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Abstract. A hereditary property P(k) is a class of k-graphs closed under isomorphism and taking

induced sub-hypergraphs. Let P
(k)
n denote those k-graphs of P(k) on vertex set {1, . . . , n}. We prove

an asymptotic formula for log2 |P
(k)
n | in terms of a Turán-type function concerning forbidden induced

sub-hypergraphs. This result complements several existing theorems for hereditary and monotone graph

and hypergraph properties.

1. Introduction

Hereditary and monotone properties are well-studied objects in the areas of extremal combinatorics
and theoretical computer science. For an integer k ≥ 2, a property P(k) is a class of k-uniform hypergraphs
(k-graphs, for short) closed under isomorphism. The property P(k) is hereditary (monotone) if it is
closed under taking induced (arbitrary) sub-hypergraphs. (Note that every monotone property is also
hereditary.) For a property P(k) of k-graphs and an integer n, let P(k)

n denote the k-graphs of P(k)

defined on vertex set [n] = {1, . . . , n}. We estimate |P(k)
n | for an arbitrary hereditary property P(k).

Observe that every hereditary property P(k) admits a unique minimal family F(k) = {F (k)
i }i∈I of pair-

wise non-isomorphic ‘forbidden’ k-graphs so that P(k) is the set Forbind(F(k)) of all k-graphs containing
no F (k)

i ∈ F(k) as an induced sub-hypergraph. (Note that F(k) may be infinite.) We shall consider
hereditary properties from this perspective. For an integer n, we write Forbind(n,F(k)) as the k-graphs
of Forbind(F(k)) defined on vertex set [n].

To estimate |Forbind(n,F(k))|, we consider the following Turán-type parameter (adapted from one
of Prömel and Steger [21] for graphs (cf. [15])). (In the definition below, we use |H(k)| to denote the
number of edges of H(k), and

(
[n]
k

)
to denote the family of all k-element subsets of [n].) For an integer

n, let

exind(n,F(k)) = max
{∣∣H(k)

∣∣ : there exists M(k) ⊆
(
[n]
k

)
\ H(k) such that

H(k)
0 ⊆ H(k) =⇒ H(k)

0 ∪M(k) ∈ Forbind(n,F(k))
}
, (1)

where the maximum is taken over all k-graphs H(k) ⊆
(
[n]
k

)
on vertex set [n]. (The Reader unfamiliar

with this definition may want to now consider Examples 1.2 and 1.3 below.) The definition in (1)
immediately implies that log2 |Forbind(n,F(k))| ≥ exind(n,F(k)). Indeed, let the hypergraph H(k) be an
extremal example realizing the value of exind(n,F(k)) with the corresponding hypergraph M(k). Then
each of the 2|H

(k)
0 | subhypergraphsH(k)

0 ⊆ H(k) renders a distinct elementH(k)
0 ∪M(k) in Forbind(n,F(k)).

We arrive at our main result.

Theorem 1.1. For any family F(k) of k-graphs, log2 |Forbind(n,F(k))| = exind(n,F(k)) + o(nk).

Theorem 1.1 extends several earlier results. Prömel and Steger [19, 20, 21, 22] proved Theorem 1.1
for k = 2 when F(2) consists of a single but arbitrary graph F (2) = F (2). Alekseev [1] and Bollobás and
Thomason [3] then proved Theorem 1.1 for arbitrary families F(2) of graphs. Kohayakawa, Nagle and
Rödl [15] proved Theorem 1.1 for k = 3.

The first author used this work as part of his Masters thesis [4] at the University of Nevada, Reno.

The second author was partially supported by NSF grant DMS 0639839.
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Theorem 1.1 also extends earlier work on monotone properties. Define Forb(F(k)) and Forb(n,F(k))
analogously to the hereditary setting, this time replacing ‘induced sub-hypergraphs’ with ‘arbitrary sub-
hypergraphs’. Recall the customary Turán number ex(n,F(k)) is the maximum size |H(k)| of a k-graph
H(k) ∈ Forb(n,F(k)). The analogue of Theorem 1.1 for monotone properties holds: for all k ≥ 2 and
families F(k) of k-graphs,

log2

∣∣Forb(n,F(k))
∣∣ = ex(n,F(k)) + o(nk). (2)

(Note that log2 |Forb(n,F(k))| ≥ ex(n,F(k)) is immediate.) In particular, Erdős, Kleitman and Roth-
schild [7] proved (2) for k = 2 when F(2) = {Kr} consists of the single graph clique Kr = K

(2)
r on r

points. To our knowledge, the work of [7] is the first in this area. Erdős, Frankl and Rödl [6] then
proved (2) for an arbitrary family F(2) of graphs1. The hypergraph cases k = 3 and k ≥ 3 were then
respectively established by Nagle and Rödl [16] and Nagle, Rödl and Schacht [18].

Further (asymptotic) evaluations of log2 |Forbind(n,F(2))| and log2 |Forb(n,F(2))| are available for
graphs, but this is essentially the only such case. Indeed, the well-known theorems of Turán [31] and of
Erdős, Stone and Simonovits (cf. [8]) give ex(n,F(2)) = (1− (1/(r− 1)) + o(1))

(
n
2

)
, where r = r(F(2)) =

min{χ(F (2)) : F (2) ∈ F(2)} is the smallest chromatic number across the family F(2). As proven by
Prömel and Steger [19, 20, 21, 22], Alekseev [1] and Bollobás and Thomason [3], exind(n,F(2)) takes
the same asymptotic form, but for a different and more technical function r′ = r′(F(2)). We do not
review the function r′(F(2)) here since it admits no known hypergraph analogue, but we will consider
the following graph example showing exind(n, C4) = (1 + o(1))n2/4.

Example 1.2. Let F(2) = {C4} consist of the quadrilateral C4. The lower bound exind(n, C4) ≥
bn/2cdn/2e follows by setting V1 = {1, . . . , bn/2c} and V2 = [n] \V1, and defining H = H(2) = K[V1, V2]
and M = M (2) = KV1 . Now, let ε > 0 and n > n0(ε) be given and suppose exind(n, C4) ≥ (1 + ε)n2/4,
and let the graphs H and M establish the value of exind(n, C4). The Erdős-Stone-Simonovits theorem
guarantees that H contains a copy of the complete 3-partite graph K2,2,2, which we take, w.l.o.g., to
have 3-partition {1, 2}∪{3, 4}∪{5, 6} ⊂ V (H). If M ∩{{1, 2}, {3, 4}, {5, 6}} = ∅, then H ∪M contains
induced copies of C4. If M overlaps precisely one of these pairs, say {1, 2}, then H0 = H \{{1, 4}, {2, 5}}
yields an induced copy of C4 in H0 ∪M . If M overlaps at least two of these pairs, say {1, 2} and {3, 4},
then H0 = H \ {{1, 4}, {2, 3}} yields an induced copy of C4 in H0 ∪M . 2

For k ≥ 3, determining ex(n,F(k)) is well-known to be a very difficult problem. It seems likely that
determining exind(n,F(k)) for k ≥ 3 and many families F(k) is similarly difficult. Clearly, exind(n,F(k)) ≥
ex(n,F(k)) and exind(n, K

(k)
r ) = ex(n, K

(k)
r ), where the determination of the last parameter is Turán’s

original problem. Equality holds in other cases as well, one of which we sketch below from [15].

