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Catalan numbers

Consider a genus 0 curve (sphere with two marked points):

λ = p +
1

p
(or λp = p2 + 1)

Expand p in terms of a large λ with p → λ as λ → ∞, i.e.

p = λ −

∞
∑

n=0

Cn

λ2n+1

The coefficients Cn are the Catalan numbers:

Cn = −

∮

λ=∞

dλ

2πi
p(λ)λ2n = −

∮

p=∞

dp

2πi

(

p −
1

p

)(

p +
1

p

)2n
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Catalan numbers

Explicitly the n-th Catalan number is given by

Cn =

(

2n

n

)

−

(

2n

n + 1

)

=
1

n + 1

(

2n

n

)

n ≥ 0.

The Catalan numbers satisfy the recurrence relation (from
the curve, i.e. the generating function of Cn),

C0 = 1, Cn+1 =
∑

i+j=n

Ci Cj .

Examples:

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, . . .

(Note that Cn =odd, iff n = 2k − 1.)
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Catalan numbers

“Enumerative Combinatorics” (Stanley) contains 66 different
interpretations of the Catalan number. The most relevant
one to our study is:
“Cn gives the number of ways to make n non-crossing chords joining
pairs of 2n points on a circle.”

Example: n = 3, C3 = 5,
1

2

3

4

5

6

Proof: Recall that Cn satisfy the recurrence relation,

Cn+1 =
∑

i+j=n

CiCj .
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Catalan numbers

This also gives the number of ways to make n non-crossing
ordered ribbons for one-vertex of degree 2n on a sphere.

Example: n = 3, C3 = 5,
1

2

3

4

5

6

Note that if the degree is odd, then the number of ribbon
graphs is zero (we do not count incomplete graph). This
problem is called one-vertex problem, and we here consider
two-vertex problem:
“Find the number of ways to make connected ribbon graph with two
vertices of degrees n and m; the number is denoted by Fmn.”
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Catalan numbers

One- and Two-vertex problems on a sphere:

1

2

3

45

6

7

8
a1

a2

a3

b1

b2

b3

b5

b4

(1). Cn gives the solution of the one-vertex problem with a vertex of
degree 2n.

(2). Fmn gives the solution of the two-vertwx problem with vertices of
degrees m and n. (We give an explicit form of Fmn.)
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Gaussian unitary ensemble (GUE)

The partition function of the GUE is defined by

Zn(V0; t) =

∫

Rn

d
→

λ
∏

i<j

(λi − λj)
2 exp



−

n
∑

j=1

V0(λj) +

∞
∑

k=1

tkλ
k
j





Introduce the slow scales T = t/N = (T1, T2, . . .) and
T0 = n/N , and consider the limit N → ∞. Then we have:

Theorem [Bessis et al. (1986)] With V0(λ) = N
2 λ2, the logarithm of

the partition function has an asymptotic expansion of the form,

log

[

ZN

(

N

2
λ2;NT

)

/

ZN

(

N

2
λ2;0

)]

=
∑

g≥0

eg(T)N2−2g.
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Gaussian unitary ensemble (GUE)

Here the coefficients eg(T) are given by

eg(T) =
∑

0≤j1,j2,...

κg(j1, j2, . . . )
T j1

1 T j2
2 · · ·

j1!j2! · · ·
=
∑

j

κg(j)
Tj

j!
.

The coefficient κg(j) gives the number of the connected ribbon graphs
with jk labeled vertices of degree k for k = 1, 2, . . . on a compact
surface of genus g.

In particular, we have

e0(T) = lim
N→∞

1

N2
log

[

ZN

(

N

2
λ2;NT

)

/

ZN

(

N

2
λ2;0

)]

.
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Gaussian unitary ensemble (GUE)

Example: In this limit, we have

∂e0

∂Tn
(T)
∣

∣

∣

T=0
= κ0(0, . . . , 0,

n
1, 0, . . .) =

{

Ck, if n = 2k

0, otherwise

Also the quantity with mn 6= 0,

∂2e0

∂Tm∂Tn
(T)
∣

∣

∣

T=0
= κ0(0, . . . ,

m
1 , . . . ,

n
1, . . .)

gives the number of connected ribbon graphs with two
vertices of degrees m and n (i.e. Two-vertex problem).

