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CHAPTER 9

THE CAMEL SITE OBSIDIAN
ANALYSES, SYNTHESIS,
AND IMPLICATIONS

STEVEN A. ROSEN, ROBERT H. TYKOT, AND
MICHAEL GOTTESMAN

he use of obsidian as a raw material for

chipped stone tools in the Near East has
been known since the earliest analyses of Neo-
lithic stone tool assemblages in the region (e.g.,
Braidwood 1948:120). The special properties of
the material—ease of knapping, especial sharp-
ness of edges, and its point source origins—were
implicitly recognized very early in the history of
work in the region. In the Near East, the analytic
potentials of the material were pioneered in the
1960s with the development of methods for com-
positional characterization and hydration dating.
Chemical characterization of obsidian provided
precise definition of origins and allowed models
of distribution and exchange to be developed
(e.g., Renfrew et al. 1966). Hydration analysis,
less utilized in the Near Fast, allowed for inde-
pendent dating of artifacts (Ambrose 1976).

The recovery of three small obsidian artifacts
(Figure 9.1) from the Camel Site constitutes the
first discovery of obsidian in Early Bronze Age
contexts in the deserts of the Negev and Sinai.
However, in light of the well-established presence
of obsidian in the Negev during the Pre-Pottery
Neolithic B (PPNB) (e.g., Cauvin 1991, 1994;
Perlman and Yellin 1980), especially from the site
of Nahal Lavan 109 (Burian and Friedman 1988;
Burian et al. 1976), the issue of the specific origins

of the three pieces needed to be addressed before
conclusions concerning the significance of the
discovery could be drawn. Hydration analysis of
the artifacts supports an Early Bronze Age attri-
bution. Only after establishing the Early Bronze
Age affinities of the artifacts could the signifi-
cance of the elemental analysis indicating a source
in eastern Anatolia, in significant contrast to the
exclusively central Anatolian source of Negev
PPNB obsidian, be interpreted.

BasIic DESCRIPTION OF THE
OBSIDIAN ARTIFACTS

Three small obsidian artifacts were recovered
from the Camel Site. The obsidian itself is black
with some gray banding. All three were recovered
in the southeastern quadrant of the site—in fact,
outside the actual architectural remains (Figure
9.2). Interestingly, several unusual small flakes of
black flint were also discovered in this area. Di-
mensions, provenience, and technical type are
summarized in Table 9.1. Each piece shows a
well-defined bulb of percussion and a narrow
striking platform. None show characteristics asso-
ciated with the more standardized knapping tech-
nologies of the third and fourth millennia B.C.E.,
for example, the bladelet technologies of the
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CHAPTER 9: THE CAMEL SITE OBSIDIAN 135
Table 9.1. Summary of Basic Features of Obsidian Artifacts
Provenience Description Length(mm) | Width (mm) lerclknlll)ess Mass (g)

M27d upper layer, small blade 34 17 4.8 2.34

(USF sample 499)

M28c¢ upper layer, small broken flake 25 14 2.5 0.80

(USF sample 500)

J30c surface layer, small broken flake 17 19 4.0 0.65

(USF sample 501

southern Levantine deserts (e.g., Gilead, 1984;
Rosen 1997b:65-67). Although one piece (M27d)
is technically a blade, it is clear that it is techno-
logically an elongated flake. All three pieces show
edge damage caused by trampling and sandblast-
ing, and none show convincing evidence for in-
tentional retouch. Two (M28c, J30c) show broken
edges. Dorsal scarring, reflecting previous flake
removals, is present on only one piece (M27d).
One flake (m28c¢) has a hinge fracture.

Beyond the specifics of the description of the
artifacts, the presence of only three obsidian arti-
facts on the site and the total excavation of the site
with 100 percent dry-sieving through 2-3 mm
mesh indicate that the flakes were imported as
flakes and not knapped on-site. That is, the ab-
sence of obsidian cores and other waste demon-
strates that reduction took place elsewhere and
that artifacts were imported onto the site as small
flakes. A similar case can be made for the few
pieces of black flint, also without evidence for on-
site production.

