Monodromy preserving deformation and 4-dimensional Painlevé type equations

SAKAI Hidetaka
Graduate School of Mathematical Sciences,
University of Tokyo,
Komaba, Tokyo 153-8914, Japan.

§1. Introduction

Two important aspects about the Painlevé equations:

1. Generalization of equations of elliptic functions (non-autonomous).

$$(y')^2 = 4y^3 - g_2y - g_3 \qquad \leftrightarrow \qquad y'' = 6y^2 - g_2/2$$

$$y'' = 6y^2 + t$$

2. It is derived from a deformation theory of linear equations.

(Monodromy preserving deformation)

Degeneration of the Painlevé equations

$$P_{\text{VI}} \rightarrow P_{\text{V}} \rightarrow P_{\text{III}}(D_6) \rightarrow P_{\text{III}}(D_7) \rightarrow P_{\text{III}}(D_8)$$

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $P_{\text{IV}} \rightarrow P_{\text{II}} \rightarrow P_{\text{I}}$

Schlesinger system:

$$\frac{\partial}{\partial u_j} A_i = \frac{[A_j, A_i]}{u_j - u_i}, \quad (j \neq i),$$

$$\frac{\partial}{\partial u_i} A_i = -\sum_{j \neq i} \frac{[A_j, A_i]}{u_j - u_i}$$

is derived from a defomation theory of Fuchsian equation in the form

$$\frac{d}{dx}Y = \left(\sum_{i=1}^{n} \frac{A_i}{x - u_i}\right)Y,$$

called Schlesinger normal form.

§2. Classification theory of Fuchsian equations

2.1. Spectral types

n + 1-tuples of partitions of m:

$$m_1^1 m_2^1 \dots m_{l_1}^1, m_1^2 \dots m_{l_2}^2, \dots, m_1^n \dots m_{l_n}^n, m_1^{\infty} \dots m_{l_0}^{\infty}$$

$$\left(\sum_{j=1}^{l_i} m_j^j = m \text{ for } 0 \le \forall i \le n\right).$$

It means that an information about the multiplicity of eigen values of A_i is given by the i-th partition; m_j^i ($1 \le j \le l_i$ same eigen values exist.

2.2. N. Katz's two operations:

- 1. addition
- 2. middle convolution

Addition is a transformation

$$A = (A_1, \dots, A_n) \mapsto (A_1 + \alpha_1, \dots, A_n + \alpha_n)$$

for
$$\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$$
.

Middle convolution

A convolution is defined as a transformation $A \mapsto (G_1, \ldots, G_n)$ for $\lambda \in \mathbb{C}$, where

$$G_i = \left(\begin{array}{cccc} A_1 & A_2 & \cdots & O \\ A_1 & A_2 & \cdots & A_i + \lambda 1_m & \cdots & A_n \end{array}\right) < i,$$

$$G_i \in M_{n \times m}(\mathbb{C}).$$

Then, we consider two invariant subspaces with respect to $G = (G_1, \ldots, G_n)$:

$$\mathcal{K} = \begin{pmatrix} \operatorname{Ker} A_1 \\ \vdots \\ \operatorname{Ker} A_n \end{pmatrix} \subset \mathbb{C}^{n \times m},$$

$$\mathcal{L}_{\lambda} = \operatorname{Ker}(G_1 + \cdots + G_n),$$

and we express the action of $G=(G_1,\ldots,G_n)$ on the quotient space $\mathbb{C}^{n\times m}/\mathcal{K}+\mathcal{L}_{\lambda}$ as $\overline{G}=(\overline{G_1},\ldots\overline{G_n})$. The transformation

$$A = (A_1, \dots, A_n) \mapsto \overline{G} = (\overline{G_1}, \dots \overline{G_n})$$

is called a middle convolution.

e.g. hypergeometric equation

$$\frac{dy}{dx} = \frac{a_0}{x}y + \frac{a_1}{x - 1}y$$

$$\downarrow \qquad mc_{\lambda}$$

$$\frac{dY}{dx} = \left(\frac{1}{x}\begin{pmatrix} a_0 + \lambda & a_1 \\ 0 & 0 \end{pmatrix} + \frac{1}{x - 1}\begin{pmatrix} 0 & 0 \\ a_0 & a_1 + \lambda \end{pmatrix}\right)Y$$

Theorem 1 (N. Katz). Any regid, irreducible Fuchsian system is constructed by finite procedures of additions, and middle convolutions from a Fuchsian system of order one.

