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Introduction
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Why discrete?

• Perhaps discrete things are more fundamental than
continuous

• Many mathematical constructs can be interpreted as
difference relations, e.g., recursion relations.

• Need to discretize continuous equations for numerical
analysis

• Interesting mathematics in the background, e.g., elliptic
functions.

• Continuum integrability is well established, all easy things
have already been done. Discrete integrability relatively
new, still new things to be discovered.
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Assume an equation of the form

xn+1 + xn−1 = f (xn).

Given x0, x1 we can compute xn for all n ∈ Z.
So what’s the problem? What is integrability?

More detailed questions:

• Can we say anything about xn without actually computing
every intermediate step?

• Can we find formulae like xn = φ(x0, x1; n) where φ is some
reasonable function?

• How does the error in the initial values propagate? Does
the resulting ambiguity grow as n2, or as 2n?

In these lectures: we take a look on various meanings of
integrability for difference equations, and the possible
associated algorithmic methods to identify (partial) integrability.
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Solvability is not integrability

Integrability is basically regularity or predictability.

A closed form explicit solution is not equivalent to integrability:
Logistic map

yn+1 = 4yn(1− yn).

Explicit closed form solution for all n:

yn = 1
2 [1− cos(2nc0)] .

Sensitive dependence on the initial value:

dyn

dc0
= 1

2 2n sin(2nc0)

Thus error grows exponentially: “chaotic”.
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Examples and continuum limits

The discrete Painlevé I equation (d-PI) is given by

xn+1 + xn + xn−1 = α+βn
xn

+ b.

Why should this be called a discrete Painlevé equation?

Let us take the continuum limit: set

εn = z, xn = f (z), xn±1 = f (z ± ε), ε→ 0, n →∞, εn fixed

This yields

3f + ε2f ′′ =
α+ βz/ε

f
+ b.

The get rid of the denominator we must take

f (z) = c1 + c2ε
κy(z),

and expand. The power κ > 0 is to determined.
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3c1+3c2ε
κy(z)+3c2ε

2+κy ′′ = b+ 1
c1

(α+βz/ε)(1−c2
c1
εκy+(c2

c1
)2ε2κy2 . . . )

To balance terms we must take κ = 2, β high order in ε, then

ε0: 3c1 = b + α/c1

ε2: 3c2 = −c2α/c2
1

leading to
c1 = b

6 , α = − b2

12

Finally at ε4 we get the first Painleve equation

y ′′ = 6y2 + z,

if we take
c2 = −b

3 , β = − b2

18ε
5.
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Algorithmic ways to identify integrable equations?

We would like to identify equations with regular behavior
algorithmically, without actually solving the equation.

For ODE’s two methods have often been used:

• Local analysis (for complex time) to check whether
solutions have movable singularities (Painlevé method).
[Search program by Painlevé, Gambier, etc.]

• Growth analysis of the solution (Nevanlinna theory)

What about difference equations?

Maybe for a discrete Painlevé test we should again study what
happens at a singularity.

What about growth analysis?
Recall that difference equations can trivially be solved step by
step, what is the growth of the resulting expression?
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Singularity analysis for difference equations

Grammaticos, Ramani, and Papageorgiou, [Phys. Rev. Lett. 67
(1991) 1825] proposed The Singularity Confinement Criterion
as an analogue of the Painleve test.

Idea: If the dynamics leads to a singularity then after a few
steps one should be able to get out of it (confinement), and this
should take place without loss of information.
(in contrast: attractors absorb information)

This amounts to the requirement of well defined evolution even
near singular points.

Using this principle it has been possible to find discrete
analogies of Painlevé equations. [Ramani, Grammaticos and
JH, Phys. Rev. Lett. 67 (1991) 1829, and many others]
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Singularity confinement in practice

Consider first the autonomous case of dPI

xn+1 = −xn − xn−1 +
a
xn

+ b.

Equation is singular at x = 0. Assume that we reach the
singularity at x0 = 0 with a finite x−1 = u 6= 0.

The sequence continues as:

x1 = −0− u + a/0 + b = ∞,

x2 = −∞− 0 + a/∞+ b = −∞,

x3 = +∞−∞− a/∞+ b = ?

To resolve “∞−∞”:
assume x0 = ε (small) and redo the calculations.
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Detailed singularity confinement calculation

xn+1 = −xn − xn−1 +
a
xn

+ b.

x−1 = u,

x0 = ε,

x1 = a
ε + b − u − ε

x2 = −a
ε + u + ε+ [(u − b)/a] ε2 + O(ε3)

x3 = −
[
−a

ε + u + ε+ [(u − b)/a] ε2 + O(ε3)
]

−
[a

ε + b − u − ε
]
+ a/

[
−a

ε + u + O(ε)
]
+ b

= −ε+ [(b − 2u)/a] ε2 + O(ε3),

x4 = u + O(ε)

The singularity is confined and initial information u is recovered.
The singularity pattern is . . . ,0,∞,−∞,0, . . . .
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Non-confined singularity

A worst case example:

xn+1 − 2xn + xn−1 =
a
xn

+ b,

We obtain x−1 = u,

x0 = ε,

x1 = a
ε + b − u + 2ε,

x2 = 2a
ε + 3b − 2u + O(ε),

x3 = 3a
ε + 6b − 3u + O(ε),

. . .

