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Introduction

Multiscale analysis: perturbation technique for constructing uniformly valid
approximation to solutions of perturbation problems;

Nonuniformity arises from secularity.

Multiscale perturbation methods have been introduces by Poincaré to deal
with secularity problems in the perturbative solution of differential equations.

In the reductive perturbation method introduced by Taniuti et. al., the space
and time coordinates are stretched in terms of a small expansion parameter
and we look for the far field behaviour of the system.

Multi-scale expansions can be applied to both integrable and non-integrable
systems.
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Multiscale analysis and integrability

Multiscale analysis: perturbation technique for testing integrability of a given
nonlinear system [Calogero];

Integrability is preserved in the reduction process [ Zakharov, Kuznetsov
PDE ].

Partial differential equation example: KdV equation for u (x , t) ∈ R

∂u

∂t
+
∂3u

∂x3
= u

∂u

∂x
.

Solution of the form

u (x , t; ε) =
+∞∑
n=1

n∑
α=−n

εnu(α)
n (ξ, t1, t2, . . .) eiα(κx−ωt).

u
(−α)
n = ū

(α)
n . ξ

.
= εx , tj

.
= εj t, j ≥ 1 are the slow variables;
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Multiscale analysis and integrability

Space and time partial derivatives becomes:

∂x → ∂x + ε∂ξ,

∂t → ∂t + ε∂t1 + ε2∂t2 + . . . ,

and all the variables are considered to be independent;

Order ε:
α = 1: dispersion relation ω = −κ3;

Order ε2:
α = 0:

∂t1u
(0)
1 = 0.

α = 1: [
∂t1 + iκ

(
3iκ∂ξ − u

(0)
1

)]
u

(1)
1 = 0.

Solution:

u
(1)
1 = g

(1)
1 (ρ, t2, t3) e

− i
3κ

∫ ξ
ξ0

u
(0)
1 (ξ′,t2,t3)dξ′

, ρ
.

= ξ + 3κ2t1.
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Multiscale analysis and integrability

α = 2:

u
(2)
2 = − 1

6κ2

(
u

(1)
1

)2

;

Order ε3:
α = 0:

∂t1u
(0)
2 = ∂ρ

(
|u(1)

1 |
2
)

+
1

2
∂ξ

[(
u

(0)
1

)2
]
− ∂t2u

(0)
1 .

No-secularity conditions

The right-hand side solves the homogeneous equation: secularity!

∂t1u
(0)
2 = ∂ρ

(
|u(1)

1 |
2
)
,(

∂t2 − u
(0)
1 ∂ξ

)
u

(0)
1 = 0, Hopf equation: wave breaking!

Solutions:

u
(0)
2 =

|u(1)
1 |2

3κ2
, u

(0)
1 = 0.
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Multiscale analysis and integrability

α = 1: (
∂t1 − 3κ2∂ξ

)
u

(1)
2 = −

(
∂t2 + 3iκ∂2

ρ −
i

6κ
|u(1)

1 |
2

)
u

(1)
1 .

No-secularity condition

The right-hand side solves the homogeneous equation: secularity!(
∂t1 − 3κ2∂ξ

)
u

(1)
2 = 0,(

∂t2 + 3iκ∂2
ρ −

i
6κ
|u(1)

1 |
2

)
u

(1)
1 = 0 : NLS equation.

KdV equation and NLS equation are both integrable!
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Multiscale analysis and integrability

Higher orders beyond NLS equation [Degasperis, Manakov, Santini]:
fundamental for an integrability test.

Proposition [Degasperis, Procesi]: If an equation is integrable, then under a

multiscale expansion the functions u
(1)
m , m ≥ 1 satisfy the equations

∂tn u
(1)
1 = Kn

[
u

(1)
1

]
,

Mnu
(1)
j = gn(j), Mn

.
= ∂tn − K ′n

[
u

(1)
1

]
,

∀ j , n ≥ 2.

Kn

[
u

(1)
1

]
: n-th flow in a hierarchy of integrable equations;

K ′n

[
u

(1)
j

]
v: Frechet derivative of Kn[u

(1)
j ] along v: linearization;

gn(j): nonhomogeneous forcing term in a well defined polynomial vector
space or linear combination of basic monomials.

D. Levi (Electronic Eng. Dep., Roma Tre ) Multiscale reductions and integrability
International Workshop on Nonlinear and Modern Mathematical Physics Beijing, July 15-21, 2009 8

/ 31



Multiscale analysis and integrability

Compatibility conditions:

Mkgn (j) = Mngk (j) , ∀ k , n ≥ 2.