COMPOSITIONAL ANALYSIS
(R. H. TYKOT)

The three pieces of obsidian from the Camel Site
were analyzed as University of Southern Florida
samples 499 to 501. Obsidian from geological
sources in Turkey is well known at Mesolithic and
Neolithic sites in southern Anatolia and the Lev-
ant (Cann and Renfrew 1964; Cauvin 1991; Cau-
vin et al. 1986; Gratuze et al. 1993; Perlman and
Yellin 1980; Renfrew et al. 1966, 1968; Wright
1969) and has even been identified as far west as
Sitagroi in northeastern Greece (Aspinall et al.

1972). At the same time, obsidian from sources in
eastern Turkey and Armenia was distributed to
Mesopotamia and also the Levant (Blackman
1984; Gratuze et al. 1993). While the central and
eastern Anatolian sources were considered the
most likely sources for the Camel Site samples,
Aegean, Caucasian, and Red Sea sources were not
excluded as possibilities (Williams-Thorpe 1995;
Zarins 1990).

Chemical Analysis

Neutron activation analysis has been the most
widely used method for the characterization of
archaeological materials, but it does not provide
bulk compositional data, it is not inexpensive, and
commonly it is destructive to artifacts. Further-
more, it has been demonstrated that nearly all the
Mediterranean, European, and Near Eastern ob-
sidian sources may be distinguished based on
their major element chemistry (Francaviglia 1984;
Keller and Seifried 1990; Tykot 1997, 2002). X-
ray analysis using the electron microprobe is an
optimal analytical technique for obsidian sourc-
ing, as only a tiny 1 mm sample is required for
quantitative analysis and the instrumental cost is
very low on a per-sample basis. A batch of 18
samples can be prepared and analyzed in several
hours. This technique has been used for obsidian
sourcing in Europe (Biré et al. 1986), the
Mediterranean (Tykot 1996, 2002), Anatolia
(Keller and Seifried 1990), and East Africa (Mer-
rick and Brown 1984a, 1984b).

Samples 1 mm in size were removed from
the Camel Site artifacts, mounted in an epoxy
disk 1 inch in diameter, and polished flat using
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successively finer grinding compounds. Nine ele-
ments were then quantitatively determined using
an electron microprobe equipped with wave-
length dispersive spectrometers. Standard min-
eral and rock reference materials were analyzed
to ensure the accuracy of the analyses and their
comparability with other laboratories and other
techniques; as few as 100 ppm of some elements
are detected, and precision is better than + 5 per-
cent for most elements—almost always better
than the range in variation within a single obsid-
ian source. Two spots 40 microns in diameter
were analyzed on each sample to ensure against
heterogeneity; the beam was positioned with an
optical microscope to avoid analyzing microlite
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inclusions. The resulting data were then normal-
ized to 99 percent to eliminate the effects of
variable water content and to enable comparison
with existing obsidian source databases produced
using similar techniques (e.g., Biré et al. 1986;
Francaviglia 1984, 1990a, 1990b; Keller and
Seifried 1990; "Tykot 1996).

Results

All three Camel Site obsidian artifacts are per-
alkaline (high alkalies and iron and low aluminum
concentrations) (Table 9.2), immediately elimi-
nating most of the Mediterranean and Near East-
ern sources. For the remaining peralkaline

Table 9.2. Electron Microprobe Analyses of Obsidian Artifacts from the Camel Site

