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Font Regularity Constraints on the Process of Letter Recognition

Thomas Sanocki
University of South Florida

Strings of four unrelated letters were presented for subjects to identify, followed by a patterned
mask and then a forced choice test of each letter position. In Experiment 1, the type style in the
regular conditions was consistent—all of the letters were of a single type font—whereas in the
mixed condition, each string contained letters from two type fonts. Compared with the mixed
condition, accuracy in the regular conditions was higher overall and increased at a faster rate as
a function of processing time. This held across four sessions. In Experiment 2, the font in the
mixed condition was varied either between or within letter strings; sizeable advantages for the
regular conditions were found with both mix-methods. The results are consistent with the idea
of a schemalike perceptual system that becomes tuned to the regularities of a particular font in
order to process visual information efficiently.

A central concern in cognitive and perceptual psychology
is the process by which we recognize varied instances of a
familiar class of objects. The present article focuses on the
process of recognizing letters of the alphabet, which serves as
a tractable microcosm of the recognition problem: A letter is
a distinct class whose instances vary considerably in form and
size between type faces, or fonts.

Because of the variation between fonts, it is often assumed
that letter recognition results from the detection of abstract
properties that are invariant across fonts (e.g., Gibson &
Levin, 1975). Thus, in many models, the process begins as
"features" are detected (e.g., Estes, 1978; McClelland & Ru-
melhart, 1981; Schneider & Slu'ffriu, 1977). The features may
be parts, such as lines or curves (e.g., Townsend & Ashby,
1982), or more abstract relations such as "closed" or "symmet-
rical" figure (e.g., Gibson, 1969; Oden, 1979). Feature detec-
tors then activate the appropriate letter detectors, and a letter
is recognized when enough featural evidence has accumu-
lated.

However, the details of the feature detection process have
not, in general, been worked out. Little or no attempt has
been made to demonstrate that feature detectors work on a
variety of fonts, and theorists rarely specify invariant features.
In fact, in some of the few fine-grained studies of letter
recognition, font-invariant features are not assumed; the fea-
tures are specific parts or relations within the font studied
(e.g., Keren & Baggen, 1981; Townsend & Ashby, 1982).
However, such a font-specific approach entails another prob-
lem: If features are font specific, then it is not clear how letters
are recognized across fonts, because a model for one font is
not necessarily appropriate for another font (see, e.g., Gil-
more, 1985).

Sanocki (1986, 1987b) has elaborated on the above-men-
tioned models by proposing a tunable system called the de-
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scriptions model. In the model, basic stimulus properties are
analyzed, and then the results of these analyses are mapped
onto abstract letter identities by a set of transformations. The
transformations are controlled by parameter values that de-
pend on the font. A letter is recognized by finding transfor-
mations (parameter values) that fit the sensory information.
Importantly, other letters of the same font require similar
parameter values. Therefore, when many same-font letters
are recognized, a single set of values can be used and finely
tuned, resulting in efficient processing.

The model is based in part on the fact that letters of a good
font are highly regular, having common details and system-
atically related sizes. These regularities might be exploited in
at least two ways. First, detailed information could be repre-
sented and used because as long as the information is system-
atic, it can be represented economically. If additional, detailed
information is used in perception, then redundant analyses
can be pooled, and missing, inaccurate, or ambiguous infor-
mation can be compensated for (cf. Oden, 1984). Secondly,
although additional information about a letter may be proc-
essed, the number of different (font-specific) interpretations
may be constrained when the font is consistent. That is,
interpretations irrelevant to the current font need not be
processed to the same degree as relevant interpretations.

