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36.

Investigating Ancient “Bronzes”: Non-Destructive

Analysis of Copper-Based Alloys

Robert H. Tykot, University of South Florida, Tampa

Identification of the composition of “bronze” objects—many of which are not in fact bronze—is
fundamental for studying the technology and intentions of the maker and the availability of tin and
other alloys, and for providing accurate descriptive information for museum displays. There are many
methods of elemental analysis, but most require the removal of a sample, which increasingly is not
allowed for museum-quality objects. The use of a portable X-ray fluorescence spectrometer (pXRF)
avoids this, but unfortunately provides results only on the near surface. Readings may be inaccurate
due to heterogeneity caused by the cooling process, degradation/weathering, and cleaning or other
preservation treatment.

In this study, a Bruker pXRF has been used to analyze hundreds of copper-based objects from
different countries and many museums, and the advantages and limitations of this method are
discussed in accordance with the research questions being addressed. These include (1) the initial
technological transition from copper to arsenical copper and tin bronze alloys, and later to brass; (2)
the availability of the secondary metals; and (3) analyses in American museums to assess authenticity
and provide accurate descriptive information for display cases.

✦  ✦  ✦

X-Ray Fluorescence

X-ray fluorescence (XRF) is one of many analytical methods
used to determine the composition of copper-based metal
objects. When used non-destructively, however, care must
be taken to understand the principles of this method and
thus the significance of the results. XRF analysis involves
primary X-rays striking the sample and creating electron
vacancies in an inner shell of the atoms; these vacancies
are then filled by lower-energy electrons from an outer
shell, while producing secondary X-rays. A detector in the
XRF instrument measures the energy of these secondary X-

rays, which may be identified as coming from specific
elements, and the intensity of the peaks, which is
proportional to the quantity for each element.1 The depth
of penetration of the primary X-rays, and opposite
direction for secondary X-rays reaching the detector, are
limited to millimeters or less, so that alteration of the
metal object’s surface may not quantitatively represent the
original composition. Many bronze objects may include
more than just copper and tin among the many elements
that may be identified (fig. 36.1).
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Figure 36.1. X-ray energy peaks for a “bronze” Viking artifact from Norway

The energy difference between specific atomic shells
varies between elements, so that secondary X-rays have
characteristic transition energies. The strongest X-ray
intensity results from an L-shell electron replacing a K-shell
vacancy, and is called Kα, while an M-shell electron
replacing a K-shell vacancy is called Kβ. The replacement of
L-shell vacancies by M-shell electrons is called Lα. There are
also energy differences among the orbitals within each
shell, so the X-ray spectra include separate Kα1 and Kα2

lines. There are more L-lines than K-lines for metal
elements, and there are substantial energy differences
between Lα1, Lα2, Lβ1, Lβ2, and Lγ.

Elemental analysis of copper-based objects requires
that the intensity of the primary X-rays be high enough to
produce sufficient secondary X-rays for the elements of
interest, which for ancient metals include copper (Cu),
arsenic (As), tin (Sn), zinc (Zn), lead (Pb), iron (Fe), silver (Ag),
antimony (Sb), gold (Au), and mercury (Hg). To quantify the
analytical results, filters may be used to reduce the
background signal and increase detection limits and
precision. For all XRF spectrometers, energy level and
intensity are measured by a detector, and the raw data
produced may then be calibrated using standards and
appropriate software. The standards must also be of
copper-based material, as the ability of the secondary X-

rays to reach the detector is affected by the composition of
the matrix. Standards with a range of values for the other
elements (e.g., copper with 0, 5, 10, 20, and 30 percent tin;
same for lead and others) are also required to produce the
most accurate results.

When comparing the different analytical instruments
that measure secondary X-rays, there are differences in the
size sample that can be accommodated, and the actual
area that is analyzed. Scanning electron microscopes and
electron microprobes are well known for conducting
microanalysis, but in most cases only on small objects that
will fit inside the sample chamber. Full-size and desktop
XRF instruments analyze a greater area but also have size
limitations, while portable XRF spectrometers have no
maximum size limit since they are simply held adjacent to
the object. While the detection limits of a pXRF may be an
order of magnitude less than for regular XRF
spectrometers, this does not affect results for major and
minor elements in copper-based metal alloys.