Integrability conditions: set of relations among the coefficients of gn (j).

Definition [Degasperis, Procesi]: If the compatibility conditions are satisfied
up to the index j ≥ 2, our equation is asymptotically integrable of degree j
(Aj integr.).

Known results for A3 integrability conditions:

weakly dispersive nonlinear systems: KdV /pot.KdV hierarchies,

strongly dispersive nonlinear systems: NLS hierarchy,

their linearizable limits.
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Multiscale on the lattice: from shifts to derivatives

Let us consider a function un : Z→ R depending on a discrete index n ∈ Z
The dependence of un on n is realized through the slow variable n1

.
= εn ∈ R,

ε ∈ R, ε = 1/N, N >> 0, 0 < ε� 1, that is to say un
.

= u(n1);

The variable n1 can vary in a region of the integer axis such that u (n1) is
therein analytical (Taylor series expandible);

The radius of convergence of the Taylor series in n1 is wide enough to include
as inner points the points n1 ± kε.

Tnun
.

= un+1 = u(n1 + ε),

Tnu(n1) = u(n1) + εu(1)(n1) + ε2

2 u(2)(n1) + ...+ εi

i! u(i)(n1) + ... = eεdn1 u(n1),

un
.

= u(n, n1), Tn = TnT
(εn1

)
n1 = Tn

+∞∑
j=0

εjA(j)
n , A(j)

n
.

=
N j

1

j!
∂j

n1
, (1)

u
(

n,m, n1, {mj}Kj=1 , ε
)

=
+∞∑
γ=1

γ∑
α=−γ

εγu(α)
γ

(
n1, {mj}Kj=1

)
Eαn,m, (2)

En,m
.

= e i [κn−ω(κ)m], u(−α)
γ = ū(α)

γ
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Multiscale on the lattice: from derivatives to shifts

Our multiscale approach produces from a given partial difference equation a

partial differential equation for one of the amplitudes u
(α)
γ . From the PDE we get

a P∆E inverting the shift operator.

∂n1 = lnTn1 = ln
(

1 + h1∆(+)
n1

)
.

=
+∞∑
i=1

(−1)i−1hi
1

i
∆(+)i

n1
, (3)

where ∆
(+)
n1

.
=
Tn1
−1

h1
is forward difference operator in n1.

∆j
n1

un1

.
=

j∑
i=0

(−1)j−i

(
j

i

)
un1+i =

∞∑
i=j

j!

i !
Pi,j ∆i

nun. (4)

Pi,j
.

=
i∑

k=j

ΩkSk
i Sj

k ,

Ω is the ratio of the increment in the lattice of variable n with respect to that of
variable n1. The coefficients Sk

i and Sj
k are the Stirling numbers of the first and

second kind respectively.
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Multiscale on the lattice: from derivatives to shifts

This is one of the possible inversion formulae for Tn1 . Ex. for symmetric difference

operator ∆
(s)
n1

.
=
(
Tn1 − T −1

n1

)
/2h1 we get

∂n1 = sinh−1h1∆(s)
n1

.
=

+∞∑
i=1

Pi−1(0)hi
1

i
∆(s)i

n1
, (5)

where Pi (0) is the i-th Legendre polynomial evaluated in x = 0.

Difference equations of ∞ order. Only if un is a slow–varying function of order l ,
i.e.

∆l+1un ≈ 0

∂n1 operator reduces to polynomials in the ∆n1 of order at most l .
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Integrability of discrete NLS equations (dNLS)

The nonintegrable standard dNLSE

iu̇n +
1

2σ2
(un+1 − 2un + un−1) = ε|un|2un, ε

.
= ±1, (6)

The integrable Ablowitz-Ladik dNLSE

iu̇n +
1

2σ2
(un+1 − 2un + un−1) = ε|un|2 (un+1 + un−1) , ε

.
= ±1, (7)

The saturable dNLSE

iu̇n +
1

2σ2
(un+1 − 2un + un−1) =

|un|2

ε+ |un|2
un, ε

.
= ±1, (8)

The Salerno dNLSE

iu̇n+
1

2σ2
(un+1 − 2un + un−1)

(
1− sεσ2|un|2

)
= ε|un|2un, ε

.
= ±1, s ∈ R,

(9)
interpolates between Eq. (6) when s = 0 and Eq. (7) when s = 1.
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Integrability of discrete NLS equations (dNLS)