Example 1.3. When F(k) = {F (k)
k+1} consists of a k-graph F (k)

k+1 on k + 1 points and f ≥ (k + 1)/2

edges, then2 exind(n,F (k)
k+1) = ex(n,F (k)

k+1). Indeed, suppose exind(n,F (k)
k+1) > ex(n,F (k)

k+1), and let H(k)

and M(k) establish the value of exind(n,F (k)). Since |H(k)| > ex(n,F (k)
k+1), there exists a copy of F (k)

k+1

in H(k). Let this copy have vertex set X0 and write h0 = |H(k)[X0]| (for the number of edges of H(k)

induced on X0) and m0 = |M(k)[X0]|. From h0 ≥ f ≥ (k + 1)/2 and h0 + m0 ≤ k + 1, we infer that
m0 ≤ (k + 1)/2 ≤ f ≤ h0. Obtain H(k)

0 ⊆ H(k) by deleting any h0 − f + m0 edges from H(k)[X0]. Then
(H(k)

0 ∪M(k))[X0] consists of exactly f edges, and since any two k-graphs on k + 1 points and equally
many edges are isomorphic, H(k)

0 ∪M(k) contains an induced copy of F (k)
k+1. 2

1Strictly speaking, only the case when F(2) = {F} consists of a single but arbitrary graph F = F (2) is addressed, but

it is not difficult to adapt the proof for arbitrary families F(2).
2When f ≤ (k + 1)/2, one has exind(n,F(k)

k+1) = ex(n,F(k)
k+1), where F(k)

k+1 is the complement of F(k)
k+1. This equality

follows from the equality in Example 1.3 together with the identity exind(n,F(k)) = exind(n,F(k)
) which is easy to show

for any k-graph F(k).
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Note that exind(n, K
(3)
4 − e) = ex(n, K

(3)
4 − e) is then a (well-known and difficult) special case of the

example above, where K
(3)
4 − e denotes the triple system consisting of 3 triples on 4 points.

Finally, we mention one other result to which Theorem 1.1 relates. Bollobás and Thomason [2] showed
that λ(F(k)) = limn→∞

(
n
k

)−1 log2 |Forbind(n,F(k))| exists for any k ≥ 2 and family F(k) (which had been
a question for graphs of Scheinerman and Zito [27].) The proof in [2] did not, however, give an indication
as to the possible values of λ(F(k)). Now, set ẽxind(n,F(k)) =

(
n
k

)−1exind(n,F(k)). It is routine to show
that the sequence(

ẽxind(n,F(k))
)∞
n=1

is non-increasing, so that πind(F(k)) = lim
n→∞

ẽxind(n,F(k)) exists. (3)

Theorem 1.1 then adds the perspective that λ(F(k)) = πind(F(k)).
The reader familiar with the earlier work on Theorem 1.1 and (2) knows that ‘regularity’ plays

a crucial role in many of the proofs. In the case of graphs, this means appealing to the celebrated
Szemerédi Regularity Lemma [28, 29]; in the case of hypergraphs, this means appealing to a hypergraph
extension thereof. In particular, our proof makes use of a so-called ‘hypergraph regularity method’,
versions of which were established by a collection of authors: Nagle, Rödl, Schacht, Skokan [17, 26],
Gowers [12, 13], and Tao [30] (cf. [8, 10, 11, 24, 25]). Any of these versions would suffice for our purposes
here. The hypergraph regularity method consists of a hypergraph regularity lemma and a hypergraph
counting lemma. We find recent versions of these lemmas due to Rödl and Schacht [24, 25] the most
convenient for our argument.

Our paper is organized as follows. In Section 2, we present the hypergraph regularity lemma and the
hypergraph counting lemma from [24, 25]. In Section 3, we prove Theorem 1.1.

Acknowledgement. We would like to thank the referees for their careful reading and helpful suggestions.

Note added in proof. We recently learned that Y. Ishigami [14] announced a proof of our main result
based on a hypergraph regularity lemma of his.

2. Hypergraph Regularity Lemma and Counting Lemma

We present the hypergraph regularity lemma of [24, 25] in the form of Theorem 2.7 and the hyper-
graph counting lemma of [24, 25] in the form of Theorem 2.8. We organize this section as follows. In
Section 2.1, we present definitions and notation needed for Theorems 2.7 and 2.8. In Section 2.2, we
state Theorems 2.7 and 2.8.

2.1. Definitions. We start with some basic concepts and notation.

Basic concepts. For integers ` ≥ j ≥ 1, let [`]j =
(
[`]
j

)
denote the set of unordered j-tuples from [`].

(Note, [`]j does not represent a cross-product. Moreover, for a set X,
(
X
j

)
always denotes the set of

j-tuples from X.) Given vertex sets V1, . . . , V`, denote by K(j)(V1, . . . , V`) the complete `-partite, j-
uniform hypergraph (i.e., the family of all j-element subsets J ⊆

⋃
i∈[`] Vi satisfying |Vi ∩ J | ≤ 1 for

every i ∈ [`]). If |Vi| = m for every i ∈ [`], then an (m, `, j)-cylinder H(j) on V1 ∪ · · · ∪ V` is any subset
of K(j)(V1, . . . , V`). For j ≤ i ≤ ` and set Λi ∈ [`]i, we denote by H(j)[Λi] = H(j)

[⋃
λ∈Λi

Vλ

]
the sub-

hypergraph of the (m, `, j)-cylinder H(j) induced on
⋃

λ∈Λi
Vλ (so that H(j)[Λi] is an (m, i, j)-cylinder).

For an (m, `, j)-cylinder H(j) and an integer j ≤ i ≤ `, we denote by Ki(H(j)) the family of all
i-element subsets of V (H(j)) which span complete sub-hypergraphs in H(j). Note that |Ki(H(j))| is the
number of all copies of K

(j)
i in H(j). Given an (m, `, j − 1)-cylinder H(j−1) and an (m, `, j)-cylinder

H(j), we say H(j−1) underlies H(j) if H(j) ⊆ Kj(H(j−1)). This brings us to to the (important) notion of
a complex.