Limitations of Non-Destructive Analysis

One important issue to consider is conducting non-
destructive surface analyses on potentially heterogeneous
samples. Copper-based metals become patinated, and
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over time may be seriously degraded on the surface, while
conservation often involves metallic-based treatments,
thus affecting the composition of the object’s surface.
When it is not possible to remove a clean sample for
elemental analysis, the analysis of multiple spots can
quickly reveal if there is significant variability in
composition that is not characteristic of the original cast
object. Also, the K/L intensity ratios for elements such as
tin and copper have fixed values, but these are noticeably
altered by corrosion and those spots with irregular values
may be excluded. Ideally in such circumstances, it may be
permissible to at least clean a small area for reanalysis.
Such cleaning is necessary for artifacts known to have
been treated with conservation chemicals that contain zinc
or other metal elements.

Using a Portable X-Ray Fluorescence

Spectrometer (pXRF)

Over time, a variety of portable XRF spectrometers have
been developed,2 while just in the last decade
commercially produced models have been marketed by
several major companies. In addition to the limitations of
non-destructive XRF on potentially heterogeneous
materials, the use of portable XRF spectrometers for
archaeological applications has raised some issues about
the reliability and comparability of different instruments. In
recent years, however, it has been recognized that pXRF
spectrometers are as consistent and precise as regular
models, and developing calibration for different materials
allows for direct comparison with analyses by other
analytical methods.3 At this point, the use of pXRF on
archaeological metal materials has become widespread,
and its regular users have a better understanding of both
its potentials and limitations.4

Two different models of the pXRF have been used for
the projects discussed in this paper, starting with the
Bruker III-V+ in 2007 and the Bruker III-SD in 2012.5 The
differences are that the III-SD model uses a silicon drift
detector, which is more sensitive and has better resolution
than the Si-PIN detector on the III-V+ model. This results in
less analytical time necessary per sample and better
element identification from the calibration software. For
both, the beam size is 5 by 7 millimeters, so that a
substantial horizontal area is being analyzed. For the
analysis of copper-based metals, a filter made of 12 mil Al
and 1 mil Ti was used to enhance the precision of the
readings, while settings of 40 kV, 1.5 or 4 μA, and 30–60
seconds were used to provide a full range of metal

element peaks with sufficient responses for consistent
precise measurements. Experimental testing of the same
spot many times has shown that element concentration
differences (variation, precision) between analyses are only
a fraction of the actual variation in the object.6

Analyses of Copper-Based Alloys

The main purpose of elemental analysis of copper-based
metal artifacts is to determine the quantity of elements
intentionally included in the alloy. Results obtained from
assemblages of copper-based objects may be used for
assessing changes in production technology, access to tin
and other metals, consistency in alloying different
materials (e.g., tools, weapons, jewelry), and recycling
practices. Many such artifacts, whether they are tools,
weapons, or jewelry, have great artistic and/or
archaeological value and are on display in museums. Even
for small numbers of objects, analyses provide proper
identification and description for both museum exhibits
and publications.

One example is a small bronze head (inv. 1984.6) in the
collections of Emory University, for which non-destructive
analyses were done on three different spots (fig. 36.2). All
show that copper is by far the major metal, while the
amounts of tin, lead, and silver vary significantly. The
crown of hair has much more lead (~14%) and tin (~11%)
than the lip area, which has only about 1% lead and 3% tin;
neither have any silver. The eye area, however, has about
2–3% silver (and about 4% lead and 7% tin). Several more
examples of non-destructive elemental composition
research using a portable XRF are presented below.

Figure 36.2. Portable X-ray fluorescence
analysis of a small “bronze” head at Emory
University
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Figure 36.3. “Bronze” objects in the Paolo Orsi Museum, Siracusa, Sicily

Bronze Age Sicily

Copper-based artifacts have been infrequently found at
Copper-Bronze Age sites in Sicily, whether as tools,
weapons, or ornaments, and little if any study has been
done on their actual composition. Permission was
obtained to conduct non-destructive pXRF analysis on the
large collection in the Paolo Orsi Museum in Siracusa, and
others in Sicily. Two bowls from the site of Caldare (inv.
16290, 16291) were tested on multiple spots on the inside,
outside, and separately attached handles (fig. 36.3). The
heavy patina could not be avoided, and the readings for tin
on each ranged from 0.7 to 5.7%, and 1.8 to 9.6%. One of
the handles had notably more lead (3.0%) and arsenic
(0.9%), suggesting a separate initial production process,
perhaps with copper from a different source. For a dagger
(Caldare inv. 16292), the tin ranges from 1.0 to 7.9% for six
spots tested, including a rivet at the base. One spot had a
measurable amount of zinc (1.6%), suggesting the use of a
preservative. These examples illustrate the limitations of
conducting surface analysis on bronzes with heavy
patination and/or conservation treatment. Nevertheless,
the preliminary results on more than one hundred artifacts
analyzed show a great variation in the amount of tin used
in the original alloys, which may be explained by tin’s
irregular availability in a place so far from any source, and/
or the absence of larger-scale production centers and
standardized alloying practices.