USF | SiO; | ALO; | TiO, | Fe;03 | MgO | CaO | NayO | K,0 | P,Os | MnO | BaO | Total
4993 7440 | 11.09 0.10 2.85 0.00 0.08 _ 5.64 4.14 0.01 0.04 0.00 98.35
74.89 | 11.16 | 0.10 | 2.87 | 0.00 | 008 | 568 | 417 | 001 | 004 | 000 | 99.00
499b | 74.61 | 11.08 | 0.10 | 2.82 | 0.00 | 0.09 | 574 | 407 | 0.00 | 003 | 005 | 98.60
74.92 11.12 0.10 2.83 0.00 0.09 5.76 4.09 0.00 0.03 0.05 99.00
Mean 7490 | 11.14 0.10 2.85 0.00 0.08 5.72 4.13 0.01 0.04 0.02 99.00
Std 0.02| 003 | 000 | 002 | 000 000 | 006 | 006| 001 | 000 004 | 0.00
5002 74.88 | 10.61 0.13 3.36 0.00 0.13 5.56 4.45 0.00 0.04 0.00 99.16
74.76 | 10.60 0.13 3.36 0.00 0.13 5.55 4.44 0.00 0.04 0.00 99.00
500b 7445 | 10.57 0.12 3.34 0.00 0.14 542 4.49 0.02 0.04 0.00 98.59
74.77 | 10.61 | 0.12 3.35 0.00 0.14 545 4.51 0.02 0.04 0.00 99.00
Mean 74.76 | 10.60 0.12 3.35 0.00 0.14 5.50 4.48 0.01 0.04 0.00 99.00
Std 0.01 0.01 0.01 0.00 0.00 0.00 0.07 0.05 0.01 0.00 0.00 0.00
501a | 73.89 | 10.58 | 0.12 | 3.26 | 0.00 | 0.16 | 550 | 433 | 001 | 005 | 001 | 97.91
7471 | 1070 | 012 | 3.29 | 0.00 | 0.16 | 5.56 | 438 | 001 | 005 | 001 | 99.00
501b 73.94 | 10.42 0.13 3.25 0.00 0.14 5.58 4.38 0.01 0.05 0.00 97.90
74.77 | 10.54 0.13 3.29 0.00 0.14 5.64 443 0.01 0.05 0.00 99.00
Mean 74.74 | 10.62 0.12 3.29 0.00 0.15 5.60 4.40 0.01 0.05 0.00 99.00
Std 0.04 0.11 0.00 0.00 0.00 0.02 0.06 0.03 0.00 0.00 0.00. 0.00
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sources (Pantelleria, Bingdl, Nemrut Dag, and
the Red Sea region), analytical data have been
published by Gratuze (1998, 1999), Poidevan
(1998), and Francaviglia (1990a). Although there
are some differences in absolute concentrations of
silicon and aluminum between the Camel Site ar-
tifacts, attributable to systematic differences in
analytical methods, the Bingdl A source (includ-
ing Cavuslar and Orta Duz) in the Lake Van re-
gion of eastern Anatolia is the best match.

HYDRATION ANALYSIS
(M. GOTTESMAN)

Obsidian hydration dating converts a hydration
layer to an absolute date utilizing an established
rate for the inward diffusion of molecular water
using the equation x = kt°, where x is the hydra-
tion rind width in microns (), £ is the hydration
rate at a specific temperature/relative humidity,
and ¢ is time in thousands of years. Since 1960, ob-
sidian hydration dating (OHD) has seen a number
of developments that have increased our under-
standing of the hydration process (e.g., Friedman
and Long 1976). These studies, mostly laboratory
based, have addressed the two primary sets of hy-
dration forces: compositional dependence (Fried-
man and Long 1976; Stevenson and McCurry
1990) and environmental factors (Mazer et al.
1994).

The major tasks in OHD are to determine
the rim width and the hydration rate for the spe-
cific artifact. The rinds are presently measured by
optical microscopy on thin sections. Other meth-
ods, including acousto-optical and secondary ion
mass spectrometry (SIMS) (e.g., Stevenson et al.
2001) are being developed, and the measurement
process is also being constantly improved with
computer-assisted imaging. In practice, the accu-
rate determination of the rind width is the great-
est variable in OHD due primarily to variable
weathering processes.

Hydration Methodology

The determination of hydration rates was based
on high-temperature (160 °C) laboratory proce-
dures and then calibrated to ambient site condi-
tions using the Arrhenius equation (Friedman and
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Long 1976; Laidler 1984; Lee 1969; Mazer et al.
1992; Stevenson and McCurry 1990): k£ = A (RH)
exp E/RT, where k is the archaeological hydration
rate, A is the exponent at 160 °C, RH is the rela-
tive humidity, I is the activation energy, R is the
universal gas constant, and T is temperature. New
obsidian glass flakes were subjected to various
temperatures and reaction media over various
time depths, and the hydration rate constants (4,
E) were calculated (Ambrose 1976; Mazer et al.
1992; Stevenson and McCurry 1990).