Definition 2.1 ((m, `, h)-complex). Let m ≥ 1 and ` ≥ h ≥ 1 be integers. An (m, `, h)-complex H is
a collection of (m, `, j)-cylinders {H(j)}h

j=1 such that

(a ) H(1) is an (m, `, 1)-cylinder, i.e., H(1) = V1 ∪ · · · ∪ V` with |Vi| = m for i ∈ [`], and
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(b ) H(j−1) underlies H(j) for 2 ≤ j ≤ h, i.e., H(j) ⊆ Kj(H(j−1)).

Relative density and hypergraph regularity. We begin by defining a relative density of a j-uniform hy-
pergraph w.r.t. a (j − 1)-uniform hypergraph.

Definition 2.2 (relative density). Let H(j) be a j-uniform hypergraph and let H(j−1) be a (j − 1)-
uniform hypergraph. We define the density of H(j) w.r.t. H(j−1) as

d(H(j)|H(j−1)) =


|H(j)∩Kj(H(j−1))|
|Kj(H(j−1))| if

∣∣Kj(H(j−1))
∣∣ > 0

0 otherwise .

The following definition provides a notion of regularity for cylinders and for complexes. (In the
following definition, and throughout the entire paper, the notation a ± b represents a quantity within
the interval [a− b, a + b].)

Definition 2.3 ((ε, d)-regular). Let d ≥ 0, vector d = (d2, . . . , dh) of non-negative reals and ε > 0 be
given. We say that

(1) an (m, j, j)-cylinder H(j) is (ε, d)-regular w.r.t. an underlying (m, j, j − 1)-cylinder H(j−1) if
whenever Q(j−1) ⊆ H(j−1) satisfies

∣∣Kj(Q(j−1))
∣∣ ≥ ε

∣∣Kj(H(j−1))
∣∣, then d(H(j)|Q(j−1)) = d± ε;

(2) an (m, `, j)-cylinder H(j) is (ε, d)-regular w.r.t. an underlying (m, `, j−1)-cylinder H(j−1) if for
every Λj ∈ [`]j, H(j)[Λj ] is (ε, d)-regular w.r.t. H(j−1)[Λj ];

(3) an (m, `, h)-complex H = {H(j)}h
j=1 is (ε, d)-regular if, for every j = 2, . . . , h, H(j) is (ε, dj)-

regular w.r.t. H(j−1).

Partitions. The regularity lemma for k-uniform hypergraphs provides a well-structured family of parti-
tions P = {P(1), . . . ,P(k−1)} of vertices, pairs, . . . , and (k − 1)-tuples of a given vertex set. We now
discuss the structure of these partitions recursively, following the approach of [26].

Let k be a fixed integer and V be a set of vertices. Let P(1) = {V1, . . . , V|P(1)|} be a partition of
V . For every 1 ≤ j ≤ |P(1)|, let Crossj(P(1)) be the family of all crossing j-tuples J , i.e., the set of
j-tuples which satisfy |J ∩ Vi| ≤ 1 for every 1 ≤ i ≤ |P(1)|.

Suppose that partitions P(i) of Crossi(P(1)) for 1 ≤ i ≤ j − 1 have been defined. Then for every
(j − 1)-tuple I in Crossj−1(P(1)), there exists a unique class P(j−1) = P(j−1)(I) ∈ P(j−1) so that I ∈
P(j−1). For every j-tuple J in Crossj(P(1)), we define the polyad of J by P̂(j−1)(J) =

⋃ {
P(j−1)(I) : I ∈

[J ]j−1
}
. In other words, P̂(j−1)(J) is the unique collection of j partition classes of P(j−1) each containing

a (j − 1)-subset I of J . (P̂(j−1)(J) is, in fact, a (j, j − 1)-cylinder.) We define the family of all polyads
P̂(j−1) =

{
P̂(j−1)(J) : J ∈ Crossj(P(1))

}
, which we view as a set (as opposed to a multiset, since

P̂(j−1)(J) and P̂(j−1)(J ′) are not necessarily distinct for J 6= J ′). To simplify notation, we shall often
write the elements of P̂(j−1) as P̂(j−1) ∈ P̂(j−1) (dropping the argument J), since the families P with
which we work always satisfy Kj(P̂(j−1)) 6= ∅.

Now, observe that {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} is a partition of Crossj(P(1)). The structural
requirement on the partition P(j) of Crossj(P(1)) is

P(j) ≺ {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} , (4)

where ‘≺’ denotes the refinement relation of set partitions. In other words, we require that the set
of cliques spanned by a polyad in P̂(j−1) is sub-partitioned in P(j) and every partition class in P(j)

belongs (corresponds) to precisely one polyad in P̂(j−1). Note that (4) implies (inductively) that

P(J) =
{
P̂(i)(J)

}j−1

i=1
, where P̂(i)(J) =

⋃ {
P(i)(I) : I ∈ [J ]i

}
, (5)

is a (j, j − 1)-complex (since each P̂(i)(J) is a (j, i)-cylinder).
In the context of applications, we want to control the number of partition classes from P(j) contained

in Kj(P̂(j−1)) for a fixed polyad P̂(j−1) ∈ P̂(j−1). The following definition makes this precise.
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Definition 2.4 (family of partitions). Suppose V is a set of vertices, k ≥ 2 is an integer and
a = (a1, . . . , ak−1) is a vector of positive integers. We say P = P(k − 1,a) = {P(1), . . . ,P(k−1)} is a
family of partitions on V , if it satisfies the following:

(a ) P(1) is a partition of V into a1 classes,
(b ) P(j) is a partition of Crossj(P(1)) refining {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} where, for every

P̂(j−1) ∈ P̂(j−1), |{P(j) ∈ P(j) : P(j) ⊆ Kj(P̂(j−1))}| = aj.
Moreover, we say P = P(k − 1,a) is t-bounded, if max{a1, . . . , ak−1} ≤ t.

Moreover, we want the families P with which we work to be ‘equitable’, in the following sense.

Definition 2.5 ((η, ε, a)-equitable). Suppose V is a set of n vertices, η and ε are positive reals and
a = (a1, . . . , ak−1) is a vector of positive integers, where a1 divides n.

