
ON RANDOM SAMPLING IN UNIFORM HYPERGRAPHS

ANDRZEJ CZYGRINOW AND BRENDAN NAGLE

Abstract. A k-graph G(k) on vertex set [n] = {1, . . . , n} is said to be (ρ, ζ)-uniform if every S ⊆ [n]
of size s = |S| > ζn spans (ρ ± ζ)

(s
k

)
edges. A ‘grabbing lemma’ of Mubayi and Rödl shows that

this property is typically inherited locally: if G(k) is (ρ, ζ)-uniform, then all but exp{−s1/k/20}
(n

s

)
sets

S ∈
([n]

s

)
span (ρ, ζ′)-uniform subhypergraphs G(k)[S], where ζ′ → 0 as ζ → 0, s ≥ s0(ζ′) and n is

sufficiently large. In this paper, we establish a grabbing lemma for a different concept of hypergraph
uniformity, and infer the result above as a corollary. In particular, we improve, in the context above,

the error exp{−s1/k/20} to exp{−cs}, for a constant c = c(k, ζ′) > 0.

1. Introduction

A k-graph G(k) ⊆
(
[n]
k

)
with vertex set [n] is (ρ, ζ)-uniform if every S ⊆ [n], s = |S| > ζn, spans

(ρ± ζ)
(

s
k

)
edges. (Here, ρ± ζ denotes a quantity between ρ− ζ and ρ + ζ.) It follows by definition that

the induced subhypergraph G(k)[S] = G(k)∩
(
S
k

)
inherits (ρ, ζ/β)-uniformity whenever s ≥ βn. A similar

inheritance ‘typically’ holds when s = o(n), by the following result of D. Mubayi and V. Rödl [9] (which
we call the ‘grabbing lemma’).

Theorem 1.1 (Mubayi, Rödl [9]). For all integers k, 0 < ρ < 1 and ζ ′ > 0, there exist ζ > 0 and
integers s and n0 so that, whenever G(k) is a (ρ, ζ)-uniform k-graph on vertex set [n], n > n0, then all
but exp{−s1/k/20}

(
n
s

)
sets S ∈

(
n
s

)
span (ρ, ζ ′)-uniform subhypergraphs G(k)[S].

The first result in the direction of Theorem 1.1 is due to R. Duke and Rödl [4], who proved a similar
statement for k = 2. They used their result to show that, if a graph G on n vertices cannot be made k-
colorable by deleting o(n2) edges, then G contains a subgraph on O(1) vertices which is not k-colorable,
confirming a conjecture of Erdős. Theorem 1.1 extended a result of N. Alon, W. Fernandez de la Vega,
R. Kannan and M. Karpinski [1], where (in the context above) exp{−s1/k/20} is replaced by 1/40. Here,
we consider a statement (Theorem 1.5, below) like Theorem 1.1 for a different context of hypergraph
‘uniformity’, and will then infer Theorem 1.1 as a corollary. Before we state our main result (which
requires some preparation), we make a few general remarks.

All results in this paper concern ‘partite’ k-graphs, where a k-graph G(k) is `-partite with `-partition
V (G(k)) = U1 ∪ · · · ∪ U`, if each of its edges meets each Ui, 1 ≤ i ≤ `, at most once, i.e., all edges
of G(k) cross the vertex partition. Theorem 1.1 is equivalent1 to a k-partite version thereof, which we
now present. For G(k) with k-partition U1 ∪ · · · ∪ Uk and for S = (S1, . . . , Sk), where ∅ 6= Si ⊆ Ui,
1 ≤ i ≤ k, we write G(k)[S] = G(k) ∩

(
S1∪···∪Sk

k

)
for the subhypergraph of G(k) induced by S, and

dG(k)(S) = |G(k)[S]|/(|S1| · · · |Sk|) for the density of G(k) w.r.t. S. To conserve terminology, we say
that G(k) is (ρ, ζ)-uniform if for all such S = (S1, . . . , Sk) where |Si| > ζ|Ui|, 1 ≤ i ≤ k, we have
dG(k)(S) = ρ± ζ. The following version of Theorem 1.1 mirrors one in [9].

Theorem 1.2. For all integers k ≥ 2 and ζ ′ > 0, there exist ζ, c > 0 and integers s0 and n0 so
that, whenever G(k) is a (ρ, ζ)-uniform k-partite k-graph with k-partition V (G(k)) = U1 ∪ · · · ∪ Uk,
where ρ ∈ [0, 1] and |Ui| = ni > n0, 1 ≤ i ≤ k, then for all s0 ≤ si ≤ ni, 1 ≤ i ≤ k, all but
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1The equivalence follows by a standard application of the ‘weak’ hypergraph regularity lemma (see [9]).
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exp{−c min{si : 1 ≤ i ≤ k}}
∏

1≤i≤k

(
ni

si

)
k-tuples S = (S1, . . . , Sk) of sets Si ∈

(
Ui

si

)
, 1 ≤ i ≤ k, yield

(ρ, ζ ′)-uniform k-partite k-graphs G(k)[S].

It suffices to prove Theorem 1.2 in the case that s2 = n2, . . . , sk = nk. That is to say, iterating the
following statement yields Theorem 1.2.

Theorem 1.3. For all integers k ≥ 2 and ζ0 > 0, there exist ζ = ζThm. 1.3 > 0 and c = cThm. 1.3 > 0 and
integers s0 = sThm 1.3 and n0 = nThm. 1.3 so that, whenever G(k) is a (ρ, ζ)-uniform k-partite k-graph
with k-partition V (G(k)) = U1 ∪ · · · ∪ Uk, where ρ ∈ [0, 1] and |Ui| = ni > n0, 1 ≤ i ≤ k, then for
all s0 ≤ s ≤ n1, all but exp{−c s}

(
n1
s

)
sets S ∈

(
U1
s

)
yield S = (S, U2, . . . , Uk) for which G(k)[S] is

(ρ, ζ0)-uniform.