The model (described further in the Discussion and in
Sanocki, 1987b) predicts that a series of letters from a con-
sistent, regular font should be recognized efficiently. However,
letters from a mixture of fonts should not be recognized as
efficiently because they would require different parameter
values, and the system cannot tune itself efficiently. This
predicted advantage for a regular font was examined by
Sanocki (1986) with a letter-nonletter task, in which subjects
indicated whether strings of four lowercase consonants were
all letters or if one item was a nonletter. The results confirmed
the prediction of a font regularity effect: In the first experi-
ment, letter strings were recognized 162 ms faster when all of
the strings appearing during a block were of the same font
(regular conditions), as compared with when each string con-
tained letters from a mixture of fonts (mixed conditions). This
result was replicated and extended in three further experi-
ments involving the same task (Sanocki, 1986, 1987b). Anal-
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ogous results have been obtained with word perception and
reading (e.g., Corcoran & Rouse, 1970; Rudnicky & Kolers,
1984; cf. Sanocki, 1987b).

However, the letter-nonletter task was used because it
seemed highly sensitive to knowledge underlying letter per-
ception; the task is not necessarily representative of recogni-
tion in more natural situations. In particular, people may
normally recognize letters by detecting a minimal set of
distinctive features (e.g., Gibson, 1969). In the letter-nonletter
task, a distinctive-feature strategy may be ineffective because
some nonletters may have the same distinctive features as
letters. Therefore, the letter-nonletter task may have discour-
aged strategies that rely on minimal, partial information, and
regularity may have different effects in a different task. A
number of other interesting effects on letter and word proc-
essing vary markedly with the task (e.g., Santee & Egeth,
1982; Seidenberg, Waters, Sanders, & Langer, 1984).

In the present experiments, font regularity effects were
investigated with a letter identification task that allowed the
use of partial information. Strings of four unrelated, lowercase
letters were presented briefly, followed by a patterned mask.
The subjects' task was to identify the letters and then choose
them in two-alternative forced-choice tests for each letter
position. The use of partial information may well be encour-
aged in this task because a correct forced-choice could often
be made after noticing only one distinctive property of a
target letter.

A second concern in the experiment was the nature and
the locus of the regularity effect. In one experiment using the
letter-nonletter task (Sanocki, 1987b), string length was var-
ied. There was a linear increase in reaction time with string
length, and a slope difference for "letter" and "nonletter"
responses, implicating a self-terminating decision process. The
effect of font regularity, however, was additive with the string
length effects. Within some standard types of models, additiv-
ity suggests that the factors affected separate processes (cf.
Ashby, 1982; McClelland, 1979; Sternberg, 1969; Townsend
& Ashby, 1983). Furthermore, given that regularity did not
affect the decision process and given that it is unlikely that
regularity would affect response processes, we could conclude
(by elimination) that regularity affected a prior process—most
likely, the process by which letter codes are activated. This
conclusion is consistent with the idea in the descriptions
model that in regular font conditions, visual information
about letters is interpreted more efficiently. To investigate
this conclusion further in the present experiments, processing
time was controlled with a mask, allowing us to examine the
accumulation of letter information over time in regular and
mixed font conditions.

Finally, a concern in Experiment 1 was how the regularity
effect may vary with moderate amounts of practice. Each
observer participated in four sessions.

abcdefghijklnnopqrstuy

Experiment 1

Method

Figure 1. The gothic font (top) and serif font (bottom) used as
stimuli.

fonts are shown in Figure 1. The gothic font was modern and
minimalistic; it had large letter bodies (the middle parts), rounded
corners, and terminating lines that were relatively short and without
serifs. The serif font was ornate, having serifs, relatively long termi-
nating lines, small letter bodies, and squared corners. The fonts had
22 lowercase letters; the letters v, w, x, and z were not used because
appropriately angled lines could not be formed cleanly within the dot
matrices. All stimuli were displayed in green on black on a cathode-
ray tube. The fonts had the same total letter height (the distance from
an ascender top to a descender bottom) of 20 pixels, which was 1.2°
of visual angle at the viewing distance of approximately 80 cm. As in
most conventional type, the letter widths varied from letter to letter
but were generally similar across fonts.