Theorem 2 (T. Oshima). Any irreducible Fuchsian system with 4 accessary parameters is constructed by finite procedures of additions and middle convoltuions from a system of Fuchsian equations of the following 13 types:

```
11,11,11,11,11
```

211,1111,1111 221,221,11111 32,11111,11111 222,222,2211 33,2211,111111 44,2222,22211 44,332,11111111 55,3331,22222 66,444,2222211.

Theorem 3 (Haraoka-Filipuk). Schlesinger systems are invariant under the Katz's two operations.

§3. Space of accessory parameters

3.1. Dimension

The number of the accessory parameters is given by the following formula:

$$N = (n-1)m^2 - \sum_{i=0}^{n} \left(\sum_{j=1}^{l_i} (m_j^i)^2 \right) + 2.$$

3.2. Poisson structure

Kostant-Kirillov structure is introduced by the Poisson bracket

$$\{(A_p)_{i,j}, (A_q)_{k,l}\} = \delta_{p,q}(\delta_{i,l}(A_p)_{k,j} - \delta_{k,j}(A_p)_{i,l}).$$

Schlesinger system is rewritten as

$$\frac{\partial}{\partial u_k} A_l = \{A_l, H_k\},\,$$

by using the Hamiltonian

$$H_k = \sum_{l \neq k} \frac{\operatorname{Tr}(A_k A_l)}{u_k - u_l}.$$

3.3. Symplectic structure

If we put $A_i = B^i \cdot C^i$, $B^i \in M_{m,rkA_i}(\mathbb{C})$, $C^i \in M_{rkA_i,m}(\mathbb{C})$, then the symplectic form is given as

$$\omega = \sum_{i=1}^{n} \operatorname{Tr}(dB^{i} \wedge dC^{i}).$$

$\S 4.1.$ Hamiltonian of the type 21,21,111,111

Eigen values of each matrices are given as

$$0, 0, \theta^{0}; \quad 0, 0, \theta^{1}; \quad 0, \theta_{1}^{t}, \theta_{2}^{t}; \quad \kappa_{1}, \kappa_{2}, \kappa_{3},$$

$$\theta^{0} + \theta^{1} + \theta_{1}^{t} + \theta_{2}^{t} + \kappa_{1} + \kappa_{2} + \kappa_{3} = 0 \text{ (Fuchs)}$$

The hamitonian H can be written as

$$s(s-1)H = s(s-1)H_{\text{VI}}\begin{pmatrix} -\theta^{0}, \ \theta_{2}^{t} - \theta_{1}^{t} \\ \kappa_{2} - \kappa_{1}, -\kappa_{2} - \theta_{2}^{t} \end{cases}; s; q_{1}, p_{1}$$

$$+s(s-1)H_{\text{VI}}\begin{pmatrix} -\theta^{0}, \ -\theta_{1}^{t} \\ \kappa_{3} - \kappa_{1}, -\kappa_{3} \end{cases}; s; q_{2}, p_{2}$$

$$-(q_{1} + q_{2})(q_{1} - 1)p_{1}(q_{2} - s)p_{2}$$

$$+\kappa_{3}(q_{1} - 1)p_{1}q_{2} + (\kappa_{2} + \theta_{2}^{t})(q_{2} - s)p_{2}q_{1} + f(s),$$

where $s = \frac{t-1}{t}$.