Rind width measurement is as follows. A
thin section slide is prepared for each sample.
The rind thickness was measured by taking five
independent measurements under a Jenaval
model polarizing light microscope with a Leitz
filar micrometer attachment at 625x power. The
rind or depth of water diffusion is visible be-
cause the rind of obsidian with added external
water ions refracts light at a different angle than
the internal parent material. The diffused water
lowers the density-and changes the speed of light
passing through the sample. The light wave is
bent as it enters the glass and at exiting. This
double refraction causes the phenomenon of bi-
refringence. This might be caused by the strain-
ing of the glass that results from a slight expan-
sion due to the entrance of molecular water,
often referred to as strain birefringence (Ross
and Smith 1955). All flake surfaces visible in
cross section on the microscopic slide are care-
fully examined. Usually there are only two sur-
faces visible, such as the dorsal and ventral sur-
faces of a flake. In practice, however, more than
two surfaces (reuse or retouch edge flake scars)
are sometimes found. Only clearly visible intact
hydration rinds with well-defined diffusion
fronts are measured.

A measurement consists of the average of five
measurements made at one point on the hydra-
tion rind. Measurements are made for each dis-
tinct hydrated surface for which a clear hydration
rind is visible. The resulting measurements from
various surfaces are themselves averaged if they
are within 0.4 microns. If the variability is greater
than 0.4 microns, they are reported separately
(often diagnostic of reuse). Normally, a reported
measurement is either a single or the average of
two hydrated layers.
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All reported measurements should be accu-
rate to within + 0.2 microns. Although this meas-
urement error in theory could be used to calcu-
late a confidence range for the date, other factors,
such as environmental change over time, may
cause variation in hydration rate and deviation
between hydration years and calendar years.

Calculation of dates based on the piece-spe-
cific rate method uses only the smallest verified
rind from each sample, based on the assumption
that the smallest measurement is more likely to
date the last knapping episode.

The effect of the chemical composition of ob-
sidian on the hydration rate has been addressed
theoretically (Ericson 1981) and by correlation of
high-temperature hydration rates with glass
chemical constituents (Friedman and Long
1976). Recent work by Mazer et al. (1992) and
Stevenson et al. (1998) has shown dependence be-
tween connate water (OH-) of the specific obsid-
ian sample and the rate. Additional work (Steven-
son et al. 1993) done on the Coso volcanic field in
California showed that the range of natural or
connate water varied enough, even within a given
volcanic flow, that each artifact needed to be
measured. The process of determining the water
content via infrared spectroscopy for each sample
to be dated would have put a serious damper on
the utilization of OHD.

Pioneering work by Ambrose (1979) and
Stevenson et al. (1988, 1993, 1998, 2000) estab-
lished relationships between the rate of hydra-
tion, the amount of intrinsic water (probably due
to the depolymerizing effect of water ions on the
silica matrix), and density. This work (especially
Stevenson et al. 1993) also determined that the
amount of water varies significantly from sample
to sample in a single obsidian source, requiring
artifact-specific measurements of this variable
(density) for the purpose of rate estimation.

"The amount of intrinsic water is the currently
identified major internal chemistry factor, and
there is a quantifiable proxy relationship between
relative density and intrinsic water. The density
measurement utilizes the weight in air versus the
weight in liquid of each sample of obsidian, tak-
ing advantage of the Archimedean principle. This
gravimetric method was utilized here. Weights
were taken on a scale valid to four decimal places

EARLY DESERT PASTORALISM: EXCAVATIONS AT THE CAMEL SITE, NEGEV

(with a Mettler AG104 balance), using a heavy
liquid to increase surface adhesion and reduce
bubbles, thereby reducing errors.

The algorithms that determine how to go
from density to water content to effect on hydra-
tion rate are available in software from Stevenson.
These algorithms include correction factors for
calculating density for the special liquid’s temper-
ature and for laboratory-to-laboratory calibration
using a master quartz wedge.