Design. There were two regular conditions and two mixed condi-
tions. For each font, there was a regular condition in which each of
the letter strings was only of that font. In the mixed conditions, each
string had two items from one font and two items from the other
font (e.g., Figure 2). In these strings, the fonts were aligned along their
very bottoms (the bottom of descenders). The distinction between
the two mixed conditions was necessary only for counterbalancing
purposes (see below) and it will not be mentioned in the Results
section.

To equate the number of possible targets across conditions, the
fonts were divided into two subsets of 11 letters each (a-k and l-y).
In all four conditions, each stimulus string had two letters from the
first subset and two from the second subset. In the regular conditions,
the two subsets were from the same font. In one mixed condition,
the first subset of the gothic font was used with the second subset of
the serif font; the assignment was reversed in the other mixed condi-
tion. Within these constraints, the letters were chosen randomly on
each trial. For the forced choice test, each foil was selected (randomly)
from the same subset and font as its corresponding target. This meant
that there were 22 letter targets/foils in each regular and each mixed
condition and that information about the font could not discriminate
between a target and foil.

Procedure and apparatus. Each subject was tested individually, in
four sessions of approximately 50 min each. The sessions for a given
subject occurred within a 6-day period. All four conditions occurred
in each session, with the orders counterbalanced across sessions in a
Latin-square design. Each condition involved four blocks of 10 trials.
The first condition of a session was preceded by three practice blocks
in that condition.

fr%by
Stimuli. A gothic font and a serif font were designed to differ

maximally in style while being similar in general size and shape. The Figure 2. An example of mixed strings in Experiment 1.
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Within each block of trials, each of five stimulus onset asynchronies
(the interval between onset of the targets and the mask, or SOA) was
used twice. The SOAs were 17, 51, 84, 119, and 153 ms. The stimuli
appeared on a 13-in. video monitor driven by an Apple 11+ micro-
computer. A single patterned mask was used, constructed by repeat-
edly overlaying parts from both fonts. The mask had a total height
equal to the fonts and a width somewhat greater than the longest
possible letter string.

To familiarize each subject with the letters at the start of the first
session, each letter was presented, in isolation, for the subject to
name. The letters were almost always named correctly the first time
(more than 99% of the occasions). In all sessions, before each condi-
tion began, the 22 letters to be used in that condition were displayed
for the subject to examine for an unlimited period of time. At the
beginning of a trial, the mask was displayed. When the subject was
ready, he or she pressed the spacebar, and between 500 and 1,300 ms
later the mask display switched to a display of the four target letters.
This was accomplished by switching between "screens" in the com-
puter's memory. After the SOA elapsed, the display switched back to
the mask. One second later, four columns of two letters each were
displayed. Each column contained the target from the corresponding
position of the target string and a foil, with position within the column
(top or bottom) randomly determined. Each column was probed in
turn, from left to right. The subject indicated which letter had been
in the target display, by pressing either the u key (corresponding to
the upper letter) or the key below it (the h key). Following the last
letter, the number correct on that trial was indicated. During the
forced choice probe, question marks and xs were used; aside from
those characters and the targets, no other characters appeared during
the experiment.

Subjects. The subjects were male and female undergraduates en-
rolled in Introductory Psychology at the University of South Florida.
They received extra course credit for participation. Eight subjects
were tested, but a portion of 1 subject's data were lost, so only the
data from the remaining 7 subjects will be reported.

Results

Each subject's proportions correct were used in an analysis
of variance with session, regularity, and SOA as factors. A
regularity effect occurred under the present conditions; rec-
ognition accuracy was 3.3% higher in the regular condition
than in the mixed condition, F(\, 6) = 37.02, p < .001. There
was also a steady increase in accuracy over sessions, with the
total increase being 7.1% F(3, 18) = 5.432, p < .01. The
regularity effects in sessions one through four were 0.7%,
5.2%, 3.8%, and 3.4%. There was no evidence that the
variation in the size of the effect was reliable over subjects,
F(3, 18) = 1.95, p> .10, for the interaction of regularity with
session. Thus, although there was some fluctuation in the size
of the effect, it is clear that a robust effect remains after
moderate amounts of practice.