In general
xk = k a

ε + . . . ,

and the singularity is not confined, ever.
Furthermore: there are no ambiguities.
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xn+1 − 2xn + xn−1 =
a
xn

+ b,

We obtain x−1 = u,

x0 = ε,

x1 = a
ε + b − u + 2ε,

x2 = 2a
ε + 3b − 2u + O(ε),

x3 = 3a
ε + 6b − 3u + O(ε),

. . .

In general
xk = k a

ε + . . . ,

and the singularity is not confined, ever.
Furthermore: there are no ambiguities.
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The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations:

Insist on the same singularity pattern, this yields equations for
the free n-dependent coefficient.

Previous example but with an: x−1 = u, x0 = ε, and then

x1 = a0
ε + b − u − ε,

x2 = −a0
ε + u + a1

a0
ε+ a1

a0
(u − b)/a0 ε

2 + O(ε3),

x3 = −a2+a1−a0
a2

ε+ (a1
a0

b − a1+a2
a0

u)/a0 ε
2 + O(ε3)

x4 = −a3−a2−a1+a0
a2+a1+a0

a0
ε + . . .

Problem: x4 should start like u + . . . !
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x4 = −a3−a2−a1+a0
a2+a1+a0

a0
ε + . . .

x4 should start like u + . . . =⇒
The condition for singularity confinement at this same step is:

an+3 − an+2 − an+1 + an = 0, ∀n

with solution
an = α+ βn + γ (−1)n. (∗)

Recall the form of the discrete Painlevé equation (d-PI)

xn+1 + xn + xn−1 =
α+ βn

xn
+ b.

In general, with an as in (*) the singularity is confined, and

x4 := u(α+γ)+2bβ
α+3β−γ + O(ε),

in particular, if β = γ = 0 (i.e., an = α), x4 = u + . . .
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Singularity confinement in projective space

The singularities reveal their nature best in projective space,
where (u, v , f ) ≈ (λu, λv , λf ), λ 6= 0

The original system: xn+1 + xn + xn−1 = an
xn

+ b

Then clearing denominators yields a polynomial map in P2
un+1 = −un(un + vn) + fn(anfn + bun),
vn+1 = u2

n ,
fn+1 = fnun.

Note: default growth of degree (= complexity): deg(un) = 2n
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The sequence that led to a singularity was
x−1 = u, x0 = 0, x1 = ∞, x2 = ∞, x3 = ∞−∞ = ?

In projective space we have 0
u
1

 →

 1
0
0

 →

 1
−1
0

 →

 0
1
0

 →

 0
0
0

 ,

The last term is a true singularity, since it is not in P2.
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For the detailed ε study with x−1 = u, x0 = ε we have x0

x−1

1

 ≈

 u0

v0

f0

 =

 ε
u
1

 ,

 x1

x0

1

 ≈

 u1

v1

f1

 =

 a0 + (−u + b)ε+ . . .

ε2

ε

 .

 x2

x1

1

 ≈

 u2

v2

f2

 =

 −a2
0 + εa0(2u − b) + . . .

a2
0 + 2εa0(−u + b) + . . .

εa0 + ε2(−u + b) + . . .

 .

 x3

x2

1

 ≈

 u3

v3

f3

 =

 ε2a2
0(−a0 + a1 + a2) + . . .

a4
0 + 2εa3

0(−2u + b) . . .
−εa3

0 + ε2a2
0(3u − 2b) + . . .


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 u4

v4

f4

 =

 ε2a6
0A3 + ε3a5

0(b(4A3 + a0 − a2)− u(6A3 + a0)) + . . .

ε4a4
0A2

2 + . . .

−ε3a5
0A2 + . . .

 .

(A2 = a2 + a1 − a0, A3 = a0 − a1 − a2 + a3.)

This is the crucial point of singularity confinement.

If A3 = 0, A2 6= 0 then ε3 is a common factor and can be
divided out and then the ε→ 0 limit yields u4

v4

f4

 =

 (a0(u − b) + a2b)
0
a3

 .

Thus we have emerged from the singularity and in particular
recovered the initial data u.
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• The cancellation of the common factor ε3 removes the
singularity.

• Any cancellation also reduces growth of complexity, as
defined by the degree of the iterate.

These are two sides of the same phenomenon.

