
1txþ 6a1a3x2 þ 72a1a2t þ 6a1a4xþ a2a4 � a2

3

; ð3:9Þ
where ai; 1 6 i 6 4, are arbitrary constants. Actually, the polynomial solutions in the first group of (3.2)–(3.4) and the second
group of (3.5)–(3.7) generate the rational solutions in (3.8) and (3.9), respectively. Note that in (3.8) and (3.9), the constants
were rescaled and renamed.

The first class of solutions in (3.8), on one hand, reduces to
u ¼ 6a2
2

3a2
2xþ a3

¼ 2
xþ c

; c ¼ const:; ð3:10Þ
when a1 ¼ 0, and further
u ¼ 2
x
; ð3:11Þ
when a1 ¼ a3 ¼ 0 or c ¼ 0. On the other hand, the first class of solutions in (3.8) reduces to
u ¼ 6a2
1x2

a2
1x3 þ 36a2

1t þ a3
¼ 6x2

x3 þ 36t þ c
; c ¼ const:; ð3:12Þ
when a2 ¼ 0, and further
u ¼ 6x2

x3 þ 36t
; ð3:13Þ
when a2 ¼ a3 ¼ 0 or c ¼ 0. Two pictures of the solution (3.12) with different values of c are given in Fig. 1.
From the second class of solutions in (3.9), we obtain
u ¼ 4ð2a1x3 þ 72a1t þ a4Þ
xða1x3 þ 144a1t þ 2a4Þ

¼ 8ðx3 þ 36t þ cÞ
xðx3 þ 144t þ 4cÞ ; c ¼ const:; ð3:14Þ
when a2 ¼ a3 ¼ 0, and further
u ¼ 8ðx3 þ 36tÞ
xðx3 þ 144tÞ ; ð3:15Þ
when a2 ¼ a3 ¼ a4 ¼ 0 or c ¼ 0. Two pictures of the solution (3.14) with different values of c are given in Fig. 2.
An easy class of solutions to the generalized bilinear equation (2.1) is given by
f ¼ ða1xþ a2Þtm; ð3:16Þ



Fig. 2. Pictures of the solution (3.14) with c ¼ 0 (left) and c ¼ 2 (right).

Fig. 1. Pictures of the solution (3.12) with c ¼ 0 (left) and c ¼ 2 (right).
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where a1; a2 are two arbitrary constants and m is an arbitrary nonnegative integer. However, this leads to the solution pre-
sented in (3.10).

4. Concluding remarks

We considered a generalized bilinear equation which yields a KdV-like nonlinear differential equation, and constructed
two classes of rational solutions to the resulting KdV-like equation. The basic starting point is a kind of generalized bilinear
differential operators introduced in [13].

We remark that it is worth checking if there exists a kind of Wronskian solutions and multiple soliton type solutions to
the KdV-like nonlinear equation (2.5). We also conjecture that the two classes of rational solutions in (3.8) and (3.9) would
contain all rational solutions to the KdV-like nonlinear equation (2.5), generated from polynomial solutions to the general-
ized bilinear equation (2.1) under the link (2.4).

There is, additionally, a kind of generalized tri-linear differential equations [18]. Their rational solutions, both singular
and non-singular, or even rogue wave solutions will be a very interesting topic. Particularly, higher-order rogue wave solu-
tions should be connected with generalized Wronskian solutions [19,20] and generalized Darboux transformations [21,22].
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