The effects of processing time (SOA) are shown in Figure
3. As can be seen, accuracy gradually rises as processing time
increases, with the shape of the curves approximating an
ogive, as might be expected on the basis of previous research
(e.g., Estes, 1978; McClelland, 1979; Townsend, 1981). The
stability of these functions across sessions is indicated by the
nonsignificant interaction of SOA, regularity, and session (F
<1).

Of particular interest are differences between the time
course functions for the two conditions in Figure 3, because

90 -
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Figure 3. Accuracy as a function of regularity and processing time
(stimulus onset asynchrony) in Experiment 1.

such differences would constrain explanations of tuning ef-
fects. The functions appear to differ primarily in their rate
parameter; initially, accuracy is equal in the two conditions,
but letter information appears to accumulate at a faster rate
in the regular condition.

To test the reliability of the rate difference across subjects,
a simple type of curve-fitting procedure was used to estimate
rate parameters from each subject's data. The procedure was
based on the fact that an ogival function can be treated as a
cumulative normal distribution and transformed into z scores.
If the data are in fact ogival, then the z scores should plot as
a straight line. The slope of this line would be directly related
to the rate of the original function. Each subject's data from
the regular and mixed conditions were first scaled linearly
onto the range .02 to .98, and then the slopes of the z-score
transformations of these probabilities were derived from a
regression analysis.' This method provided a fairly good fit to
individual subject's data; the percentages of variance ac-
counted for averaged 93.7 and 95.1 in the regular and mixed
conditions, respectively. The average slope was 0.025 (z-score
units per ms SOA) in the regular condition and 0.021 in the

1 For each subject, a single asymptote (A) was selected by eye to fit
the data from the regular and mixed condition about equally well.
The raw probabilities (R) were then scaled onto the range from .02
to .98 of "derived" probabilities (D). (The formula was D = [R - .50]
x [\/(A - .50].) The average asymptote value across subjects was
88.4. A few derived probabilities were greater than .98 or less than
.02; these were changed to .98 and .02, respectively. These cutoffs
were used because small variations in the tails cause large variations
in z scores.
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mixed conditions. The difference between conditions was
reliable across subjects, <(6) = 4.58, p < .01; for all 7 subjects,
the slope was greater in the regular condition. Thus, the time
course functions are reasonably described as ogjval, and the
rate of increase in accuracy across time is greater in the regular
condition than in the mixed condition.2

Accuracy within the regular conditions. A separate analysis
was used to examine performance within the two regular
conditions. Accuracy was 3.5% higher for gothic font than for
the serif font, F( 1, 6) = 11.59, p< .05. Accuracy also increased
over sessions, F(3, 18) = 5.44, p < .001, but the difference
between fonts was constant over sessions (F< 1 for the Session
x Font interaction). There was also a marginal but systematic
interaction of font and SOA, F(4, 24) = 2.46, . 10 > p> .05.
As can be seen in Figure 4, accuracy at short SOAs was higher
for the gothic font than for the serif font, but this difference
almost disappeared as performance began to approach asymp-
tote.

Accuracy for each font within the mixed condition. On each
trial in the mixed condition, two letters from each font
appeared. The data for each font in the mixed condition were
separated out and then examined. As in the regular condi-
tions, performance in the mixed condition was somewhat
higher with the gothic font than the serif font, F(l,6)= 8.64,
p < .05; the difference was 2.0%. Accuracy increased over
sessions, F(3, 18) = 3.46, p < .05, but the difference between
fonts was constant over sessions (F — 1.08). Font did not
interact with SOA (F < I ) .

Given the data for each font in the mixed and regular
conditions, we can ask whether regularity affected the two
fonts differently. The advantage in the regular condition over
the mixed condition was somewhat greater for the gothic font

(4.0%) than for the serif font (2.5%), but this difference was
not reliable, F(\,6)= 1.89, p > .20.