The precise amount of cancellation will be crucial.

• growth is linear in n ⇒ equation is linearizable.

• growth is polynomial in n ⇒ equation is integrable.

• growth is exponential in n ⇒ equation is chaotic.
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• growth is polynomial in n ⇒ equation is integrable.

• growth is exponential in n ⇒ equation is chaotic.
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Singularity confinement is not sufficient

Counterexample (JH and C Viallet, PRL 81, 325 (1999))

xn+1 + xn−1 = xn +
1
x2

n
.

Epsilon analysis of singularity confinement:
Assume x−1 = u, x0 = ε and then

x1 = ε−2 − u + ε,

x2 = ε−2 − u + ε4 + O(ε6),

x3 = −ε+ 2ε4 + O(ε6),

x4 = u + 3ε+ O(ε3),

Thus singularity is confined with pattern . . . ,0,∞,∞,0, . . . .
Furthermore, the initial information u is recovered in x4. OK?
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No! The HV map shows numerical chaos
xn+1 + xn−1 = xn + 7

x2
n
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Singularity confinement ⇒ cancellations ⇒ reduced growth of
complexity.

Reduction must be strong enough!

For the previous chaotic model the degrees grow as

1, 3, 9, 27, 73, 195, 513, 1347, 3529, . . .

which grows asymptotically as dn ≈ [(3 +
√

5)/2]n.

For the previous Painlevé equation the degrees grow as

1, 2, 4, 8, 13, 20, 28, 38, 49, 62, 76, . . .

which is fitted by dn = 1
8(9 + 6n2 − (−1)n). [JH and Viallet,

Chaos, Solitons and Fractals, 11, 29-32 (2000).]
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Summary

• Singularity confinement is necessary for a well defined
evolution

• Easy to verify
• Can be used effectively for de-autonomizing a given map
• Not sufficient for integrable evolution

Improvements / other tests

• Require slow growth of complexity
(Veselov, Arnold, Falqui and Viallet)

• Consider the map over finite fields and study its orbit
statistics (Roberts and Vivaldi)

• Nevanlinna theory for difference equations. (Halburd et al)
• Diophantine integrability (numerically fast) (Halburd)
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Dynamics in a square lattice

The basic setting: an infinite rectangular lattice in the plane:

n

m

Values of the dynamical variable u given at intersections, un,m.
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Examples

The discrete KdV can be given as

α(yn+2,m−1 − yn,m) =
(

1
yn+1,m−1

− 1
yn+1,m

)
or in the “potential” form

(un,m+1 − un+1,m)(un,m − un+1,m+1) = p2 − q2

The equation of “similarity constraint” for KdV is given by

(λ(−1)n+m + 1
2)un,m + np2

un−1,m−un+1,m
+ mq2

un,m−1−un,m+1
= 0

r rr r
m

nε

δ r rr r r r rr
r
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KdV in applications

Several numerical acceleration algorithms (for partial sums) are
integrable lattice equations.

The Shanks-Wynn ε-algorithm: Assume the initial sequences
ε
(m)
0 = 0, ε(m)

1 = Sm, and generate new sequences ε(m)
n (that

approach the limit S∞ faster) by

(ε
(m)
n+1 − ε

(m+1)
n−1 )(ε

(m+1)
n − ε

(m)
n ) = 1.

This is the integrable discrete potential KdV equation.

Similarly, Bauer’s η-algorithm (X (m)
k = [η

(m)
k ](−1)k+1

)

X (m)
n+1 − X (m+1)

n−1 =
1

X (m+1)
n

− 1

X (m)
n

is the integrable discrete KdV equation.
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Relationship between dKdV and dpKdV

Let yn,m = 1 + Wn+m,m+1 then dKdV becomes

α(Wn,m+1 −Wn+1,m) = 1
1+Wn,m

− 1
1+Wn+1,m+1

Next let Wn,m = (Un−1,m−1 − Un,m)/(p + q), which implies

α
p+q (Un−1,m−Un,m+1−Un,m−1+Un+1,m) =

1

1 +
Un−1,m−1−Un,m

p+q

− 1

1 +
Un,m−Un+1,m+1

p+q

.

The red part is a double shift or the blue part, separate as

1 +
Un,m+1 − Un+1,m

p − q
=

1

1 +
Un,m−Un+1,m+1

p+q

,

where α = (p + q)/(p − q) and the separation constant = 1.
This is the dpKdV.
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Closer look at quadrilateral lattices

sx[2] s x[12]

sx s x[1]

xn,m = x00 = x

xn+1,m = x10 = x[1] = x̃

xn,m+1 = x01 = x[2] = x̂

xn+1,m+1 = x11 = x[12] = ̂̃x

The four corner values are related by a multi-linear equation:

k xx[1]x[2]x[12] + l1 xx[1]x[2] + l2 xx[1]x[12] + l3 xx[2]x[12] + l4 x[1]x[2]x[12]

+ s1 xx[1] + s2 x[1]x[2] + s3 x[2]x[12] + s4 x[12]x + s5 xx[2] + s6 x[1]x[12]

+ q1 x + q2 x[1] + q3 x[2] + q4 x[12] + u ≡ Q(x , x[1], x[2], x[12]; p1,p2)=0.