The rate or speed of hydration (a higher rate
means a younger date for a given rim thickness) is
affected by the quantity of water ions available in
the surrounding atmosphere, referred to as rela-
tive humidity (RH). Friedman et al. (1994) review
the algorithm defining the relationship between
relative humidity and hydration rate.

The other significant environmental factor
affecting obsidian hydration is the rate of chemi-
cal reaction. This is defined by the Arrhenius
equation (Laidler 1984), which requires measure-
ments of the temperature at which the reaction is
taking place. Because the temperature at any site
changes constantly, a means that “averaged” the
temperature, accounting for the greater effect of
temperature rise versus temperature drop on the
chemical reaction, was developed. This “average”
is known as the effective hydration temperature
(EHT). The superior method for measuring
EHT and RH is via saturated salt cells buried for
one year at various depths in a site. The weight
change over a year is then used to calculate EHT
and RH (e.g., Trembour et al. 1990).

Another method for estimating EHT is to use
air temperature data from weather stations using
Lee’s equation (Lee 1969). However, air temper-
ature is not equal to subsurface temperatures, and
our experience indicates that air temperature data
used in Lee’s equation results in EHTS under-
stated by several degrees. This can have a signifi-
cant effect on the calculation of dates. Therefore,
some reports use an EHT calculated via Lee’s
equation multiplied by a “correction” factor.

A different type of salt cell may be used to
measure RH, another critical variable. Usually,
EHT and RH cells are buried in pairs at various
depths in a site to provide a profile of environ-
mental variability with depth. In the absence of
cell data, RH may be more easily estimated than
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EHT, assuming that the RH approaches 95 to 99
percent in most sites below 20 cm. The accuracy
of any study of age determination is highly de-
pendent upon this data, which is greatly enhanced
if it is from the use of site-specific cells.

The current thinking on obsidian hydration
dating is best summarized by three major as-
sumptions (Stevenson et al. 2000):

1. Obsidian sources will have a range of hy-
dration rates that are a function of the
variation in intrinsic water content;

2. There is no observable relationship be-
tween trace element concentrations and
the intrinsic water content;

3. Ambient temperature and relative humid-
ity conditions significantly influence the
rate of obsidian hydration.

Thus a piece-specific hydration rate method,
applied here, utilizes three analytical procedures:

1. Measurement of the hydration rind thick-
ness;

2. Measurement or estimation of soil tem-
perature and relative humidity;

3. Calculation of rate constants determined
from glass composition (the Ambrose/
Stevenson relative density/intrinsic water

method).

The Samples from the Camel Site

This approach to the estimation of hydration
rates differs from earlier methods that were
largely or entirely empirical, wherein hydration
rim depths were “matched” to associated non-
obsidian dating information to create a source-
specific hydration rate. This method results in a
hydration rate for each artifact. Given the need to
test the archaeological associations, hydration
rates could not be “matched” to the actual Camel
Site date, ca. 3000 B.C.E., for obvious reasons of
logic. However, to better control the relative dat-
ing of the artifacts, samples were also run from
the known-age site of Nahal Lavan 109, an early
Pre-Pottery Neolithic B site dating to the first
half of the ninth millennium B.C.E. (calibrated),
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about whose associations there was no question
(Burian and Friedman 1988; Burian et al. 1976).

For this analysis, two or three slides were
made for each sample. This was done due to the
difficulty in finding a reading from an accurate
rind. The sample size is small, and there is obvious
“sandblasting” damage to most of the surfaces.
The water content was determined gravimetri-
cally, as discussed above. For the environmental
factors, RH was estimated to be 97 percent (from
salt cell data as measured from similar sites in the
California Great Basin). For EH'T, the more sen-
sitive and more important factor, weather station
data from Mitzpe Ramon was used for the Camel
Site, and data from Sderot was used for Nahal
Lavan 109. This factor was also compared with
similar data from the California Great Basin,
Death Valley, and Mojave weather stations and
with salt cell data from Inyo-182 (another site in
the western Great Basin area).