We say a family of partitions P = P(k− 1,a) on V is (η, ε,a)-equitable if it satisfies the following:
(a )

∣∣[V ]k \ Crossk(P(1))
∣∣ ≤ η

(
n
k

)
,

(b ) P(1) = {Vi : i ∈ [a1]} is an equitable vertex partition, i.e., |Vi| = |V |/a1 for i ∈ [a1], and
(c ) for every K ∈ Crossk(P(1)), the (n/a1, k, k−1)-complex P(K) (see (5)) is (ε, (1/a2, . . . , 1/ak−1))-

regular.

2.2. Hypergraph Regularity Lemma and Counting Lemma. Theorems 2.7 and 2.8 pivot on the
following concept, pioneered by Frankl and Rödl [9] for k = 3.

Definition 2.6 ((δk, r)-regular). Let δk > 0 and positive integer r be given. We say that a k-graph
H(k) is

(1) (δk, r)-regular w.r.t. a given (k − 1)-graph H(k−1) if every collection Q(k−1) = {Q(k−1)
i }r

i=1 of
sub-hypergraphs of H(k−1) satisfying

∣∣ ⋃
i∈[r]Kk(Q(k−1)

i )
∣∣ > δk

∣∣Kk(H(k−1))
∣∣ also satisfies∣∣H(k) ∩

⋃
i∈[r]

Kk(Q(k−1)
i )

∣∣ =
(
d(H(k)|H(k−1))± δk

)∣∣ ⋃
i∈[r]

Kk(Q(k−1)
i )

∣∣ ,

and otherwise, we say H(k) is (δk, r)-irregular w.r.t. H(k−1);
(2) (δk, r)-regular w.r.t. a given family of partitions P = P(k − 1,a) on V = V (H(k)) if∣∣ ⋃ {

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂(k−1) s.t. H(k) is (δk, r)-irregular w.r.t. P̂(k−1)
}∣∣ ≤ δk

(|V |
k

)
.

The regularity lemma of [24, 25] is given as follows.

Theorem 2.7 (regularity lemma). Let k ≥ 2 be a fixed integer. For all positive constants η and δk and
functions r : Nk−1 → N and δ : Nk−1 → (0, 1], there exist integers t and n0 so that the following holds.

For every k-uniform hypergraph H(k) with |V (H(k))| = n ≥ n0, where t! divides n, there exists a
family of partitions P = P(k − 1,aP) so that

(i ) P is (η, δ(aP),aP)-equitable and t-bounded;
(ii ) H(k) is (δk, r(aP))-regular w.r.t. P.

The corresponding counting lemma of [24, 25] is given as follows.

Theorem 2.8 (counting lemma). For all integers ` ≥ k ≥ 2 and positive constants γ > 0 and dk > 0,
there exists δk > 0 such that for all integers ak−1, . . . , a2, there exist δ > 0 and positive integers r and
m0 so that the following holds.

Suppose
(i ) R = {R(j)}k−1

j=1 is a (δ, (1/a2, . . . , 1/ak−1))-regular (m, `, k − 1)-complex with m ≥ m0.
(ii ) H(k) ⊆ Kk(R(k−1)) is a k-graph which is, for every Λk ∈ [`]k, (δk, r)-regular w.r.t. R(k−1)[Λk]

with density d(H(k)|R(k−1)[Λk]) ≥ dk.
Then ∣∣K`(H(k))

∣∣ ≥ (1− γ)d
(

`
k

)
k

k−1∏
j=2

(
1
aj

)(`
j

)
×m` .
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3. Proof of Theorem 1.1

Our proof breaks into three parts, the first of which sets up and outlines our argument. The remaining
two sections fill in technical details.

3.1. Setup and Outline of Argument. It suffices to prove Theorem 1.1 for n divisible by a fixed
but arbitary integer T . In particular, suppose that for each ν > 0, fixed integer T and integer m >
m0(k, ν, T ), we have log2 |Forbind(mT,F(k))| ≤ exind(mT,F(k)) + ν(mT )k. Then for a given integer
n > n0(k, ν, T ) not divisible by T , set m = dn/T e so that

log2 |Forbind(n,F(k))| ≤ log2 |Forbind(mT,F(k))| ≤ exind(mT,F(k)) + ν(mT )k

= ẽxind(mT,F(k))
(
mT
k

)
+ ν(mT )k

(3)

≤ ẽxind(n,F(k))
(
n+T

k

)
+ ν(n + T )k

= ẽxind(n,F(k))
(
n
k

)
+ νnk + O(nk−1) = exind(n,F(k)) + νnk + O(nk−1) .

We now prove that for every ν > 0, there exist integers T = T (ν) and n0 = n0(ν, T ) so that for every
n ≥ n0 divisible by T ,

log2 |Forbind(n,F(k))| ≤ exind(n,F(k)) + νnk . (6)

As our proof depends on Theorems 2.7 and 2.8, we first discuss a sequence of auxiliary constants.

Constants. Let ν > 0 be given. Let integer b0 ≥ k be large enough so that (cf. (3))

ẽxind(b0,F(k)) < πind(F(k)) + ν
11 . (7)

With integer b0 fixed above, choose 0 < η = d0 < 1/b0 so that

8d0 log2
e
d0
≤ ν

4 . (8)

For fixed integers ` = b0 ≥ k and fixed constants γ = 1/2 and dk = d0, let δ
(2.8)
k = δ

(2.8)
k (b0, k, 1/2, d0)

be the constant guaranteed by Theorem 2.8. Set

δk = min
{
δ
(2.8)
k ,

(
ν

200

)5
,
(
1− k

b0

)4k
, b−20k

0

}
. (9)

For fixed integers ` = b0 ≥ k, fixed constants γ = 1/2, dk = d0 and δk, and for positive integer variables
yk−1, . . . , y2, let

δ = δ(2.8)(b0, k, 1/2, d0, δk, yk−1, . . . , y2) and r = r(2.8)(b0, k, 1/2, d0, δk, yk−1, . . . , y2) (10)

be the functions guaranteed by Theorem 2.8.
We now define further constants in terms of the Regularity Lemma, Theorem 2.7. With input con-

stants η = d0 and δk and functions δ and r, all defined above, Theorem 2.7 guarantees integer constants

t = t(2.7)(η, δk, δ, r) and n0 = n
(2.7)
0 (η, δk, δ, r).

The constant T advertised in (6) is set to be T = t!.
Now, for n > n0 divisible by T and sufficiently large (wherever needed), we verify (6).

Proof of (6). According to Theorem 2.7, every k-graph G(k) on n vertices (n defined above) admits
an (η, δ(aP),aP)-equitable t-bounded family of partitions P with respect to which G(k) is (δk, r(aP))-
regular. As such, with each G(k) ∈ Forbind(n,F(k)), we may associate a family of partitions PG(k) .
(If G(k) admits multiple such partitions, we arbitrarily choose one of them.) Accordingly, we may
impose an equivalence relation ∼ on Forbind(n,F(k)) according to the following rule: for G(k)

1 ,G(k)
2 ∈

Forbind(n,F(k)),
G(k)

1 ∼ G(k)
2 ⇐⇒ PG(k)

1
= PG(k)

2
.