The pi are some parameters associated with shift directions [i],
they may appear in the coefficients k , li , si , qi , u.
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This definition allows well-defined evolution from any
staircase-like initial condition, up or down.

@@@@I

@@R

���

��	

NW

SE

NE

SW
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rr r rr r rr rr r

rrrrrrr r rr r r
↘
↗?

Steplike initial values OK.
Any overhang would lead into trouble.
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Further examples

Lattice (potential) KdV

(p1−p2 +xn,m+1−xn+1,m)(p1 +p2 +xn,m−xn+1,m+1) = p2
1−p2

2,

or after translation xn,m = un,m + p1n + p2m

(un,m+1 − un+1,m)(un,m − un+1,m+1) = p2
1 − p2

2,

Lattice MKdV

p1(xn,mxn,m+1−xn+1,mxn+1,m+1) = p2(xn,mxn+1,m−xn,m+1xn+1,m+1),

Lattice SKdV

(x − x̃)(x̂ − ̂̃x)p2
2 = (x − x̂)(x̃ − ̂̃x)p2

1.
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Continuum limit

The famous Korteweg-de Vries equation in potential form is

vt = vxxx + 3v2
x ,

how is this related to the dpKdV given by

(p − q + un,m+1 − un+1,m)(p + q + un,m − un+1,m+1) = p2 − q2

In the “straight” continuum limit we take

u(n,m + k) = yn(ξ + εk), q = 1/ε

and expand, obtaining in leading order

∂ξ(yn + yn+1) = 2p(yn+1 − yn)− (yn+1 − yn)
2
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In the “skew” continuum limit we take

un,m = wn+m−1(τ0 + εm), N := n + m, τ := τ0 + εm, q = p − ε

un,m = wN−1(τ), un+1,m = wN(τ),

un,m+1 = wN(τ + ε), un+1,m+1 = wN+1(τ + ε)

and then expand in ε. The result is (at order ε)

∂τwN =
2p

2p + wN−1 − wN+1
− 1.

If we let Wn = 2p + wN−2 − wN then we get

Ẇn = 2p
(

1
WN+1

− 1
WN−1

)
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The straight limit was

∂ξ(yn + yn+1) = 2p(yn+1 − yn)− (yn+1 − yn)
2

Next we expand yn+k = v(τ + kε) in ε, with p = 1/ε, and obtain

2vξ + εvξτ + 1
2ε

2vξττ · · · = 2vτ + εvττ + 1
3ε

2vτττ + ε2v2
τ + . . .

Now we need to redefine the independent variables
from ξ, τ to x , t using

∂τ = ∂x + 1
12ε

2∂t , ∂ξ = ∂x

and then we get
vt = vxxx + 6v2

x

which is the potential form of KdV. [vx = u]
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The skew limit gave

∂τwN =
2p

2p + wN−1 − wN+1
− 1.

Next take a continuum limit in N by

wN+k = v(x + kε), p = 2/ε

leading to

2vτ − (ε2vx + 1
6ε

4vxxx)(vτ + 1) + · · · = 0.

As before we need to change “time”, now by

∂τ = 1
2ε

2∂x + 1
12ε

4∂t .

Then at the lowest nontrivial order (ε4) we find

vt = vxxx + 3v2
x .
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leading to

2vτ − (ε2vx + 1
6ε

4vxxx)(vτ + 1) + · · · = 0.

As before we need to change “time”, now by

∂τ = 1
2ε

2∂x + 1
12ε

4∂t .

Then at the lowest nontrivial order (ε4) we find

vt = vxxx + 3v2
x .
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Singularity confinement in 2D

Grammaticos, Ramani, Papageorgiou, PRL 67, 1825 (1991)
As an example let us consider dKdV

wn+1,m+1 = wn,m +
1

wn+1,m
− 1

wn,m+1
.

The initial data is a,b,0, c,d , f ,g.

t t t
t d

t d d
d d

d d
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t
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d
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�

�
d
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b
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f g∞1 ∞2

s t02

?1 ?2
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A more detailed analysis with the initial value 01 = ε (small)
yields the following values at the subsequent iterations

∞1 = b + 1
ε −

1
a , ∞2 = c + 1

d −
1
ε ,

at the first stage,

and on the next

s = a + 1
∞1

− 1
f , t = d + 1

g −
1
∞2
,

02 = ε+ 1
∞2

− 1
∞1

= −ε+
(
b − c − 1

a −
1
d

)
ε2 + . . .