Viking Age Norway

By the Viking Age, both bronze and brass were widely
used. Non-destructive analyses using a pXRF were
conducted in the Stavanger Museum, Norway, to test for
any patterns and provide information for the museum’s
catalogue and display. Among the nearly thirty copper-
based objects tested, a cruciform brooch copy stands out
as a typical bronze with only tin (9.4%) intentionally added
(fig. 36.4). All other items tested were brass, with zinc
ranging from just a few percent to more than twenty, and
more than half also had tin and/or lead (table 36.1). The
range among the percentages for each of these three
elements also supports the likelihood of recycling rather
than primary production of brass objects.

Figure 36.4. Viking Age cruciform brooch, Stavanger Museum,
Norway. Analysis of inner edge by pXRF
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Sample Cu Zn As Pb Sn Fe

Cruciform brooch 89.9 0.1 0.0 0.5 9.4 0.0

S411 73.6 24.3 0.2 0.9 0.5 0.0

S826-1 88.1 9.1 0.1 0.9 1.2 0.1

S826-2 80.0 16.8 0.1 0.9 1.6 0.1

S828 80.7 6.1 0.1 1.9 9.5 0.1

S1009 86.0 11.7 0.1 0.7 0.6 0.2

S1558 80.7 16.5 0.2 1.4 0.6 0.1

S1882 85.6 8.2 0.0 4.3 1.2 0.2

S1889 88.2 9.8 0.1 0.7 0.5 0.1

S2095 65.6 2.8 0.0 10.0 17.4 2.6

S2272 85.9 8.7 0.4 1.3 2.6 0.5

S2351 77.2 19.8 0.1 0.4 2.0 0.0

S2552 81.4 10.4 0.5 4.3 2.7 0.3

S2820 81.9 16.4 0.0 0.5 0.5 0.1

S2852 85.1 11.8 0.0 0.6 1.8 0.1

S3162-a 92.1 4.9 0.2 1.4 0.7 0.1

S3162-b/c 88.3 9.1 0.1 1.1 0.6 0.1

S3168 82.4 11.8 1.5 1.7 0.9 1.0

S3237 75.8 22.7 0.2 0.3 0.4 0.0

S3426 82.4 15.7 0.1 0.6 0.5 0.1

S3857 81.7 16.5 0.0 0.6 0.5 0.0

S4083 80.1 10.1 0.0 8.4 1.8 0.0

S4140 76.5 14.0 0.1 1.2 7.7 0.2

S4690 82.5 13.5 1.6 0.8 0.5 0.4

S7129 84.8 6.0 0.5 2.9 4.2 1.1

S8352 84.8 9.6 1.0 2.0 1.2 0.8

S12295 67.8 6.2 1.0 15.9 5.3 2.5

S12720 70.6 8.0 2.6 10.7 5.9 1.0

Table 36.1. Elemental composition of copper-based objects in the Stavanger Museum, Norway. The values are averages of the multiple
spots tested; those in italics were inconsistent between spots.

On-site Analysis in Calabria Using pXRF

In most cases, a sample should be cleaned prior to
compositional analysis, to avoid contamination issues. But
for copper-based objects, any “dirt” is not likely to affect
significantly the proportions of copper, tin, lead, and other
metallic elements other than iron. On-site analyses can
therefore produce reliable estimated results that may
immediately be shared with the excavation team, local
officials, and visitors. At the Greek settlement site of
Francavilla Marittima in Calabria, Italy, excavations

uncovered a burial (grave 14) with what appeared to be
copper-based metal artifacts (objects 999‒1000) (fig. 36.5).
Analyses were conducted at the site the same day,
revealing both to be tin bronzes (11 and 13% Sn) with no
arsenic, lead, or zinc added.
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Figure 36.5. Excavated burial at Francavilla Marittima, Calabria with
multiple grave offerings (left) analyzed by pXRF in the field (right)