Effects of position within a string. An additional analysis
was conducted on the data for each target position. In this
analysis, the data from the mixed condition were separated
by font. Because the effects of session were negligible in
previous analyses, this factor was not included in the analysis.
Position had a main effect, F(3, 18) = 42.48, p < .001, and
interacted with SOA, F(\2, 72) = 6.71, p < .001, and with
font F(3, 18) = 3.36, p < .05. However, there were no further
interactions involving position and, in particular, no interac-
tions involving position and regularity (Fs > 1).

The interaction of position and SOA is shown in Figure 5.
In general, accuracy was highest for the leftmost position, and
tended to decrease as a function of rightness. The interaction
with SOA appears to arise because the advantage for leftward
positions is strong at intermediate SOAs and attenuates some-
what as performance approaches the ceiling and floor. Town-
send (1981) analyzed full-report performance with backward-
masked consonant strings and concluded that position effects
arise because the recognition process is capacity limited, and
more resources are allocated to leftward positions (presumably
because of left-to-right reading habits). The lack of interac-
tions involving regularity and position suggest that the distri-
bution of resources across positions may be unaffected by
regularity.

The interaction of font and position is shown in Figure 6
for both the regular and mixed conditions. Accuracy was
higher for the gothic font at all positions except for the second
position, where there was an advantage for the serif font. If
position effects result from the distribution of attentional
resources, as mentioned above, then the present interaction
would indicate that the distribution of resources can vary as
a function of font. However, note that in the mixed condition,
the arrangement of fonts varied from trial to trial. Therefore,
under the present interpretation, the distribution of resources
would vary from trial to trial, depending on the arrangement
of fonts. Such a conclusion should be examined in future
research. In any case, the interaction of font and position was
small. Furthermore, it was independent of the effects of
regularity.

Discussion

The main findings were that a regularity effect can be
obtained in a task that allows partial information to be used
in identifying letters and that this effect remains robust across
moderate amounts of practice. Furthermore, the time course
functions in Figure 3 were interpreted as differing in their rate

PROCESSING TIME (mi.)

Figure 4. Accuracy as a function of processing time (stimulus onset
asynchrony) for the two regular fonts in Experiment 1.

2 The difference between the conditions can also be examined in a
way that is more straightforward but perhaps less accurate, namely,
by fitting each subject's raw probabilities to straight lines (using
regression) and comparing those slopes. This method also provides a
reasonable description of the data; for individuals, the percentages of
variance accounted for averaged 91.0 and 92.7 in the regular and
mixed conditions, respectively. The slopes in the regular and mixed
conditions averaged .00279 and .00246, respectively, and the differ-
ence was reliable across subjects, <(6) = 4.66, p < .01.
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Figure 5. Accuracy as a function of position within a target string
and processing time (stimulus onset asynchrony) in Experiment 1.

parameters, implying that letter information accumulated at
a faster rate in the regular conditions than in the mixed
conditions. However, the curves in Figure 3 might be viewed
as differing on other parameters as well. Two alternative
possibilities will now be discussed.

• REGULAR

MIXED

First, ogival functions could differ in the delay parameter,
which corresponds to when the curves begin to rise. Clearly,
such an interpretation does not fit the present data (see Figure
3). Secondly, the two curves could differ in their asymptotes
(the asymptote could be higher in regular conditions). Such
an interpretation would seem to be consistent with the present
data. However, note that asymptote differences are not nec-
essary inconsistent with rate differences. In many models of
information accumulation (e.g., McClelland, 1979; Town-
send, 1981), information accumulates faster when the asymp-
tote is higher, producing differences early in the time course
of processing. Therefore, both a rate difference and an asymp-
tote difference would be consistent with the idea that letter
information is interpreted more efficiently in regular condi-
tions. Note also that it is unlikely that regularity could be the
main determinant of asymptotic levels in the present task. In
experiments with backward-masked letter strings, asymptotes
are often at about 90% (Sanocki, 1986, unpublished pilot
studies; Townsend, 1981; see also Figure 3). In fact, in Town-
send's (1981) study, performance reached an asymptote of
about 90% and then remained there for an additional 150
ms. Townsend found that the major cause of errors at asymp-
tote was a positional (left-to-right) decrease in accuracy (sim-
ilar to the data for the longest SOA in Figure 5). The positional
effects obtained by Townsend were constant throughout the
150-ms asymptotic period. Therefore, it seems that the main
determinant of asymptotic levels is the mechanism that causes
position effects (e.g., the distribution of attentional resources;
Townsend, 1981).