Then at the next step we can resolve the ambiguities:

?1 = ∞1 + 1
02
− 1

s = c + 1
d −

1
a−1/f + O(ε)

?2 = ∞2 + 1
t −

1
02

= b − 1
a + 1

d+1/g + O(ε)

Thus the singularity is confined.
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Algebraic entropy study for lattices?

For 1D maps we had:

• Growth of complexity (=degree of iterate) is usually
exponential.

• Reduced growth is obtained by cancellations which are
associated with singularity confinement.

• Sufficient cancellation can lead to polynomial growth of
complexity = integrability.

What about growth analysis for lattices?
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The setting

Consider a quadratic map in a quadrilateral lattice.

p1 xx[1] + p2 x[1]x[2] + p3 x[2]x[12] + p4 x[12]x + p5 xx[2] + p6 x[1]x[12]

+ q1 x + q2 x[1] + q3 x[2] + q4 x[12] + u = 0

Write the map in the projective plane with x = v/f :
v[12] = p1 v v[1]f[2] + p2 v[1]v[2]f + p5 v v[2]f[1]

+q1 v f[1]f[2] + q2 v[1]f[2]f + q3 v[2]f[1]f + u f f[1]f[2],

f[12] = p3 v[2]f[1]f + p4 v f[1]f[2] + p6 v[1]f[2]f + q4f f[1]f[2].

Jarmo Hietarinta Definitions of Integrability



Preliminaries
Singularity confinement and algebraic entropy

Integrability in 2D

Prliminaries
Singularity confinement/factorization
CAC

The setting

Consider a quadratic map in a quadrilateral lattice.

p1 xx[1] + p2 x[1]x[2] + p3 x[2]x[12] + p4 x[12]x + p5 xx[2] + p6 x[1]x[12]

+ q1 x + q2 x[1] + q3 x[2] + q4 x[12] + u = 0

Write the map in the projective plane with x = v/f :
v[12] = p1 v v[1]f[2] + p2 v[1]v[2]f + p5 v v[2]f[1]

+q1 v f[1]f[2] + q2 v[1]f[2]f + q3 v[2]f[1]f + u f f[1]f[2],

f[12] = p3 v[2]f[1]f + p4 v f[1]f[2] + p6 v[1]f[2]f + q4f f[1]f[2].

Jarmo Hietarinta Definitions of Integrability



Preliminaries
Singularity confinement and algebraic entropy

Integrability in 2D

Prliminaries
Singularity confinement/factorization
CAC

Default degree growth in a staircase and in a corner:

1

1 1

1t 1

1 1

2

2

2

4

4

9

1

1 1

1

t 2

1

3

3

7

Initial values given on the points marked with “1”.
On those points v is free, but f ’s should be the same.

Default degree growth:

deg(z[12]) = deg(z) + deg(z[1]) + deg(z[2])− 1,

(z = v or f , they have the same degree).
The extra −1 is because the map is quadratic and a common f
is cancelled.
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Interesting factorization takes place at degree 9 or 7.

Default asymptotic growth for the staircase: 1
2(1 +

√
2)n.

What happens with well known models? [Tremblay,
Grammaticos and Ramani, Phys. Lett. A 278 319 (2001).]
For dpKdV they obtain degrees

...
...

...
...

...
...

1 4 7 10 13 16 . . .
1 3 5 7 9 11 . . .
1 2 3 4 5 6 . . .
1 1 1 1 1 1 . . .

. . . . . . . . . . . . . . . . . .
1 2 4 7 11 16 . . .
1 1 2 4 7 11 . . .

1 1 2 4 7 . . .
1 1 2 4 . . .

. . . . . . . . .

In the corner case dnm = nm + 1, in the staircase
dN = 1 + N(N − 1)/2. Polynomial growth.
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Cancelling factors

KdV:
(xn,m+1 − xn+1,m)(xn,m − xn+1,m+1) = a,

“Stair” at (2,2) (maximal degree 9)

v22, f22 = (main part of degree 7)× (v01 − v10)
2.

“Corner” at (2,2) (maximal degree 7)

v22, f22 = (main part of degree 5)× (v01 − v10)
2.

where z is v or f . The main parts of v and f are different,
therefore in each case GCD(v22, f22) = (v01 − v10)

2.
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Search based on factorization

Integrable maps seem to have a quadratic factorization at (2,2).

In the simplest case the quadratic factor is a product of two
linear factors.

Search for new integrable maps by
requiring the factorization of at least
one linear factor in x at the point (2,2).

(0,1)

(0,0) (1,0)

(0,2)

(2,0)

Q
2

3

3

7

Use “corner” configuration,
because computations are simpler.
Also restrict to quadratic equation.

Huge algebraic problem.