Analysis of a Native American Tablet

An incised Native American–style metal tablet was found at
the near-contact-period Blueberry site (8HG678) in the
Kissimmee Valley of south-central Florida (fig. 36.6).
Analyses were conducted to determine whether it had
been made by the Belle Glade people using native copper
(that is, pure, geologically natural copper), or using
smelting and casting technology, which was introduced to
North America after European contact. Multiple spot
analyses on both sides by pXRF showed virtually pure
copper, more so than for typical smelted copper artifacts,
which often have some iron, calcium, and other elements
left from the slag. It also would have been more likely that
the use of European-produced metal would have come
from an alloy rather than pure copper.

Figure 36.6. Native American copper tablet
from the Blueberry site, Florida

“Bronzes” in Florida Art Museums

Most of the Greek, Roman, Latin American, and other
metal artifacts on display in museums in the United States
were acquired through purchase or by donation and not
from excavations, so there are questions about their
original archaeological context as well as their authenticity.
Using a pXRF, nearly all metal artifacts in the Tampa
Museum of Art (80 objects, mostly Greek and Roman) and
the Orlando Museum of Art (125 South American objects)
were analyzed to assess authenticity and in all cases to
provide compositional information for display labels and
future research.

In the Tampa Museum, two northern Greek bracelets
(TMA 1996.024.001/2) have consistent values with about
8% tin and 1% lead, which was common in the Iron Age
(fig. 36.7b). A Roman “bronze” strigil (TMA 1982.022) has no
tin but more than 20% zinc, so it is actually brass (fig.
36.7a). Retesting is planned to check if the zinc may be
from a conservation treatment prior to its donation to the
museum, but the lack of tin would make it unusual for
first-century AD Roman finds. Each of the seven pieces of
the chatelaine (TMA 1986.204a‒g), also assigned to about
100 AD, has a substantially different tin composition, and
thus may be interpreted as a compilation of separately
made items (fig. 36.7c–d). All have high copper and tin,
while one has especially high lead content (1986.204e). A
“bronze” crossbow fibula (TMA 1993.004.010), assigned to
the fourth century AD western Roman Empire at least
needs much better labeling, as it includes zinc, gold,
mercury, and silver, but no tin (fig. 36.8)!
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Figure 36.7a. Analysis of classical archaeology objects in the Tampa
Museum of Art, Florida. Roman strigil

Figure 36.7b. Analysis of classical archaeology objects in the Tampa
Museum of Art, Florida. Greek bracelet

Figure 36.7c. Analysis of classical archaeology objects in the Tampa
Museum of Art, Florida. Chatelaine

Figure 36.7d. Analysis of classical archaeology objects in the Tampa
Museum of Art, Florida. Chatelaine
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Figure 36.8. X-ray energy peaks showing Cu, Zn, Au, Hg, Ag in a “bronze” Roman crossbow fibula, Tampa Museum of Art

The Orlando Museum has many metal objects labeled
as “gold” but analyses by pXRF show that most are actually
alloys, with high percentages of silver and copper as well
(OMA 2003.078.1-2) (fig. 36.9a). Many others are listed as
tumbaga (Cu-Ag-Au alloy), but contain no gold or silver
(table 36.2). Starting in pre-Inca times, depletion
gilding—involving acid treatment and oxidation of the
surface—was used to make the immediate surface mostly
gold, so XRF analyses result in varying concentrations

depending on depth. Many other objects in the museum
were simply labeled as “copper” or “metal,” with analyses
revealing many that are arsenical copper (OMA
2004.104.1-4), fig. 36.9b), and just a few that are bronze
(with just 2–3% Sn) (OMA 2004.032) (fig. 36.9c). One
artifact, a knife (OMA 2004.074), has a high percentage of
zinc, which was not used in Moche (pre-Columbian) times
in the Americas, and thus is not authentic (fig. 36.9d).
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OMA No. Object Description Cu Sn As Pb Ag Au Fe Zn Ca