Another finding of the experiment was the font difference
(the advantage for the gothic over the serif font). Such differ-
ences could be interesting, but they should be interpreted with
caution because they may arise from various sources. Some
sources may be rather mundane,3 while others could be
interesting and complex. For example, note that the time
courses of processing letters from different fonts may differ,
as suggested by the marginal SOA by (regular) font interaction
(see Figure 4). Thus, font differences may exist at some SOAs
but not others. Also, the goodness of a font apparently de-
pends in part on the purpose of processing. In the present
masking experiment, the more minimalistic gothic font was
superior, whereas in a reaction time experiment using the
letter-nonletter task and the same fonts (Sanocki, 1987a), the
more ornate serif font was superior, perhaps because serifs
demarcate the ends of real letters. Finally, it appears that less
typical fonts have a disadvantage. The early fonts that I
designed (e.g., Sanocki, 1987b, Experiment 1) were systematic
but atypical in certain ways (e.g., the serifs were not always
turned in the appropriate direction), and processing times
were considerably longer with those fonts. In sum, font dif-
ferences should be viewed as a rich topic for further research.

Figure 6. Accuracy for each font in the regular and mixed conditions
as a function of position within a target string in Experiment 1.

3 In masking experiments, a font may be more perceptible because
the mask shares fewer properties with it or because it is brighter.
Some attempt was made to equate these factors here, but equality
has not been established.
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Experiment 2

In the descriptions model, the regularity effects are attrib-
uted to a representational system that is active over time,
across trials (Sanocki, 1986, 1987b). Performance in the reg-
ular conditions is optimal because the representation becomes
and remains finely tuned from trial to trial, whereas in the
mixed condition the representations must be continually read-
justed for each font (see Sanocki, 1987b, Experiment 3).
However, it is also possible to account for some or all of the
regularity effect without assuming an entity that is active
across trials. At least some of the decrement in the mixed
condition could result from interference that occurs within a
trial when adjacent items are from differing fonts. There may
be various reasons for such interference. For example, there
might be some type of competition between fonts, or the
irregular shape configurations caused by mixing fonts (see
Figure 2) may somehow reduce the discriminability of letters
or features (see, e.g., Paap, Newsome, & Noel, 1984). How-
ever, any explanation based on events within a trial makes a
clear prediction. Namely, less of a mixing decrement should
occur when the font is varied between strings of letters (e.g.,
from trial to trial) than when it is varied within strings of
letters. In Experiment 2, this "within-trial" hypothesis was
evaluated by comparing regularity effects for two mix meth-
ods.

Method

Twenty-four subjects from the same pool as Experiment 1 partic-
ipated in one session each. For half of the subjects, the mixed

condition was the same as in Experiment 1 (font varied within each
string), whereas for the other half of the subjects, each string in the
mixed condition was regular per se, but the font alternated after every
trial. Also, when the font was mixed between strings, each string
could contain any of the 22 letters from the appropriate font. This
meant that 44 instances of letters were used as targets in the mixed
condition, although there were only 22 possible targets on each trial.
According to the within-trial hypothesis, only the targets occurring
on a trial should be important. Each subject saw four conditions (two
regular and two mixed), with the order counterbalanced across sub-
jects.