Hietarinta and Viallet, J. Phys. A: Math. Theor. 40
12629-12643 (2007).
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CAC - Consistency Around a Cube

Consistency under extensions to higher dimensions.

From 2D to 3D:

Adjoin a third direction xn,m → xn,m,k and construct a cube.

cx101

sx001 c x011

c x110

cqx000

ceax111

sx100

s x010

�
�

�
�

�
�

�
�

�

Map at the bottom Q12(x , x̃ , x̂ , ̂̃x ; p,q) = 0,
on the sides Q23(x , x̂ , x̄ , ¯̂x ; q, r) = 0, Q31(x , x̄ , x̃ , ¯̃x ; r ,p) = 0,
shifted maps on parallel shifted planes.
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bx101

rx001 b x011

b x110

bqx000

bdax111

rx100

r x010

�
�

�
�

�
�

Consistency problem:
Given values at black disks, we can
compute values at open disks uniquely.
But x111 can be computed in 3 different ways!
They must agree!

solve x110 from Q12(x000, x100, x010, x110; p,q) = 0,
solve x011 from Q23(x000, x010, x001, x011; q, r) = 0,
solve x101 from Q31(x000, x001, x100, x101; r ,p) = 0,

then x111 computed from the shifted equations

Q12(x001, x101, x011, x111; p,q) = 0, or
Q23(x100, x110, x101, x111; q, r) = 0, or
Q31(x010, x011, x110, x111; r ,p) = 0,

should all agree. This is consistency around the cube, CAC.
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• CAC represents a rather high level of integrability.

• It is a kind of Bianchi identity [Nimmo and Schief, Proc. R.
Soc. Lond. A 453 (1997) 255].

• First proposed as a property of maps in Nijhoff, Ramani,
Grammaticos and Ohta, Stud. Appl. Math. 106 (2001) 261.

• It allows construction of Lax presentation [Nijhoff and
Walker, Glasgow Math. J. 43A (2001) 109].
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CAC provides a Lax pair

Recipe given by FW Nijhoff, in Phys. Lett. A297 49 (2002).

The third direction is taken as the spectral direction.
The auxiliary functions are generated from x∗∗1:
One solves Q13 for x101 and Q23 for x011 and the dependence
on these variables is linearized by introducing f ,g:
x001 = f/g, x101 = f[1]/g[1], x011 = f[2]/g[2], λ = r .

For the discrete KdV
(xn,m+1 − xn+1,m)(xn,m − xn+1,m+1) = p2 − q2, we have
Q13 ≡ (x001 − x100)(x000 − x101) = p2 − r2, and get

f[1]

g[1]
=

xf + (λ2 − p2 − x̃ x)g
f − x̃g

,

f[2]

g[2]
=

xf + (λ2 − q2 − x̂ x)g
f − x̂g

.
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Define φ = ( f
g ) and write the result

f[1]

g[1]
= xf+(λ2−p2−exx)g

f−exg ,
f[2]

g[2]
= xf+(λ2−q2−bxx)g

f−bxg ,

as a matrix relation
φ[1] = Lφ, φ[2] = Mφ

For the KdV-map one finds

L = γ

(
x λ2 − p2 − xx̃
1 −x̃

)
, M = γ′

(
x λ2 − q2 − xx̂
1 −x̂

)
.

where γ, γ′ are separation constants.
The consistency condition φ[12] = φ[21], i.e., L[2]M = M[1]L,
determines the constants γ, γ′ and also yields the map
(x̂ − x̃)(x − ̂̃x) = p2 − q2.
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Define φ = ( f
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CAC as a search method

CAC has been used as a method to search and classify lattice
equations:

Adler, Bobenko and Suris, Commun.Math.Phys. 233 513
(2003)

with 2 additional assumptions:

• symmetry (ε, σ = ±1):
Q(x000, x100, x010, x110; p1,p2) =εQ(x000, x010, x100, x110; p2,p1)

=σQ(x100, x000, x110, x010; p1,p2)

• “tetrahedron property”: x111 does not depend on x000.

Result: complete classification under these assumptions,
9 models.
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ABS results:

List H:

(H1) (x − ˆ̃x)(x̃ − x̂) + q − p = 0,

(H2) (x − ˆ̃x)(x̃ − x̂) + (q − p)(x + x̃ + x̂ + ˆ̃x) + q2 − p2 = 0,

(H3) p(xx̃ + x̂ ˆ̃x)− q(xx̂ + x̃ ˆ̃x) + δ(p2 − q2) = 0.