Let Forbind(n,F(k)) = Π1 ∪ · · · ∪ΠN be the partition of Forbind(n,F(k)) induced by ∼. To prove (6), we
first seek to bound the parameter N = N(n).
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Clearly, N is at most the number of t-bounded families of partitions on the vertex set [n]. For a fixed
vector a = (a1, . . . , ak−1), there are at most

∏k−1
j=1 anj

j families of partitions P(k − 1,a) on the vertex
set [n]. Consequently,

N ≤
∑

a

{ k−1∏
j=1

anj

j : 1 ≤ aj ≤ t for j = 1, . . . , k − 1
}

= tO(nk−1) = 2O(nk−1) . (11)

We now seek to bound |Πα| for every α = 1, . . . , N . Fix 1 ≤ α ≤ N and, correspondingly, family
of partitions Pα = {P(1)

α , . . . ,P
(k−1)
α }, i.e., the family associated to every G(k) ∈ Πα. With each

G(k) ∈ Πα, associate the vector

xG(k) =
(
xP̂(k−1) : P̂(k−1) ∈ P̂(k−1)

α

)
∈ {0, 1}|P̂

(k−1)
α | ,

where, for fixed P̂(k−1) ∈ P̂
(k−1)
α ,

xP̂(k−1) =

{
1 if G(k) is (δk, r(aPα))-regular w.r.t. P̂(k−1) and d(G(k)|P̂(k−1)) ∈ [d0, 1− d0],
0 otherwise.

(12)

Then |{xG(k) : G(k) ∈ Πα}| ≤ 2|P̂
(k−1)
α |, where the t-boundedness of Pα gives

∣∣P̂(k−1)
α

∣∣ =
(

a1

k

) k−1∏
j=2

a
(k

j)
j ≤ t2

k

= O(1). (13)

With α ∈ [N ] still fixed, now fix vector x ∈ {0, 1}|P̂(k−1)
α | and define Πα,x = {G(k) ∈ Πα : xG(k) = x}.

We will prove the following lemma.

Lemma 3.1. log2 |Πα,x| ≤ exind(n,F(k)) + ν
2nk .

Now, Lemma 3.1, combined with (11) and (13), implies (6). Indeed

|Forbind(n,F(k))| =
N∑

α=1

|Πα| =
N∑

α=1

∑ {
|Πα,x| : x ∈ {0, 1}|P̂

(k−1)
α |}

≤ 2O(nk−1) ×O(1)× 2exind(n,F(k))+
ν
2 nk

≤ 2exind(n,F(k))+νnk

,

where the last inequality holds for sufficiently large n. It remains to prove Lemma 3.1.

3.2. Proof of Lemma 3.1. Fix α ∈ [N ] and, correspondingly, Pα = Pα(k − 1,aPα) with aPα =
(a1, . . . , ak−1). Fix x = (xP̂(k−1) : P̂(k−1) ∈ P̂

(k−1)
α ). Define O(k)

α,x to be the set of k-tuples K ∈
Crossk(P(1)

α ) for which every G(k) ∈ Πα,x is ‘regular’ w.r.t. P̂(k−1)(K) and ‘moderately dense’:

O(k)
α,x =

⋃ {
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂(k−1)

α satisfies xP̂(k−1) = 1 (cf. 12))
}

. (14)

(The O-notation signifies to us that these are the k-tuples whose polyads earn a ‘One’ from x.) Note
that every k-tuple K ∈

(
[n]
k

)
\ O(k)

α,x satisfies that either

(I) K 6∈ Crossk(P(1)
α ), or

(II) xP̂(k−1)(K) = 0, which means (cf. (12)) that for every G(k) ∈ Πα,x:

(a) G(k) is (δk, r(aPα))-irregular w.r.t. P̂(k−1)(K), or
(b) d(G(k)|P̂(k−1)(K)) < d0, or
(c) d(G(k)|P̂(k−1)(K)) > 1− d0.
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Note that conditions (b) and (c) are exclusive (since d0 ≤ 1/2) but neither (a) and (b) nor (a) and (c)
are necessarily. As such, we set

P̂
(k−1)
α,x,irr =

{
P̂(k−1) ∈ P̂(k−1)

α : ∀G(k) ∈ Πα,x, G(k) is (δk, r(aPα))-irregular w.r.t. P̂(k−1)
}

,

P̂
(k−1)
α,x,− =

{
P̂(k−1) ∈ P̂(k−1)

α : ∀G(k) ∈ Πα,x, d(G(k)|P̂(k−1)) < d0

}
\ P̂

(k−1)
α,x,irr,

P̂
(k−1)
α,x,+ =

{
P̂(k−1) ∈ P̂(k−1)

α : ∀G(k) ∈ Πα,x, d(G(k)|P̂(k−1)) > 1− d0

}
\ P̂

(k−1)
α,x,irr. (15)

Note that, as defined, P̂
(k−1)
α,x,irr, P̂

(k−1)
α,x,− and P̂

(k−1)
α,x,+ are pairwise disjoint.

Observe that every G(k) ∈ Πα,x can be written as

G(k) = G(k)
α,x ∪ G(k)

α,non-cross ∪ G
(k)
α,x,irr ∪ G

(k)
α,x,− ∪ G

(k)
α,x,+ (16)

where G(k)
α,x = G(k) ∩ O(k)

α,x, G(k)
α,non-cross = G(k) \ Crossk(P(1)

α ), and for each ∗ ∈ {irr,−,+},

G(k)
α,x,∗ = Gk ∩

⋃ {
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
α,x,∗

}
.

To bound the number of G(k) ∈ Πα,x, we estimate the total number of k-graphs of each of the five forms
in the union in (16), and multiply.

Estimations for the middle three forms are easy. Indeed, every G(k) ∈ Πα,x is (δk, r(aP))-regular
w.r.t. the (η, δ(aPα),aPα)-equitable partition Pα. Hence, all possible k-graphs of the form G(k)

α,non-cross,
G(k)

α,x,irr and G(k)
α,x,− have respective sizes

|G(k)
α,non-cross| ≤ η

(
n
k

)
, |G(k)

α,x,irr| ≤ δk

(
n
k

)
, |G(k)

α,x,−| ≤ d0

(
n
k

)
.