Results

The advantage for the regular condition in the experiment
averaged 3.2%, F(\, 22) = 8.29, p < .01. There was no overall
difference between the two groups of subjects (mix methods;
p > .10). More important, the regularity effect was about the
same size when the font in the mixed condition varied be-
tween strings (3.9%) as when it varied within strings (2.5%; F
< 1 for the Group x Regularity interaction). This is incon-
sistent with the within-trial hypothesis and supports the as-
sumption that regularity results from a system that is active
over time.

Figure 7 shows processing as a function of time (SOA) and
regularity for the two groups. SOA had a main effect, F(4, 88)
= 173.65, p < .001, which did not vary as a function of group
(F < 1 for the interaction). As in Experiment 1, the functions
approximate an ogive and are generally consistent with the
conclusion that accuracy rises at a faster rate in the regular
conditions.

MIXED WITHIN
STRINGS

Regular

r MIXED BETWEEN
STRINGS

.,0

Regular

84 119 153 119 153

PROCESSING TIME (ms.)

Figure 7. Accuracy as a function of regularity and processing time (stimulus onset asynchrony) for the
two mix-methods in Experiment 2.
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A further analysis was conducted with group, regularity,
font, SOA, and position as factors. The data from the mixed
conditions were separated by font. As in Experiment 1, per-
formance was higher with the gothic font than with the serif
font, F( 1, 22) = 24.01, p < .001. The advantage for the gothic
font tended to be strongest at shorter SOAs (about 65%
accuracy), although the font by SOA interaction was again
only marginal, F(4-, 88) = 2.37, p < .10. The advantage due
to regularity was about the same size for the gothic font (3.1%)
as for the serif font (3.3%; F < 1 for the interaction).

Position had a main effect, F(3, 66) = 35.35, p < .001, and,
as in Experiment 1, interacted with SOA, F(\2, 264) = 6.32,
p < .001, and font, F(3, 66) = 2.75, p < .05. The interactions
had the same general form as in Experiment 1. No other
effects involving position were reliable including, in particu-
lar, interactions involving regularity or group (mix method).

Discussion

The similarity of the effects for the two mix-methods is
inconsistent with a class of hypotheses in which the bulk of
the regularity effect is due to events occurring within a trial,
when adjacent letters are from different fonts. The regularity
effect, as well as the patterns of effects involving SOA, font,
and position, were unaffected by mix method. This implies
that task performance was unaffected by mix method and
that much of the decrement in the mixed condition is due to
changes in font over time, from trial to trial.

General Discussion

The results indicate that a regularity effect can be obtained
in a recognition task that allows the use of partial information.
This suggests that, perhaps for letter recognition in general,
the perceptual system uses information about the letter's font.
The results also indicate that the regularity effect is robust
after several sessions of practice (Experiment 1) and is about
as strong when the font in the mixed condition is mixed
between strings as when it is mixed within strings (Experiment
2). This later finding is consistent with the assumption that
regularity results from a representational system that is active
across trials. Finally, the time course data suggest that regu-
larity affects the rate with which visual information about
letters accumulates.

Before turning to the descriptions model's account of the
results, two alternative hypotheses will be considered. The
first hypothesis is that regularity affects processes that precede
the activation of letter codes, such as sensory analysis (or
feature extraction). The present results are not inconsistent
with this hypothesis. However, one problem for the hypothesis
is that it is inconsistent with current theories, in which sensory
analysis is a highly practiced, parallel, "preattentive" process
that is generally unaffected by situational variables (e.g., Neis-
ser, 1967; Treisman, 1986; but see, e.g., Townsend, Hu, &
Evans, 1984). A second problem for the hypothesis is that it
seems unlikely that sensory processes could change enough to
explain regularity effects in reaction time, which range as high
as 162 ms (Sanocki, 1986, 1987b). A second alternative

hypothesis is in terms of the numbers of features in the regular
and mixed conditions. If there were more features in the
mixed condition, this could account for the increased diffi-
culty. In this explanation, the features would have to be font
specific. (If features are font invariant, then the features [and
their numbers] would not vary between fonts or between the
regular and mixed conditions.) Given font-specific features,
one could argue that there are more such features in the mixed
condition because letters share part-features within a font
(e.g., b and It share parts) but not between fonts. Evidence
against this explanation was provided by an experiment in
which large regularity effects on reaction time were obtained
even though the number of font-specific part-features was
equated between the regular and mixed conditions (see San-
ocki, 1987b, Experiment 2).