List A:

(A1) p(x + x̂)(x̃ + ˆ̃x)− q(x + x̃)(x̂ + ˆ̃x)− δ2pq(p − q) = 0,

(A2)

(q2−p2)(xx̃ x̂ ˆ̃x +1)+q(p2−1)(xx̂ +x̃ ˆ̃x)−p(q2−1)(xx̃ +x̂ ˆ̃x) = 0.
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Main list:

(Q1) p(x − x̂)(x̃ − ˆ̃x)− q(x − x̃)(x̂ − ˆ̃x) + δ2pq(p − q) = 0,
(Q2)
p(x − x̂)(x̃ − ˆ̃x)− q(x − x̃)(x̂ − ˆ̃x) + pq(p − q)(x + x̃ + x̂ + ˆ̃x)

−pq(p − q)(p2 − pq + q2) = 0,
(Q3)
(q2 − p2)(x ˆ̃x + x̃ x̂) + q(p2 − 1)(xx̃ + x̂ ˆ̃x)− p(q2 − 1)(xx̂ + x̃ ˆ̃x)

−δ2(p2 − q2)(p2 − 1)(q2 − 1)/(4pq) = 0,
(Q4) (the root model from which others follow)

a0xx̃ x̂ ˆ̃x + a1(xx̃ x̂ + x̃ x̂ ˆ̃x + x̂ ˆ̃xx + ˆ̃xxx̃) + a2(x ˆ̃x + x̃ x̂)+

ā2(xx̃ + x̂ ˆ̃x) + ã2(xx̂ + x̃ ˆ̃x) + a3(x + x̃ + x̂ + ˆ̃x) + a4 = 0,

where the ai depend on the lattice directions and are given in
terms of Weierstrass elliptic functions. This was first derived by
Adler as a superposition rule of BT’s for the Krichever-Novikov
equation. [Adler, Intl. Math. Res. Notices, # 1 (1998) 1-4]
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Another search: J.H., JNMP 12 Suppl 2, 223 (2005).
Symmetry kept, but tetrahedron assumption omitted.

The new non-tetrahedron results had no spectral parameters
• x + x[1] + x[2] + x[12] = 0
• xx[12] + x[1]x[2] = 0
• (xx[1]x[2] + xx[1]x[12]+xx[2]x[12] + x[1]x[2]x[12])

+(x + x[1] + x[12] + x[2]) = 0.

Result: The above are linearizable, thus nothing new.

Additional result: a simpler Jacobi form for (Q4) of ABS:

(h1f2 − h2f1)[(xx[1]x[12]x[2] + 1)f1f2 − (xx[12] + x[1]x[2])]

+ (f 2
1 f 2

2 − 1)[(xx[1] + x[12]x[2])f1 − (xx[2] + x[1]x[12])f2] = 0,

h2
i = f 4

i + δf 2
i + 1, parametrizable by Jacobi elliptic functions.
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A further result (JH, JPhysA, 37 L67 (2004))

x + e2

x + e1

x[12] + o2

x[12] + o1
=

x[1] + e2

x[1] + o1

x[2] + o2

x[2] + e1
.

Note that the parameters and variables appear symmetrically.

This model has interesting geometric interpretation as it
describes some special relation between eight points on a
conic (Adler, nlin.SI/0409065 ).

Also this is linearizable.
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Hirota’s bilinear method

Recall Hirota’s direct method in the continuous case:

1 find a background or vacuum solutions

2 find a 1-soliton-solutions (1SS)

3 use this info to guess a dependent variable transformation
into Hirota bilinear form

4 construct the fist few soliton solutions perturbatively

5 guess the general from (usually a determinant: Wronskian,
Pfaffian etc) and prove it

Hirota’s bilinear form is well suited for constructing soliton
solutions, because the dependent variable is then a polynomial
of exponentials with linear exponents.
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The background solution

First problem in the perturbative approach:
What is the background solution?

Atkinson: Take the CAC cube and insist that the solution is a
fixed point of the bar shift. The “side”-equations are then

Q(u, ũ,u, ũ; p, r) = 0, Q(u, û,u, û; q, r) = 0.

The H1 equation is given by

H1 ≡ (u − ̂̃u)(ũ − û)− (p − q) = 0,

then the side-equations are

(ũ − u)2 = r − p, (û − u)2 = r − q.

For convenience we reparametrize (p,q) → (a,b) by

p = r − a2, q = r − b2.
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The side-equations then factorize as

(ũ − u − a)(ũ − u + a) = 0, (û − u − b)(û − u + b) = 0,

Since the factor that vanishes may depend on n,m we actually
have to solve

ũ − u = (−1)θ a, û − u = (−1)χ b,

where θ, χ ∈ Z may depend on n,m.
From consistency θ,∈ {n,0},χ,∈ {m,0}.
The set of possible background solution turns out to be

an + bm + γ,

1
2(−1)na + bm + γ,

an + 1
2(−1)mb + γ,

1
2(−1)na + 1

2(−1)mb + γ.
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1SS

The BT generating 1SS for H1 is

(u − ¯̃u)(ũ − ū) = p − κ,

(u − ̂̄u)(ū − û) = κ − q.