Therefore, with η, δk, d0 < 1/2 and n sufficiently large, there are, respectively, at most

η
(
n
k

)∑
i=0

((
n
k

)
i

)
≤ 22ηnk log2

e
η ,

δk

(
n
k

)∑
i=0

((
n
k

)
i

)
≤ 22δknk log2

e
δk ,

d0

(
n
k

)∑
i=0

((
n
k

)
i

)
≤ 22d0nk log2

e
d0 , (17)

k-graphs of the form G(k)
α,non-cross, G(k)

α,x,irr and G(k)
α,x,−.

Bounding the number of k-graphs of the form G(k)
α,x,+ is similar to the work above. Such a k-

graph G(k)
+ must satisfy G(k)

+ ⊆
⋃ {

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂
(k−1)
α,x,+

}
, where for each P̂(k−1) ∈ P̂

(k−1)
α,x,+ ,

d(G(k)
+ |P̂(k−1)) > 1− d0. Setting

σ =
∣∣ ⋃ {

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂
(k−1)
α,x,+

}∣∣ =
∑ {∣∣Kk(P̂(k−1))

∣∣ : P̂(k−1) ∈ P̂
(k−1)
α,x,+

}
,

we see that G(k)
+ is one of the sub-hypergraphs of

⋃ {
Kk(P̂(k−1)) : P̂(k−1) ∈ P̂

(k−1)
α,x,+

}
with size (1−d0)σ ≤

|G(k)
+ | ≤ σ. The number of such sub-hypergraphs is

σ∑
i=(1−d0)σ

(
σ

i

)
≤ 22d0σ log2

e
d0 ≤ 22d0nk log2

e
d0 , (18)

which bounds the number of k-graphs of the form G(k)
α,x,+.

To bound the number of k-graphs of the form G(k)
α,x, we require the following proposition, the proof of

which we give momentarily.

Proposition 3.2.
∣∣O(k)

α,x

∣∣ ≤ exind(n,F(k)) + ν
4nk.

Proposition 3.2 implies there are at most

2|O
(k)
α,x| ≤ 2exind(n,F(k))+

ν
4 nk

(19)

k-graphs of the form G(k)
α,x.
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To conclude the proof of Lemma 3.1, we combine (16)–(19) and use (8) and3 δk ≤ d0 = η from (9) to
conclude

log2 |Πα,x| ≤ exind(n,F(k)) +
(
2η log2

e
η + 2δk log2

e
δk

+ 4d0 log2
e
d0

+ ν
4

)
nk ≤ exind(n,F(k)) + ν

2nk,

as promised. It remains to prove Proposition 3.2.

3.3. Proof of Proposition 3.2. In this section, we use the following notation. With α and x fixed, now
fix an arbitrary crossing set A ∈ Crossa1(P

(1)
α ). For ∗ ∈ {irr,−,+}, define auxiliary k-graphs (cf. (12)

and (15))(
A
k

)
α,x

=
{
K ∈

(
A
k

)
: xP̂(k−1)(K) = 1

}
,

(
A
k

)∗
α,x

=
{
K ∈

(
A
k

)
: P̂(k−1)(K) ∈ P̂

(k−1)
α,x,∗

}
,

and observe (
A
k

)
=

(
A
k

)
α,x

∪
(
A
k

)irr

α,x
∪

(
A
k

)−
α,x

∪
(
A
k

)+

α,x
(20)

is a partition. Define

Crossirra1
(P(1)

α ) =
{
A ∈ Crossa1(P

(1)
α ) : |

(
A
k

)irr

α,x
| ≥ δ

1/4
k

(
a1
k

)}
(21)

and Crossrega1
(P(1)

α ) = Crossa1(P
(1)
α )\Crossirra1

(P(1)
α ). The following two facts will imply Proposition 3.2.

Fact 3.3. |Crossirra1
(P(1)

α )| < δ
1/2
k ( n

a1
)a1 .

Fact 3.4. max{|
(
A
k

)
α,x
| : A ∈ Crossrega1

(P(1)
α )} < (ẽxind(a1,F(k)) + ν

9 )
(
a1
k

)
.

We defer the proofs of Facts 3.3 and 3.4 in favor of first showing how they imply Proposition 3.2.
Recall that Proposition 3.2 seeks to bound |O(k)

α,x| (cf. (14)). To that end, we count (in two ways)
pairs (A,K), where A ∈ Crossa1(P

(1)
α ) and K ∈

(
A
k

)
α,x

, and use Facts 3.3 and 3.4 to infer∣∣O(k)
α,x

∣∣( n
a1

)a1−k =
∑ {∣∣(A

k

)
α,x

∣∣ : A ∈ Crossa1(P
(1)
α )

}
=

∑
∗∈{irr,reg}

∑ {∣∣(A
k

)
α,x

∣∣ : A ∈ Cross∗a1
(P(1)

α )
}

≤
∣∣Crossirra1

(P(1)
α )

∣∣(a1
k

)
+

∣∣Crossa1(P
(1)
α )

∣∣ max
{∣∣(A

k

)
α,x

∣∣ : A ∈ Crossrega1
(P(1)

α )
}

≤ δ
1/2
k

(
n
a1

)a1
(
a1
k

)
+

(
ẽxind(a1,F(k)) + ν

9

)(
a1
k

)(
n
a1

)a1

so that (using (9))∣∣O(k)
α,x

∣∣ ≤ (
ẽxind(a1,F(k)) + ν

9 + δ
1/2
k

)
nk

k! ≤
(
ẽxind(a1,F(k)) + ν

8 + o(1)
)(

n
k

)
≤

(
ẽxind(a1,F(k)) + ν

7

)(
n
k

)
.

Since4 a1 ≥ b0 and the sequence (ẽxind(s,F(k)))∞s=1 is non-increasing with limit πind(F(k)) (cf. (3)), we
have (using (7))∣∣O(k)

α,x

∣∣ ≤ (
ẽxind(b0,F(k))+ν

7

)(
n
k

)
<

(
πind(F(k))+ ν

11+ν
7

)(
n
k

)
<

(
πind(F(k))+ν

4

)(
n
k

)
≤

(
ẽxind(n,F(k))+ν

4

)(
n
k

)
,

so that |O(k)
α,x| ≤ exind(n,F(k)) + ν

4nk follows, proving Proposition 3.2.
We now prove Facts 3.3 and 3.4.

Proof of Fact 3.3. To bound |Crossirra1
(P(1)

α )|, we count (in two ways) the number of pairs (A,K), where

A ∈ Crossirra1
(Pα) and K ∈

(
A
k

)irr

α,x
, to infer (cf. (21))∣∣Crossirra1

(Pα)
∣∣× δ

1/4
k

(
a1
k

)
≤

∣∣ ⋃ {
K : P̂(k−1)(K) ∈ P̂

(k−1)
α,x,irr

}∣∣× (
n
a1

)a1−k

=
∣∣ ⋃ {

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂
(k−1)
α,x,irr

}∣∣× (
n
a1

)a1−k
.