Find an explicit formula for this quantity, i.e. Fmn!!!
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The Toda lattice hierarchy

The Toda lattice hierarchy is defined by

∂L

∂tn
= [L,An], with L :=













b1 1

a1 b2 1

a2 b3 1
. . . . . . . . .













,

where An := [Ln]<0 is the lower triangular part of Ln. In
terms of the τ -functions, (ak, bk) are given by

ak =
∂2

∂t21
ln τk =

τk+1τk−1

τ2
k

, bk =
∂

∂t1
ln

τk

τk−1
,

with τ0 = 1.
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The Toda lattice hierarchy

The Toda hierarchy in Hirota bilinear form:

D2
1τn · τn = 2τn+1τn−1

(Dk − hk(D̃))τn+1 · τn = 0.

where D̃ = (D1,
1
2D2, . . .) with the usual Hirota derivative,

Dkf · g = lim
s→0

d

ds
f(tk + s)g(tk − s).

and hk(x) is the elementary symmetric polynomial,

exp

(

∞
∑

n=1

xkz
k

)

=
∞
∑

k=0

hk(x)zk.
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The Toda lattice hierarchy

The first equation of the Toda hierarchy implies that τn can
be written in the Hankel determinant form,

τn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

τ1 τ ′1 · · · τ
(n−1)
1

τ ′1 τ ′′1 · · · τ
(n)
1

...
... . . . ...

τ
(n−1)
1 τ

(n)
1 · · · τ

(2n−2)
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The second equation for n = 0 implies that τ1 is a solution of
the linear PDE’s,

∂τ1

∂tk
= hk(D̃)τ1 =

∂kτ1

∂tk1
.
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The Toda lattice hierarchy
Writing the solution of this PDE in the form,

τ1 =

∫

R

eθ(t;λ)ρ(λ) dλ, with θ(t;λ) =
∞
∑

k=1

λktk,

one can show that the partition functions Zn(V0; t) are
related to the τ -functions with ρ(λ) = e−V0(λ),

τn(t) =
1

n!
Zn (V0; t).

In particular, we consider the case with V0 = N
2 λ2, i.e.

τn(t;N) :=
1

n!
Zn

(

N

2
λ2; t

)

.
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Large N limit of GUE

With the slow variables T0 = n/N and T = t/N , we compute
the limit

F (T0,T) := lim
N→∞

1

N 2
log

[

1

n!
Zn

(

N

2
λ2;NT

)]

.

The F (T0,T) is called the free energy for a topological field
theory (TFT) related to CP 1 σ-model. Using Mehta’s formula
Zn(λ2; 0) = (2π)n/22−n2/2

∏n
j=1

j! with Stirlings’ approximation
log(n!) = O(n log n), we have

F (T0,T) = T 2

0
e0(T̂) +

T 2

0

2

(

log T0 −
3

2

)

,

where T̂ = (T̂1, T̂2, . . .) with T̂j := T
j/2−1

0
Tj (Penner scaling).
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Large N limit of GUE

In the TFT, the second derivatives of the free energy play the
essential role, and those are called two-point functions:

Fmn :=
∂2F

∂Tm∂Tn
.