"The results of the obsidian hydration dating
for these two sites are somewhat better than sim-
ple relative dating. As an absolute dating tech-
nique, however, these results are promising but
suffer from two major problems, sample size and
rind measurement.

For the Camel Site, only three artifacts were
recovered and available for measurement. Data are
summarized in Table 9.3. The water-content per-
centages were very consistent, and it is felt that the
environmental factors are reasonable, although
salt cell data would be preferable. The rind size,
however, measures 6.1 microns on OHL 16200,
and this is the “cleanest” reading. For 16198 the
rind read 5.0 microns, and for 16199 the rind was
5.2 microns, but both are on pieces that showed
sandblasting. There is no known method of deter-
mining how much of the outer edge has been
worn away. We have arbitrarily added 10 percent
to the rind readings of three samples (two from the
Camel Site and one from Nahal Lavan 109) to
provide a perspective on the possible variability in
the dates. The resultant range of “roughly usable”
dates is 1850 to 5200 B.C.E.

For Nahal Lavan 109, five debitage samples
were utilized. Only OHL 16222 had both a rhy-
lotic-level water percentage (0.1279 percent by
weight) and a readable rind of 10.5 microns (dat-
ing provided at 10.5 and at 11.6 microns, or plus
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Table 9.3. Obsidian Hydration Data Summary

EARLY DESERT PASTORALISM: EXCAVATIONS AT THE CAMEL SITE, NEGEV

OHL | Grid | USF (mij;is) AE‘;)SS enr | R &Eéﬁg Hydration | 4o BP | BCE.
Camel
16198 M27d | 499 5.0 2.34 | 22.37 0.97| 0.1105 6.6 3801 1851
Upper | 499 5.5 4597 | 2647"
16199 M28c¢ | 500 5.2 0.80 | 22.37 0.97 1 0.0989 5.5 4943 2993
Upper 5.7 5981 4031
16200 | J30c 501 6.1 0.65 | 22.37 0.97 | 0.0958 5.2 7128 5178
Surface
Nahal Lavan 109
16222 10.5 1.41 | 26.40 0.97 ] 0.1279 13.0 8536 6586
11.6 10328 8378
16223 3.2 2.89 | 2640 26.4 1 -0.0036 13.0 Aberrant
16224 No 1.89 | 26.40 0.97 ] 0.2304 28.7 Aberrant
hydra-
tion value
16225 4.4 0.54 | 26.40 0.97 | 0.3881 52.9 Aberrant
16226 11.4 2.39 | 26.40 0.97 | 6.7352 757.9 Aberrant
11.4 2.39 | 2640 0.97 | 0.1279 13.0 9937 7987%*

NOTE: EHT for the Camel Site is taken from Mitzpe Ramon. EHT for Nahal Lavan 109 is taken from Sderot.

USF refers to the composition analysis by Tykot.

*Added 10% to rind to adjust for sandblasted surface.

“*Water content estimated using sample 16222 measurement.
g p

10 percent, to possibly account for weathering).
Samples designated as OHL 16223, 16224, and
16225 had both very erratic water contents and
no reasonably sized rinds. Sample OHL 16226
did exhibit a good readable rind at 11.4 microns,
but the water content (at 4.5224 percent) is off
scale. So to provide at least one other date, the
relative density and thus water content of 16222

was used. The result suggests a rough range of
6600 to 8400 B.C.E.

Hydration Analysis Summary

For our purposes, the key result of the hydration
analysis is the clear distinction that can be drawn

between the Pre-Pottery Neolithic B materials
and those deriving from the Early Bronze Age.In
other words, the Camel Site obsidian reflects a
contemporary connection with Anatolia and not
the mere looting or collection of materials from
early local sites. This distinction is also supported
by the differing water contents of the artifacts,
suggesting the likelihood of different sources.
The chemical composition analyses conducted by
"Tykot are also in accord with these conclusions.