3We also use the fact that the function x log2
e
x

is increasing on (0, 1].
4Indeed, bound the fraction |Crossk(P

(1)
α )|

(n
k

)−1
. Since |Crossk(P

(1)
α )| =

(a1
k

)
( n

a1
)k, this fraction equals

(n/a1)k(a1)k/(n)k, and with n sufficiently large, this fraction is at most (1−a−1
1 )k−1. Since Pα is an (η, δ(aPα ), aPα )-

equitable family of partitions, this fraction is at least 1− η. Now a1 ≥ 1/η ≥ b0 follows from (8).
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Since every G(k) ∈ Πα,x is (δk, r(aPα))-regular w.r.t. the family of partitions Pα, the union above
cannot be larger than δk

(
n
k

)
(see Definition 2.6). We therefore infer∣∣Crossirra1

(Pα)
∣∣ ≤ δ

3/4
k

(
n
k

)(
n
a1

)a1−k(
a1
k

)−1 ≤ δ
3/4
k

(
n
a1

)a1
(
1− k−1

a1

)1−k
< δ

1/2
k

(
n
a1

)a1
,

where the last inequality follows from a1 ≥ b0 (see the last footnote) and our choice of δk in (9). �

Proof of Fact 3.4. Assume, on the contrary, that there exists an a1-element set A0 ∈ Crossrega1
(P(1)

α ) for
which ∣∣(A0

k

)
α,x

∣∣ ≥ (
ẽxind(a1,F(k)) + ν

9

)(
a1
k

)
. (22)

This assumption implies the following.

Claim 3.5. There exists a b0-element set B0 ∈
(
A0
b0

)
for which the induced sub-hypergraphs

(
B0
k

)
α,x

=(
A0
k

)
α,x

∩
(
B0
k

)
and

(
B0
k

)irr

α,x
=

(
A0
k

)irr

α,x
∩

(
B0
k

)
satisfy |

(
B0
k

)
α,x
| ≥ exind(b0,F(k)) + 1 and

(
B0
k

)irr

α,x
= ∅.

We defer the proof of Claim 3.5 momentarily in favor of first completing the proof of Fact 3.4.
Fix the b0-element set B0 ∈

(
A0
b0

)
from Claim 3.5. For ∗ ∈ {+,−}, set

(
B0
k

)∗
α,x

=
(
A0
k

)∗
α,x

∩
(
B0
k

)
so

that (20) and
(
B0
k

)irr

α,x
= ∅ from Claim 3.5 imply that(

B0
k

)
=

(
B0
k

)
α,x

∪
(
B0
k

)+

α,x
∪

(
B0
k

)−
α,x

(23)

is a partition. Since (by Claim 3.5) the k-graph
(
B0
k

)
α,x

(on b0 vertices) has at least exind(b0,F(k)) + 1

many edges, it must be the case that there exist a sub-hypergraph
(
B0
k

)′
α,x

⊆
(
B0
k

)
α,x

and an F (k)
0 ∈ F(k)

so that F (k)
0 appears as an induced sub-hypergraph of

(
B0
k

)′
α,x

∪
(
B0
k

)+

α,x
. Indeed, recall the definition

in (1) and set H(k) =
(
B0
k

)
α,x

and take M(k) =
(
B0
k

)+

α,x
(which are disjoint by (23)). Since |H(k)| >

exind(b0,F(k)), there must exist (for our choice of M(k)) a subhypergraph H(k)
0 ⊆ H(k) (which we’ve

denoted in this context by
(
B0
k

)′
α,x

) for which H(k)
0 ∪M(k) 6∈ Forbind(b0,F(k)). This means that there

exists a hypergraph F (k)
0 ∈ F(k) which appears as an induced subhypergraph of H(k)

0 ∪M(k) =
(
B0
k

)′
α,x

∪(
B0
k

)+

α,x
, as asserted. We shall now show that this same F (k)

0 appears as an induced sub-hypergraph of

every G(k) ∈ Πα,x ⊆ Forbind(n,F(k)). This contradiction shows that the assumption in (22) is wrong,
and therefore proves Fact 3.4.

Indeed, fix F (k)
0 ∈ F(k) as above and fix any G(k)

0 ∈ Πα,x. For convenience, we also write F (k)
0 as the

induced copy appearing in
(
B0
k

)′
α,x

∪
(
B0
k

)+

α,x
. We write F0 = V (F (k)

0 ) ⊆ B0 as the vertex set of this copy
and set f0 = |F0|. For notational simplicity, we shall assume, w.l.o.g., that F0 = [f0] ⊂ [n] and that,
moreover,

1 ∈ V1, 2 ∈ V2, . . . , f0 ∈ Vf0 . (24)

(Recall P̂
(1)
α = {V1, . . . , Va1}, i.e., [n] = V1 ∪ · · · ∪ Va1 .) We write F̃ (k)

0 =
(
F0
k

)
\ F (k)

0 as the complement
of F (k)

0 . Then

F (k)
0 ⊆

(
B0
k

)′
α,x

∪
(
B0
k

)+

α,x
⊆

(
B0
k

)
α,x

∪
(
B0
k

)+

α,x
, and since F (k)

0 is induced (cf. (23)),

F̃ (k)
0 ⊆

((
B0
k

)
α,x

\
(
B0
k

)′
α,x

)
∪

(
B0
k

)−
α,x

⊆
(
B0
k

)
α,x

∪
(
B0
k

)−
α,x

. (25)

We now arrive at a juncture of the proof. For K ∈
(
F0
k

)
, define

H(k)
K =

{
G(k)

0 ∩ Kk(P̂(k−1)(K)) if K ∈ F (k)
0 ,

Kk(P̂(k−1)(K)) \ G(k)
0 if K ∈ F̃ (k)

0 ,
and H(k) =

⋃ {
H(k)

K : K ∈
(
F0
k

)}
. (26)



HEREDITARY PROPERTIES OF HYPERGRAPHS 11

It follows from this construction that every element of Kf0(H(k)) corresponds to an induced copy of
F (k)

0 appearing in G(k)
0 . Indeed, fix a copy K

(k)
f0

in H(k), and write its vertices as 1′ ∈ V1, . . . , f
′
0 ∈ Vf0 .