2002.018
Botanical frog bead, AD 700–1000,
Moche. Gold

13.2 14.6 72.3

2002.057
Teeth design mouthpiece, AD 300–700,
Moche. Gold

27.8 17.0 55.2

2003.078.1 Plume, AD 300–700, Nasca. Gold 1.9 29.8 68.3

2003.078.2 Plume, AD 300–700, Nasca. Gold 4.5 23.0 72.6

2004.029 Ornament, AD 100–300, Chimu. Copper 93.0 4.1 3.0

2004.03
Ring with two birds, AD 1100–1400,
Chimu.

97.4 2.6

2004.032
Crocodile tumi, AD 1100–1400, Chimu.
Copper/tumbaga

97.7 2.3

2004.052
Tumi, AD 1100–1400, Lambayeque/
Chimu. Copper

90.4 5.7 2.0 1.9

2004.053
Tumi, AD 200–700, Lambayeque/Chimu.
Copper/tumbaga

98.1 1.9

2004.054
Tumi, AD 200–700, Lambayeque/Chimu.
Copper/tumbaga

98.5 1.5

2004.071 Spoon, AD 200–500 95.0 5.0

2004.074 Top of knife, AD 450–550, Moche. Copper 46.4 1.7 8.0 35.2 8.7

2004.080.1
Ear spools, AD 1100–1400, Moche?
Copper

60.4 1.0 38.5

2004.080.2
Ear spools, AD 1100–1400, Moche?
Copper

42.7 0.7 56.6

2004.096 Vessel of a figure, AD 200–400, Nasca 2.4 31.2 66.4

2004.097 Tweezers, AD 500–800, Nasca. Gold 3.7 24.9 71.4

2004.104.1 Metal needle, AD 1000–1500, Chancay 92.6 7.4

2004.104.2 Metal needle, AD 1000–1500, Chancay 98.1 1.9

2004.104.3 Metal needle, AD 1000–1500, Chancay 95.0 5.0

2004.104.4 Metal needle, AD 1000–1500, Chancay 94.3 5.7

2004.112.1 Bird bead, AD 1100–1400, Chimu. Metal 97.2 2.8

2004.112.2 Bird bead, AD 1100–1400, Chimu. Metal 94.6 5.4

2004.112.3 Bird bead, AD 1100–1400, Chimu. Metal 97.0 3.0

2004.112.4 Bird bead, AD 1100–1400, Chimu. Metal 86.4 11.7 1.8

Table 36.2. Elemental composition of copper-containing objects in the Orlando Museum of Art. Most are pure or arsenical copper, or
tumbaga, rather than tin bronze.
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Figure 36.9a. Analyzed plumes
in the Orlando Museum of Art

Figure 36.9b. Analyzed needles
in the Orlando Museum of Art

Figure 36.9c. Analyzed tumi in
the Orlando Museum of Art

Figure 36.9d. Analyzed knife in
the Orlando Museum of Art

Etruscan Bronze Mirrors in the Southeast

United States

Shiny bronze mirrors were widely produced by the
Etruscans, and many have been found in their tombs.
Typically decorated on one side and smooth on the other,
there are many now in American museums (fig. 36.10a–b).
Testing by pXRF has been used to assess the composition
for Etruscan mirrors in American museums, as well as to
further test the hypothesis that many may be fakes.7

Analyses have been done on more than thirty mirrors in
the Smithsonian, Johns Hopkins University, the Walters Art
Museum, the Baltimore Museum of Art, Emory University,
the Tampa Museum of Art, and the Ringling Museum in
Sarasota. Many are known to have been treated with a
preservative, but analyzing multiple spots has allowed us
to avoid that issue while addressing potential differences
between the mirror sides and also with attached decorated
handles (fig. 36.10c). From the results obtained, it appears
that in earlier Etruscan times, the amount of tin used was
similar to that for bronze tools (~8–15%), while by the third
century BC there was a big increase in the tin (~20–30%)
and therefore the reflectiveness of the mirror. While many
of the mirrors in these museums are thought to be fakes,

based on their style, only a few have incompatible
chemical compositions (with zinc).

a

b

c

Figures 36.10a–c. Three examples of Etruscan bronze mirrors with
multiple spots tested on both sides

Conclusion

The use of non-destructive analytical techniques provides
many opportunities for studying bronze and other objects
in museums and other places around the world. The
examples presented here illustrate some of the specific
questions that knowledge of the composition of copper-
based materials can answer. The user and readers of their
reports, however, must realize that while the precision and
accuracy of pXRF instrumental results are high, there
remain limitations in the interpretation of the values taken
from copper alloys with patinated and degraded surfaces.

✦  ✦  ✦
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