DiscussioNn

The discovery and analysis of three obsidian arti-
facts from the Early Bronze Age Camel Site offer
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several conclusions beyond the linkage with Ana-
tolia (Figure 9.3). In particular, the results indi-
cate that the basic structure of the Negev—Anato-
lia Early Bronze Age exchange link contrasted in
all its particulars—source, route, and function—
with that of the Pre-Pottery Neolithic period, the
only other period for which obsidian has been re-
covered in the central Negev.
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In terms of sources, Pre-Pottery Neolithic B
obsidian from the central Negev, as defined by
Nahal Lavan 109 (Perlman and Yellin 1980), de-
rives exclusively from Cappadocia in central Ana-
tolia. In general, southern Levantine Pre-Pottery
Neolithic obsidian originates primarily from cen-
tral Anatolia, although in later periods, the later
Neolithic and the Chalcolithic, eastern Anatolian

Q}\‘C\\appadocia

\‘»Lavan 1"’09,»

l’:’A(;entral (ﬁ’?

Negev

SITE /Ramon '

; Crater

1. Arad

2. Gilat

3. Bingdl
sources

4, Nemrut Dag
sources

Figure 9.3. Sites and locations mentioned in text,
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sources are also evident (e.g., Cauvin 1994: figure
4; Gopher et al. 1998). However, even when east-
ern Anatolian obsidian is present, as at Chalco-
lithic Gilat (Yellin et al. 1996), the central Anato-
lian sources dominate. The contrast with the
Camel materials, deriving from the Lake Van area
in eastern Anatolia, is obvious.

In terms of route, although the difference in
sources between the periods suggests the possibil-
ity of different transport routes, the key issue is
really that in the Pre-Pottery Neolithic B, one
can trace a continuum of obsidian from central
Anatolia through the western Levant and down to
the deserts of the southern Levant in a fall-off
curve interpreted by Renfrew (1975, 1977) as
down-the-line trade. That is, there are numerous
PPNB sites in Israel and Palestine with obsidian,
and there is no major geographic gap in the dis-
tribution from north to south. Data from other
periods remain too scanty for reasonable recon-
struction. Garfinkle (1993) notes the general de-
cline of the obsidian trade with the end of the
Pre-Pottery Neolithic.

In significant contrast, Early Bronze Age sites
in the southern Levant are lacking obsidian. Even
given the very small number of artifacts recovered
from the Camel Site, the absence of obsidian
from geographically intervening sites, especially
from the known desert gateway city at Arad (e.g.,
Amiran et al. 1997; Finkelstein 1995:67-86;
Kempinski 1989), strongly suggests that there was
no down-the-line obsidian exchange through the
Mediterranean zone of the southern Levant. The
only other alternative is a route through the Syr-
ian and Jordanian deserts.

Finally, in terms of function, the differences
between obsidian and flint in terms of raw mate-
rial properties are reasonably straightforward.
Obsidian is structurally amorphous. It is thus
more easily knapped and capable of achieving a
sharper edge than flint. It also tends to have a
glossier and smoother surface than flint. Access to
obsidian in the Near East is also more restricted
than access to flint. On the other hand, flint is a
stiffer, less brittle material and is somewhat
harder. The larger number and range of flint
sources result in greater heterogeneity and hence
variability in its basic attributes. These differences
are reflected in the archaeological record in what
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appears to be a greater preference for obsidian in
areas where it is readily available and an added
value where it is present but scarce.

In the Neolithic Levant, both materials were
exploited in the production of chipped stone
tools, in spite of the scarcity of obsidian. Thus
PPNB obsidian assemblages, especially as exem-
plified by the materials from Nahal Lavan 109
(Burian and Friedman 1988; Burian et al. 1976),
include a large range of tool types, typologically
identical to those made from flint, and the com-
plement of debitage reflecting local production.
Obsidian, while probably perceived as something
special and perhaps more valuable than local flint,
was nevertheless traded and treated as a raw ma-
terial for the production of tools.