Descriptions Model

In the descriptions model, the regularity effects arise be-
cause of the nature of the representational system. The rep-
resentational system is assumed to provide a computationally
efficient, sophisticated description of letters and their varia-
tions from font to font, and the descriptions model is so
named because of the emphasis on this description process.
In the model (see also Sanocki, 1987b), each letter has an
abstract description in terms of attributes. For example, b has
a stroke (in a certain position) and a loop (in a certain
position). The attributes can be instantiated for particular
letters by transforming the abstract description into a more
detailed description of sensory information. The transforma-
tions are controlled by parameter values. The transformations
(and parameters) concern properties that are consistent (reg-
ular) across the font, such as size and height, line thickness,
and shape. Figure 8 illustrates transformations for two letters
of the same font. As can be seen for the two letters in Figure
8, the same transformations and parameter values apply to
different letters within the same font. In this model, a font is
regular when the same parameter values apply to all letters
and letter parts within the font. A font is irregular (mixed) if
the values change between letters or between parts of letters.

When a letter from a newly seen font is recognized, the
system must find the appropriate parameter values and attri-
butes to fit the sensory information. This involves some type
of a search through a potentially enormous space defined by
possible attributes and parameter values. However, the search
may be constrained by the results of early global analyses
(e.g., analyses of size or spatial frequency) or by initially
limiting the search to likely (typical) parameter values. In any
case, once a good enough set of attributes and parameter
values is found, the letter is recognized. The parameter values
can then be used and further tuned with new letters of the
same font.

In this model, processing is slowed in the mixed condition
because the parameters have to be adjusted for each font. This
process takes time, and the amount of time increases when
the fonts are more different and the adjustments greater
(Sanocki, 1987b, Experiment 3). This adjustment process
would slow processing both when the font is mixed within
strings and when it is mixed between strings.



FONT REGULARITY 479

V has STROKEGeft, top... we might expect to find that such information is used by a
Transformation system that tunes itself over time in a computationally effi-

cient manner.

I

size

shape

serifs

Figure 8, The process of transforming two letters of a font from
abstract descriptions to fairly detailed descriptions of sensory prop-
erties. (For purposes of illustration, the sensory properties are assumed
to be a two-dimensional array of units indicating figure or ground. In
reality, the properties may be much more complex.)

Invariants and "Variants" of Recognition

Many models of letter perception involve the assumption
that the only perceptually important aspects of letters are
those that are invariant from font to font. Indeed, it is hard
to imagine that such information could not be important and
that such information might not play a different role than
other, situation-specific information. Nevertheless, informa-
tion that varies between situations but is regular within a
situation could be used constructively by the perceptual sys-
tem.

The descriptions model has roles for both invariant and
situation-specific letter information. The invariant informa-
tion consists of attributes, which exist at deep levels within
the system. The situation-specific information consists of the
font parameters, whose values are set within a particular
situation. One important advantage of having situation-de-
pendent parameter values is that detailed information can be
used in recognition without incurring the problem of combi-
natorial explosion. Combinatorial explosion is the problem
that would arise if a system tried to represent or process all
possible permutations of an object—there are too many pos-
sible interpretations. This problem is greatly reduced if the
perceptual system does not begin to consider detailed inter-
pretations until initial analyses of the situation constrain the
number of possible interpretations.

The finding that situation-specific regularities are used in
the highly practiced process of letter recognition implies that
such information may be used in the recognition of other
familiar objects. Extrapolating from the present conclusions,
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