Here H_{VI} is the hamiltonian of the sixth Painlevé equation, and it is given as follows:

$$t(t-1)H_{\text{VI}}\begin{pmatrix} \theta_{0}, \theta_{1} \\ \theta_{t}, \kappa_{1} \end{pmatrix}; t; q, p$$

$$= q(q-1)(q-t)p^{2}$$

$$-\{\theta_{0}(q-1)(q-t) + \theta_{1}(q-t)q + \theta_{t}q(q-1)\}p$$

$$+\kappa_{1}(\kappa_{1} + \theta_{0} + \theta_{1} + \theta_{t})(q-t)$$

$$+(t-1)\theta_{0}\theta_{t} + t\theta_{1}\theta_{t}.$$

§4.2. Hamiltonian of the type **31,22,22,1111**

Eigen values of each matrices are given as

$$0, 0, \theta^0, \theta^0; \quad 0, 0, \theta^1, \theta^1; \quad 0, 0, 0, \theta^t; \quad \kappa_1, \kappa_2, \kappa_3, \kappa_4,$$

$$2\theta^{0} + 2\theta^{1} + \theta^{t} + \kappa_{1} + \kappa_{2} + \kappa_{3} + \kappa_{4} = 0$$
 (Fuchs)

The hamitonian H can be written as

$$t(t-1)H =$$

§4.3. Hamiltonian of the type 22,22,22,211

Eigen values of each matrices are given as

$$0, 0, \theta^0, \theta^0; \quad 0, 0, \theta^1, \theta^1; \quad 0, 0, \theta^t, \theta^t; \quad \kappa_1, \kappa_1, \kappa_2, \kappa_3,$$

$$2\theta^0 + 2\theta^1 + 2\theta^t + 2\kappa_1 + \kappa_2 + \kappa_3 = 0 \text{ (Fuchs)}$$

The hamitonian H can be written as

$$t(t-1)H = \frac{t(t-1)}{2}H_{\text{VI}}\begin{pmatrix} -2\theta^{0}, -2\theta^{1} \\ -2\theta^{t}, -2\kappa_{1} \end{pmatrix}; q_{1}, p_{1}$$

$$-\frac{1}{2}(\theta + (3q_{1} - t - 1)p_{1})p_{1}q_{2}$$

$$-(1 - 2q_{1})(q_{2}^{2}p_{2}^{2} + (q_{2}p_{2} - \theta - \kappa_{1} - \kappa_{2})^{2})$$

$$-2(q_{1}(q_{1} - 1) - q_{2})(q_{1} - t)p_{2}(q_{2}p_{2} - \theta - \kappa_{2} - \kappa_{2})$$

$$-\{(t+1)\theta^{0} + t\theta^{1} + \theta^{t} + 2\kappa_{1}q_{1} + ((1+t)q_{1} - t)p_{1} - p_{1}q_{2}\}$$

$$\times (2q_{2}p_{2} - \theta - \kappa_{1} - \kappa_{2}),$$

where $\theta = \theta^0 + \theta^1 + \theta^t$.

Particular solution

On the condition that $\theta + \kappa_1 + \kappa_2 = 0$ ($\kappa_2 = \kappa_3$), $q_2 = 0$ is a solution because $\frac{d}{dt}q_2 = 0$.

In this case,

$$\frac{d}{dt}q_{1} = \frac{1}{2}\frac{\partial H_{\text{VI}}}{\partial p_{1}}, \quad \frac{d}{dt}p_{1} = -\frac{1}{2}\frac{\partial H_{\text{VI}}}{\partial q_{1}}, \quad \frac{d}{dt}q_{2} = 0,$$

$$t(t-1)\frac{d}{dt}p_{2} = 2q_{1}(q_{1}-1)(q_{1}-t)p_{2}^{2} + 2\{(t+1)\theta_{0} + t\theta_{1} + \theta_{t} + 2\kappa_{1}q_{1} + ((1+t)q_{1}-t)p_{1}\}p_{2} + \frac{1}{2}(\theta + (3q_{1}-t-1)p_{1})p_{1}.$$

If q_1, p_1 is a solution of the sixth Painlevé equation, $q_2 = 0$, p_2 is a solution of the Riccati equation, whose coefficients are written by q_1 and p_1 , then it is a particular solution.