Differential-difference equation example:

iu̇n +
1

2σ2
(un+1 − 2un + un−1) = |un|2 (β1un + β2un+1 + β3un−1) +

+ |un|4 (θ1un + θ2un+1 + θ3un−1) ,

Ablowitz-Ladik integr. dNLS when β1 = θ1 = θ2 = θ3 = 0 and β2 = β3 = ε;
the standard nonintegrable dNLSE when β2 = β3 = θ1 = θ2 = θ3 = 0, and
β1 = ε;
the first term of the small amplitude approximation of the saturable dNLSE
when β1 = ε, θ1 = −1 and βj = θj = 0, j = 2, 3;
the Salerno dNLSE when β1 = ε (1− s) and β2 = β3 = εs/2.
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Integrability of discrete NLS equations (dNLS)

Solution of the form:

un (t; ε) =
+∞∑
j=1

j∑
α=−j

εj f
(α)
j (n1, t1, t2, . . .) eiα(κn−ωt).

Expansion Parameters
1 0 ≤ ε� 1: perturbative parameter around plane wave solution of dNLS ;

2 n1
.

= εn: slow “space” variable;

3 tj = εj t, j ≥ 1 slow times variables;
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f
(α)
j (n1, t1, t2, . . .) C(∞) in n1:

f
(α)
j (n1 ± ε) = f

(α)
j (n1)± ε∂n1 f

(α)
j +

(ε∂n1)2

2
f

(α)
j + . . .

.
= e±ε∂n1 f

(α)
j ;

fn±1 (t; ε) =
+∞∑
j=1

j∑
α=−j

j∑
ρ=max{1,|α|}

εj
(
A±j−ρf (α)

ρ

)
eiα[κ(n±1)−ωt];

Expansion Operators

1 A±κ
.
= (±∂n1)

κ/κ!: from shift operators as series of derivatives;

2 ∂n1 : derivative operator w. r. t. n1 (continuos through C(∞)) with derivatives
calculated in n1 = εn;
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Similar expansion for the time derivative:

∂t fn (t; ε) = −iωfn +
+∞∑
j=2

j−1∑
α=−(j−1)

j−1∑
ρ=max{1,|α|}

εj
(
∂tj−ρ

f (α)
ρ

)
eiα(κn−ωt);
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The reduced equations

Plug everything into the dNLS :

Order ε:
α = 1: dispersion relation

ω =
1− cos (κ)

σ2
;

α = −1:
f

(−1)
1 = 0;

Order ε2:
α = 1: group velocity

∂t1 f
(1)
1 +

sin (κ)

σ2
∂n1 f

(1)
1 = 0, f

(1)
1

(
n1 −

sin (κ)

σ2
t1

)
;

α = 0, −1, ±2:

f
(0)
1 = f

(−1)
2 = f

(±2)
2 = 0;
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Order ε3:
α = 1:

∂t1 f
(1)
2 +

sin (κ)

σ2
∂n1 f

(1)
2 = −∂t2 f

(1)
1 +

i cos (κ)

2σ2
∂2

n1
f

(1)
1 − iρ2f

(1)
1 |f

(1)
1 |

2,

ρ2
.

= [β1 + (β2 + β3) cos (κ) + i (β2 − β3) sin (κ)] /N2.

No-secularity conditions

The right-hand side solves the homogeneous equation: secularity!

∂t1 f
(1)
2 +

sin (κ)

σ2
∂n1 f

(1)
2 = 0,

∂t2 f
(1)
1 = K2

[
f

(1)
1

]
,

K2

[
f

(1)
1

]
.

=
i cos (κ)

2σ2
∂2

n1
f

(1)
1 − iρ2f

(1)
1 |f

(1)
1 |

2 : NLS equation!
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A1-integrability condition: ρ2
.

= [β1 + (β2 + β3)] cos (κ) + i (β2 − β3) sin (κ)
has to be real: it is satisfied iff β2 = β3.

Theorem of A1-integrability:

The dNLS equation

iu̇n +
1

2σ2
(un+1 − 2un + un−1) = |un|2 (β1un + β2un+1 + β3un−1) +

+ |un|4 (θ1un + θ2un+1 + θ3un−1) ,

is A1-integrable iff β2 = β3:

iu̇n +
1

2σ2
(un+1 − 2un + un−1) = |un|2 (β1un + β2[un+1 + un−1]) +

+ |un|4 (θ1un + θ2un+1 + θ3un−1) ,

α = 0, −1, ±2, ±3:

f
(0)
2 = f

(−1)
3 = f

(±2)
3 = f

(±3)
3 = 0;
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Order ε4:
α = 1:

∂t1 f
(1)
3 +

sin (κ)

σ2
∂n1 f

(1)
3 = i

(
∂t2 f

(1)
2 − K ′2

[
f

(1)
1

]
f

(1)
2

)
+

+i
(
∂t3 f

(1)
1 − K3

[
f

(1)
1

])
− ia|f (1)

1 |
2∂n1 f

(1)
1 ,

K3

[
f

(1)
1

]
: flux of first higher order NLS symmetry (cmKdV),

a
.