In post-Neolithic times, the range of uses of
obsidian broadens, including jewelry, magic, med-
icine, vessel manufacture, mirrors, and sculpture
(Coqueugniot 1998). The three pieces recovered
from the Camel Site reflect a fundamentally dif-
ferent phenomenon from the Neolithic. They are
not tools in a lithic technological sense; nor can
they in any way be interpreted as raw material for
tool manufacture. Furthermore, as indicated
above, the absence of any production waste in a
100-percent-sieved site (2~3 mm mesh) indicates
clearly that they were chipped elsewhere and im-
ported to the site as small flakes. Thus their only
value can lie in their trinket status as rare objects
and cannot derive from any utilitarian function.
In this they are akin to the other trinket-type ar-
tifacts recovered from the excavations, including
pink quartz crystals, shells and shell beads from
the Mediterranean and Red Seas, freshwater
mother-of-pearl (Nilotic?), the several black flint
flakes found near them, and perhaps small local
tossils (Chapter 10). Notably, the Camel Site
shows evidence for ostrich eggshell bead produc-
tion (Rosen 1997a; Chapter 10).

These basic contrasts in the structure of the
obsidian trade in turn suggest conclusions con-
cerning both the nature of the obsidian exchange
in the different periods and its role in the respec-
tive societies. Returning to the general character-
istics of ancient Near Eastern obsidian exchange
as down-the-line trade (Renfrew 1975, 1977), a
key element in this trade is the mobility of the
agents of exchange. Bar-Yosef and Belfer-Cohen
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(1989) have suggested that hunting parties oper-
ated as prime agents in the movement of goods
and the exchange of ideas in the Pre-Pottery
Neolithic B—in fact, serving as the glue cement-
ing the Levantine interaction sphere into an inte-
grated unit. For our purposes here, the key point
is that PPNB mobility—hunting—extended
throughout the Levant, even in the Mediter-
ranean farming zone, and it constituted a primary
activity among large segments of the population.
That is, the proportion of the population engaged
in hunting must have been quite high, and thus
the movement of goods such as obsidian was rel-
atively straightforward.

In contrast to this system of relatively high-
mobility hunting, albeit tethered to sedentary vil-
lages, Levantine Early Bronze Age society was
primarily urban and sedentary, with an economy
based on cereal agriculture, arboriculture, and
domestic herd animals. Although one could at-
tempt to make the case that the pastoral compo-
nent of this society played a role similar to that of
the hunters of the PPNB, the parallel is not justi-
fied, if for no other reason than the unlikelihood
that more than a fraction of the urban Early
Bronze Age population engaged in herdsmen
husbandry (see Khazanov 1984:22 for a definition
of herdsmen husbandry).

Thus the absence of obsidian in the Mediter-
ranean zone is perhaps comprehensible, a func-
tion of increasing sedentism. This would also ex-
plain the decline in obsidian exchange in the later
stages of the Neolithic and the Chalcolithic. On
the other hand, the development of peripheral
pastoral nomadic societies on the desert fringes—
that is, the Camel Site, both in the east and the
south (e.g. Betts 2001; Garrard et al. 1996; Rosen
2002a, 2002b)—provides a rationale for the alter-
native route suggested earlier and an agency of
exchange for that route. As with the PPNB
hunters, the high mobility of these early mobile
pastoralists offers the means for the movement of
obsidian from the Anatolian source area. Unfor-
tunately, we are still lacking the intensive explo-
ration of these regions necessary to confirm this
hypothesis.

The significance of the trinket trade for Early
Bronze Age desert nomads should not be under-
estimated. Wiessner (e.g., 1984) has noted the
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role of reciprocal exchange among the Kalahari
San, providing one of the basic glues of the social
system. The scarcity of such artifacts as Anatolian
obsidian may suggest that they were valuable.
The presence of other beads and trinkets, deriv-
ing from a variety of sources, indicates the range
and variety of trade connections. The combina-
tion of value and variation reflects the importance
of the trinket trade to Early Bronze Age desert
pastoral society (Chapters 10 and 13). The appar-
ent structural transformation of the obsidian
trade from its relatively utilitarian Neolithic an-
tecedents to the Bronze Age trinket trade can be
tied to the fundamental evolution of Near East-
ern societies from Neolithic farmer-hunters to
the complex and variegated societies of early his-
toric times.
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