Here u is the background solution an + bm + γ, ū is the new
1SS, and κ is the soliton parameter (the parameter in the
bar-direction).

We search for a new solution ū of the form

ū = ū0 + v ,

where ū0 is the bar-shifted background solution

ū0 = an + bm + k + λ.
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For v we then find

ṽ =
Ev

v + F
, v̂ =

Gv
v + H

,

where

E = −(a+k), F = −(a−k), G = −(b +k), H = −(b−k),

and k is related to κ by κ = r − k2.

Introducing v = f/g and Φ = (g, f )T we can write this as a
matrix equation

Φ(n+1,m) = N(n,m)Φ(n,m), Φ(n,m+1) = M(n,m)Φ(n,m),

where

N(n,m) = Λ

(
E 0
1 F

)
, M(n,m) = Λ′

(
G 0
1 H

)
,

In this case E ,F ,G,H are constants and we can choose
Λ = Λ′ = 1.
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Since the matrices N,M commute it is easy to find

Φ(n,m) =

(
EnGm 0

EnGm−F nHm

−2k F nHm

)
Φ(0,0).

If we let

ρn,m =

(
E
F

)n(G
H

)m

ρ0,0 =

(
a + k
a− k

)n(b + k
b − k

)m

ρ0,0,

then we obtain

vn,m =
−2kρn,m

1 + ρn,m
.

Finally we obtain the 1SS for H1:

u(1SS)
n,m = (an + bm + λ) + k +

−2kρn,m

1 + ρn,m
.
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Bilinearizing transformation

In an explicit form the 1SS is

u1SS
n,m = an + bm + λ+

k(1−ρn,m)
1+ρn,m

This suggests the dependent variable transformation

uNSS
n,m = an + bm + λ− gn,m

fn,m
.

We find

H1 ≡ (u − ̂̃u)(ũ − û)− p + q

= −
[
H1 + (a− b)f

̂̃
f
][

H2 + (a + b)̂f f̃
]
/(f f̂ f̃

̂̃
f ) + (a2 − b2),

where

H1 ≡ ĝf̃ − g̃f̂ + (a− b)(̂f f̃ − f
̂̃
f ) = 0,

H2 ≡ g
̂̃
f − ̂̃gf + (a + b)(f

̂̃
f − f̂ f̃ ) = 0.
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= −
[
H1 + (a− b)f

̂̃
f
][

H2 + (a + b)̂f f̃
]
/(f f̂ f̃

̂̃
f ) + (a2 − b2),

where
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Casoratians

For given functions ϕi(n,m,h) we define the column vectors

ϕ(n,m,h) = (ϕ1(n,m,h), ϕ2(n,m,h), · · · , ϕN(n,m,h))T ,

and then compose the N × N Casorati matrix from columns
with different shifts hi , and then the determinant

Cn,m(ϕ; {hi}) = |ϕ(n,m,h1), ϕ(n,m,h2), · · · , ϕ(n,m,hN)|.

For example

C1
n,m(ϕ) := |ϕ(n,m,0), ϕ(n,m,1), · · · , ϕ(n,m,N − 1)|

≡ |0,1, · · · ,N − 1| ≡ |N̂ − 1|,
C2

n,m(ϕ) := |ϕ(n,m,0), · · · , ϕ(n,m,N − 2), ϕ(n,m,N)|

≡ |0,1, · · · ,N − 2,N| ≡ |N̂ − 2,N|,
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Main result

The bilinear equations Hi are solved by Casoratians
f = |N̂ − 1|

[h]
, g = |N̂ − 2,N|

[h]
, with ψ given by

ψi(n,m, l ; ki) = %+
i kh

i (a+ki)
n(b+ki)

m+%−i (−ki)
h(a−ki)

n(b−ki)
m.

Similar results exist for H2,H3,Q1,Q3

J. Hietarinta and D.J. Zhang, Soliton solutions for ABS lattice
equations: II Casoratians and bilinearization
to appear in J. Phys. A: Math. Theor. arXiv:0903.1717 .

J. Atkinson, J. Hietarinta and F. Nijhoff, Soliton solutions for Q3,
J. Phys. A: Math. Theor., 41 142001 (2008).
arXiv:0801.0806

The structure of the soliton solution is similar to those of the
Hirota-Miwa equation
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Summary

Integrability has many forms for difference equations, e.g.,

• Singularity confinement
• Simple to apply
• Efficient for deautonomization
• Necessary, not sufficient

• Algebraic entropy
• Complicated to apply
• Precise:

Linear growth = linearizability
polynomial growth = integrability
exponential growth = chaos

• Generic
• Consistency-Around-Cube

• Applicable only to maps defined on a square lattice.
• Strong: Lax pair follows immediately
• Soliton solutions can be constructed systematically
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