= −β1 tan (κ);

No-secularity conditions 1

The right-hand side solves the homogeneous equation: secularity!

∂t1 f
(1)
3 +

sin (κ)

σ2
∂n1 f

(1)
3 = 0,

∂t2 f
(1)
2 − K ′2

[
f

(1)
1

]
f

(1)
2 = a|f (1)

1 |
2∂n1 f

(1)
1 −

(
∂t3 f

(1)
1 − K3

[
f

(1)
1

])
;
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∂t2 f
(1)
2 − K ′2

[
f

(1)
1

]
f

(1)
2 = a|f (1)

1 |
2∂n1 f

(1)
1 −

(
∂t3 f

(1)
1 − K3

[
f

(1)
1

])
;

No-secularity conditions 2

The red highlighted term on right-hand side solves the homogeneous
equation: secularity!

∂t3 f
(1)
1 = K3

[
f

(1)
1

]
,

∂t2 f
(1)
2 − K ′2

[
f

(1)
1

]
f

(1)
2 = a|f (1)

1 |
2∂n1 f

(1)
1 ;

A2-integrability conditions: a
.

= −β1 tan (κ) has to be real→ satisfied!

Theorem of A2-integrability:

The dNLS equation

iu̇n +
1

2σ2
(un+1 − 2un + un−1) = |un|2 (β1un + β2(un+1 + un−1)) +

+ |un|4 (θ1un + θ2un+1 + θ3un−1) ,

is A2-integrable ∀ β1, β2, θi , i = 1, 2, 3;
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α = 0, −1, ±2, ±3, ±4:

f
(0)
3 = f

(−1)
4 = f

(±2)
4 = f

(±3)
4 = f

(±4)
4 = 0;

Order ε5:
α = 1:

No-secularity conditions

∂t1 f
(1)
4 +

sin (κ)

σ2
∂n1 f

(1)
4 = 0,

∂t2 f
(1)
3 − K ′2

[
f

(1)
1

]
f

(1)
3 = g2 (3) : forced linearized NLS ,

∂t3 f
(1)
2 − K ′3

[
f

(1)
1

]
f

(1)
2 = g3 (2) : forced linearized cmKdV ,

∂t4 f
(1)
1 = K4

[
f

(1)
1

]
: flux of second higher order NLS symmetry;

A3-integrability conditions (on the coefficient of g2 (3)):
β1 = θ1 = θ2 = θ3 = 0→ Ablowitz-Ladik!;
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Theorem of A3-integrability:

The only dNLS belonging to our class

iu̇n +
1

2σ2
(un+1 − 2un + un−1) = |un|2 (β1un + β2un+1 + β3un−1) +

+ |un|4 (θ1un + θ2un+1 + θ3un−1) ,

being A3-integrable, is the Ablowitz-Ladik dNLS equation

i∂tun(t) +
un+1(t)− 2un(t) + un−1(t)

2σ2
= β2|un(t)|2 (un+1(t) + un−1(t)) .
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Other partial difference equations

offcentrically discretized KdV equation: A0-asymptotically integrable!

u2 − u−2 =
α

4
[u111 − 3u1 + 3u−1 − u−1−1−1]− b

2

[
u2

1 − u2
]

;

symmetrically discretized KdV equation: A2-asymptotically integrable!

u2 − u−2 =
α

4
[u111 − 3u1 + 3u−1 − u−1−1−1]− b

2

[
u2

1 − u2
−1

]
;

Zabusky-Kruskal KdV

q̇n =
1

2h3
(qn+2 − 2qn+1 + 2qn−1 − qn−2)+

1

h
(qn+1 + qn + qn−1) (qn+1 − qn−1)

A2-asymptotically integrable!
lpKdV equation: A3

α (un+1,m+1 − un,m) + β (un+1,m − un,m+1)−
− (un+1,m − un,m+1) (un+1,m+1 − un,m) = 0;

Hietarinta equation (A1: linearizable → A∞).

un,m + e2

un,m + e1
· un+1,m+1 + o2

un+1,m+1 + o1
=

un+1,m + e2

un+1,m + o1
· un,m+1 + o2

un,m+1 + e1
.
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Classification of lattice equations on the square