(Recall we took F0 = V (F (k)
0 ) = {1, . . . , f0}, where 1 ∈ V1, . . . , f0 ∈ Vf0 .) Every element K ′ ∈

({1′,...,f ′0}
k

)
appears in H(k). When K ′ corresponds to a k-tuple K ∈ F (k)

0 ⊆
(
[f0]
k

)
(by removing the primes from

the vertex labels), then K ′ appears in G(k)
0 (by (26)). Otherwise, when K ′ corresponds to a k-tuple

K ∈ F̃ (k)
0 =

(
[f0]
k

)
\ F (k)

0 , then K ′ does not appear in G(k)
0 (again, by (26)). We will therefore show that

|Kf0(H(k))| > 0 to produce the contradiction to G(k)
0 ∈ Forbind(n,F(k)) that we promised earlier. To

prove |Kf0(H(k))| > 0, we appeal to the Counting Lemma, Theorem 2.8.
Define (n/a1, f0, k − 1)-complex R = {R(j)}k−1

j=1 by setting, for each j = 1, . . . , k − 1,

R(j) =
⋃ {

P(j)(J) : J ∈
(
F0
j

)}
. (27)

We apply Theorem 2.8 to the k-graph H(k) and complex R, but first check that the hypotheses of
Theorem 2.8 are met:

(i) R is a (δ(aP), (1/a2, . . . , 1/ak−1))-regular (n/a1, f0, k − 1)-complex automatically, since Pα is
an (η, δ(aP),aP)-equitable family of partitions. Note that the function δ is chosen appropriately
in (10) for an application of Theorem 2.8.

(ii) H(k) ⊆ Kk(R(k−1)) follows from (26) and (27). We claim that, for each K ∈
(
F0
k

)
, H(k) is

(δk, r(aP))-regular w.r.t. R(k−1)[K] = P̂(k−1)(K) (cf. (24)) with d(H(k)|P̂(k−1)(K)) ≥ d0. In-
deed, we first recall that G(k)

0 is (δk, r(aP))-regular w.r.t. P̂(k−1)(K) (since
(
B0
k

)irr

α,x
= ∅), and

now consider two cases.

Case 1 (K ∈ F (k)
0 ). Here, H(k)

K = G(k)
0 ∩ Kk(P̂(k−1)(K)) (cf. (26)) is (δk, r(aP))-regular

w.r.t. P̂(k−1)(K). If K ∈
(
B0
k

)
α,x

(cf. (25)), then d(H(k)|P̂(k−1)(K)) ≥ d0, and if K ∈(
B0
k

)+

α,x
, then d(H(k)|P̂(k−1)(K)) ≥ 1− d0 ≥ d0.

Case 2 (K ∈ F̃ (k)
0 ). Here, H(k)

K = Kk(P̂(k−1)(K)) \ G(k)
0 (cf. (26)) is (δk, r(aP))-regular

w.r.t. P̂(k−1)(K) because its ‘complement’ G(k)
0 ∩Kk(P̂(k−1)(K)) is. If K ∈

(
B0
k

)
α,x

(cf. (25)),

then d(G(k)
0 |P̂(k−1)(K)) ≤ 1−d0, and if K ∈

(
B0
k

)−
α,x

, then d(G(k)
0 |P̂(k−1)(K)) ≤ d0 ≤ 1−d0.

Either way, d(H(k)|P̂(k−1)(K)) = 1− d(G(k)
0 |P̂(k−1)(K)) ≥ d0.

Note that the constant δk > 0 and function r were chosen appropriately in (9) and (10) for an
application of Theorem 2.8;

It is appropriate to apply the Counting Lemma to H(k) and R, and so we conclude

∣∣Kf0(H(k))
∣∣ ≥ 1

2d

(
f0
k

)
0

k−1∏
j=2

(
1
aj

)(f0
j

)(
n
a1

)f0
> 0.

This concludes our proof of Fact 3.4. �

Proof of Claim 3.5. The proof is a routine application of the first moment method. Fix any a1-element
set A0 ∈ Crossrega1

(P(1)
α ) satisfying (22) and write |

(
A0
k

)
a,x

∣∣ = c
(
a1
k

)
for some constant 0 ≤ c ≤ 1. Our

assumption in (22) is that

c ≥ ẽxind(a1,F(k)) + ν
9 . (28)
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For B ∈
(
A0
b0

)
chosen uniformly at random, consider the random variables XB =

(
b0
k

)
− |

(
B
k

)
α,x
| and

YB = |
(
B
k

)irr

α,x
|. Then

E XB =
((

a1
k

)
−

∣∣(A0
k

)
α,x

∣∣)(
a1−k
b0−k

)(
a1
b0

) = (1− c)
(
b0
k

)
and E YB = |

(
A0
k

)irr

α,x
|
(
a1−k
b0−k

)(
a1
b0

) < δ
1/4
k

(
b0
k

)
< δ

1/5
k ,

where the inequalities above hold by virtue of A0 ∈ Crossrega1
(P(1)

α ) (cf. (21)) and our choice of δk in (9).
The Markov inequality then yields

Prob
[
XB ≥ E XB + 2δ

1/5
k

(
b0
k

)]
+ Prob[YB ≥ 1] ≤

(
1 + 2δ

1/5
k

)−1 + δ
1/5
k < 1,

where the last inequality holds by our choice of δk in (9). Thus, there exists a set B0 ∈
(
A0
b0

)
for which(

B
k

)irr

α,x
= ∅ and for which∣∣(B0
k

)
α,x

∣∣ ≥ (
c− 2δ

1/5
k

)(
b0
k

) (28)

≥
(
ẽxind(a1,F(k)) + ν

9 − 2δ
1/5
k

)(
b0
k

) (9)

≥
(
ẽxind(a1,F(k)) + ν

10

)(
b0
k

)
(3)

≥
(
πind(F(k)) + ν

10

)(
b0
k

) (7)

≥
(
ẽxind(b0,F(k))− ν

11 + ν
10

)(
b0
k

)
= exind(b0,F(k)) + ν

110

(
b0
k

)
.

Since
∣∣(B0

k

)
α,x

∣∣ and exind(b0,F(k)) are integers, we have that
∣∣(B0

k

)
α,x

∣∣ ≥ exind(b0,F(k))+1, as promised.
�

References

[1] V.E. Alekseev, On the entropy values of hereditary classes of graphs, Discrete Mathematics and Applications 3 (1993),

191–199.

[2] B. Bollobás, A. Thomason, Projections of bodies and hereditary properties of hypergraphs, Bull. London. Math. Soc. 27
(1995), 417–424.

[3] B. Bollobás, A. Thomason, Hereditary and monotone properties of graphs, The Mathematics of Paul Erdős, II,
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