In particular, Theorem [BIZ] implies that Fmn(1,0) for mn 6= 0

represents the number of connected ribbon graphs with two
vertices of degrees m and n on a sphere, that is, the solution
of the two-vertex problem,

Fmn(1,0) :=
∂2F

∂Tm∂Tn

(1,0) = κ0(0, . . . ,
m

1, . . . ,
n

1, . . .), nm 6= 0.
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Large N limit of GUE

In the case of m = 0 and n = 2k 6= 0, we have

F0,2k(1,0) = (k + 1)κ0(0, . . . ,
2k

1 , . . .),

This corresponds to counting the number of connected ribbon
graphs with a vertex of degree 2k and a marked face on a
sphere, which is actually given by

F0,2k(1,0) = (k + 1) Ck.

Here k + 1 represents the number of connected regions
bounded by the ribbons.
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The dispersionless Toda hierarchy
The free energy F (T0,T) is now defined in terms of the
τ -function,

F (T0,T) = lim
N→∞

1

N2
log τn(NT;N).

The Toda lattice has the limits,

∂2

∂t21
log τn =

τn+1τn−1

τ2
n

→ F11 = eF00

(Dk − hk(D̃))τn+1 · τn = 0 → F0k = hk(Z)

where Z = (Z1, Z2, . . .) is defined by

Z1 = F01. Zn =
F0n

n
+
∑

k+l=n

Fkl

kl
.
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The dispersionless Toda hierarchy

The spectral problem Lφ = λφ gives a plane curve: That is,
for an−1φn−1 + bnφn + φn+1 = λφn, we write

φn = eNSn (WKB form).

which represents a fast oscillation in the phase. Then
writing

φn+1

φn
= eln φn+1−ln φn = eN(Sn+1−Sn),

we define

p := lim
N→∞

eN(Sn+1−Sn) = exp

(

∂S

∂T0

)

.

This is a quasi-momentum in the semi-classical limit.

Combinatorics ofthe dispersionless Toda hierarchy – p. 7/7



The dispersionless Toda hierarchy
Then in the limit N → ∞, the spectral problem then gives
the curve,

λ = p + F01 +
F11

p
.

Here note that an → F11 = eF00 , bn → F01.
Remark: The S in the momentum p is given by

S =
∞
∑

k=1

λkTk + T0 ln λ − D(λ)F0,

with D(λ) defined by

D(λ) =
∞
∑

n=1

1

nλn

∂

∂Tn
.
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The dispersionless Toda hierarchy
The dispersionless Toda (dToda) hierarchy can be defined
in the form,















1 −
eF00

p(λ)p(µ)
= e−D(λ)D(µ)F

λ = p(λ) + F01 +
eF00

p(λ)
with p(λ) = λe−D(λ)F0 .

The second equation defines a plane curve (dToda curve),
and the first equation gives its integrable deformation. We
can also derive the equation without F00 term,

p(λ) − p(µ)

λ − µ
= eD(λ)D(µ)F .

This is the dispersionless KP hierarchy, i.e. dToda ⊂ dKP.
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The dispersionless Toda hierarchy

Remark that the dToda hierarchy expressed by Fmn is
completely determined by F01 and F00. For example,

D(λ)F0 = log
λ

p(λ)
= log

2λ

λ − F01 +
√

(λ − F01)2 − 4F11

.

To find the formula Fmn, we use the Faber polynomials for
the dToda curve:

Proposition: The Faber polynomial Φn(p) is expressed by

Φn(p) := [λ(p)n]+ = λn − D(λ)Fn = λn −

∞
∑

m=1

Fmn

mλm
.

where [λ(p)n]+ is the polynomial part of λ(p)n in p.
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The dispersionless Toda hierarchy

With those equations for Fmn, one can find the explicit
formula for Fmn at T0 = 1,T = 0:

Theorem [K-Pierce (2009)]: With F01 = F00 = 0 (i.e. F11 = 1),
we have











































F0,2k = (k + 1)Ck,

F2j+1,2k+1 = (2j + 1)(2k + 1) (j+1)(k+1)
j+k+1 CjCk,

F2j,2k = jk (j+1)(k+1)
j+k

CjCk,

Fmn = 0, otherwise ,

The Fmn gives the solution of the two-vertex problem.
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