Dispersive affine linear equation on the square:

a1(un,m + un+1,m+1) + a2(un+1,m + un,m+1) +

+(α1 − α2) un,mun+1,m + (α1 + α2) un,m+1un+1,m+1 +

+ (β1 − β2) un,mun,m+1 + (β1 + β2) un+1,mun+1,m+1 +

+ γ1un,mun+1,m+1 + γ2un+1,mun,m+1 +

+ (ξ1 − ξ3) un,mun+1,mun,m+1 + (ξ1 + ξ3) un,mun+1,mun+1,m+1 +

+ (ξ2 − ξ4) un+1,mun,m+1un+1,m+1 + (ξ2 + ξ4) un,mun,m+1un+1,m+1 +

+ ζun,mun+1,mun,m+1un+1,m+1 = 0,

a1, a2, α1, α2, β1, β2, γ1, γ2, ξ1, ξ2, ξ3, ξ4, ζ real parameters and |a1| 6= |a2|.
Linear dispersion relation:

ω (κ) = arctan
[

(a2
1 − a2

2) sin (κ)

(a2
1 + a2

2) cos (κ) + 2a1a2

]
;
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Theorem of A1-integrability: The only A1-integrable eq. in our class
are characterized by:

Case 1:

2a1a2α1 = γ1a2
2 + γ2a2

1,

2a1a2(a1 − a2)β1 = (a1 + a2)(γ2a2
1 − γ1a2

2),

(a2 + a1)β2 = (a2 − a1)α2,

(a2
2 − a2

1)(ξ1 − ξ2) = [γ1(a1 − 3a2)− γ2(a2 − 3a1)]α2,

(a1 + a2)(ξ3 − ξ4) = (γ2 − γ1)α2.

(10)

Case 2:

2a1a2(a1 − a2)α1 = (a1 + a2)(γ2a2
1 − γ1a2

2),

2a1a2β1 = γ1a2
2 + γ2a2

1,

(a2 − a1)β2 = (a2 + a1)α2,

(a2 − a1)(ξ1 − ξ2) = (γ1 − γ2)α2,

(a2 − a1)2(ξ3 − ξ4) = [γ2(a2 − 3a1)− γ1(a1 − 3a2)]α2.

(11)
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Theorem of A1-integrability: (cont.)

Case 3: 

γ1a2 = γ2a1,

α1 = β1 =
1

2
(γ1 + γ2),

a1(ξ1 − ξ2) = −α2γ1,

a1(ξ3 − ξ4) = β2γ1.

(12)

Case 4: 
α2 = β2 = 0,

ξ1 = ξ2,

ξ3 = ξ4.

(13)
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Theorem of A1-integrability: (cont.)

Case 5: 

a2 = 2a1,

α1 = β1,

α2 = −β2,

γ2 = 2γ1,

a1(ξ1 − ξ2) = a1(ξ3 − ξ4) = −α2γ1.

(14)

Case 6: 

a1 = 2a2,

α1 = β1,

α2 = β2,

γ1 = 2γ2,

a1(ξ1 − ξ2) = −a1(ξ3 − ξ4) = −α2γ1.

(15)
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Conclusions

1 Integrability test suitable for a large variety of nonlinear systems;

2 We have shown that among a class of dNLS equations considered in the
literature only the Ablowitz-Ladik dNLS is integrable;

3 A1-classification of dispersive affine linear equation on the square.

Open problems

What happens if we do not require the C(∞) property of solutions: can we
still get discrete integrable systems;

Extend to other discrete systems as weakly dissipative systems: Burgers
hierarchy;

Find the appropriate normal form theory for discrete equations;
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Conclusions

Open problems

In the A1-classification of dispersive affine linear equation on the square one
equation emerges as a possibly integrable equation:

a1[un,m + un+1,m+1 + 2(un+1,m + un,m+1)] +

+3γ1 [un,mun+1,m + un,m+1un+1,m+1 + un,mun,m+1 + un+1,mun+1,m+1]

+ γ1[un,mun+1,m+1 + 2un+1,mun,m+1] +

+ (ξ1 − ξ3) [un,mun+1,mun,m+1 + un+1,mun,m+1un+1,m+1] +

+ (ξ1 + ξ3) [un,mun+1,mun+1,m+1 + un,mun,m+1un+1,m+1] +

+ ζun,mun+1,mun,m+1un+1,m+1 = 0,

Analyze its A3 integrability.

Integrability test for maps;

Dependence of degree of asymptotic integrability from the solutions used.

THANK YOU
D. Levi (Electronic Eng. Dep., Roma Tre ) Multiscale reductions and integrability
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