We shall deduce Theorem 1.3 (in Section 4) from our main result (Theorem 1.5, below) together with
an application of a hypergraph regularity lemma of Rödl and Schacht [11] (presented in Section 3). We
now prepare to state our main result.

For positive integers j ≤ ` and a vertex partition V1 ∪ · · · ∪ V`, an (`, j)-cylinder H(j) is an `-partite
j-uniform hypergraph with the vertex partition above, i.e., H(j) is a subset of K(j)(V1, . . . , V`), the
complete `-partite j-graph. For a positive integer i ≤ j, let Ki(H(j)) denote the family of all crossing
i-element subsets which span complete subhypergraphs in H(j). We say that an (`, j−1)-cylinder H(j−1)

underlies an (`, j)-cylinder H(j) if H(j) ⊆ Kj(H(j−1)). For an integer h ≤ `, an (`, h)-complex H is a
collection of (`, j)-cylinders {H(j)}h

j=1 where H(1) = V1 ∪ · · · ∪ V` and where H(j−1) underlies H(j) for
2 ≤ j ≤ h. The following definition provides central density and regularity concepts of this paper.

Definition 1.4. Let constants d, d2, . . . , dh ∈ [0, 1] and ε > 0 be given.

(1) For a (j, j)-cylinder H(j) with an underlying (j, j − 1)-cylinder H(j−1), let Q(j−1) ⊆ H(j−1).
The density of H(j) w.r.t. Q(j−1) is d(H(j)|Q(j−1)) = |H(j) ∩ Kj(Q(j−1))|/|Kj(Q(j−1))|, when

Kj(Q(j−1)) 6= ∅, and 0 otherwise.

(2) A (j, j)-cylinder H(j) is (ε, d)-regular w.r.t. an underlying (j, j − 1)-cylinder H(j−1) if, whenever
Q(j−1) ⊆ H(j−1) satisfies

∣∣Kj(Q(j−1))
∣∣ ≥ ε

∣∣Kj(H(j−1))
∣∣, then d(H(j)|Q(j−1)) = d± ε.

(3) An (`, j)-cylinder H(j) is (ε, d)-regular w.r.t. an underlying (`, j−1)-cylinder H(j−1) if, for every

Λ ∈
(
[`]
j

)
, H(j)[

⋃
i∈Λ Vi] is (ε, d)-regular w.r.t. H(j−1)[

⋃
i∈Λ Vi].

(4) An (`, h)-complex H = {H(j)}h
j=1 is (ε, (d2, . . . , dh))-regular if, for every j = 2, . . . , h, H(j) is

(ε, dj)-regular w.r.t. H(j−1).

We prove our following main result in Section 2.

Theorem 1.5 (Grabbing Lemma for Complexes). For all integers k ≥ 2 and constants d2, . . . , dk−1, ε
′ >

0, there exist ε = εThm. 1.5 > 0 and c = cThm. 1.5 > 0 and integers s0 = sThm. 1.5 and m0 = mThm. 1.5 so
that, whenever H = {H(j)}k

j=1 is an (ε, (d2, . . . , dk−1, dk))-regular (k, k)-complex, where dk ∈ [0, 1] and
|Vi| = mi > m0 for 1 ≤ i ≤ k, then, for all s0 ≤ s ≤ m1, all but exp{−c s}

(
m1
s

)
sets S ∈

(
V1
s

)
yield

S = (S, V2, . . . , Vk) for which H[S] def= {H(j)[S]}k
j=1 is an (ε′, (d2, . . . , dk))-regular (k, k)-complex.

We conclude this introduction with two facts used throughout this paper. The first fact is the well-
known Chernoff-Hoeffding inequality (see [6]):

If a random variable X has hypergeometric distribution and ε ∈ (0, 3/2], then

Pr
(
|X − E X| ≥ ε E X

)
≤ 2 exp

{
− ε2

3 E X
}

. (1)

The second fact is a ‘warm-up’ to Theorem 1.3, and asserts that induced subhypergraphs typically inherit
correct density.

Fact 1.6. Let η > 0 be given and suppose G(k) is a ρ-dense k-partite k-graph with k-partition U1∪· · ·∪Uk,
where each |Ui| = ni > n0(η). For 24/η10 ≤ s ≤ n1, all but exp{−(η8/6)s}

(
n1
s

)
sets S ∈

(
U1
s

)
render

S = (S, U2, . . . , Uk) for which dG(k)(S) = ρ± η.
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Proof. Without loss of generality, take 0 < η < 1/8 to satisfy 1/η2 6∈ N. For a vertex u ∈ U1,
let G(k)

u = {K \ {u} : u ∈ K ∈ G(k)}. For i ∈ I = [d1/η2e], let U i
1 = {u ∈ U1 : (i − 1)η2 ≤

dG(k)
u

(U2, . . . , Uk) < iη2} and write I+ = {i ∈ I : |U i
1| ≥ η4n1} and I− = I \ I+. Then (ρ − 2η2)n1 ≤∑

i∈I+

∑
u∈Ui

1
dG(k)

u
(U2, . . . , Uk) ≤ ρn1 and so η2

∑
i∈I+ i|U i

1| = (ρ ± 2η2)n1. For S ∈
(
U1
s

)
selected

uniformly at random and i ∈ I+, the Chernoff-Hoeffding inequality (1) ensures

P
[
∃ i ∈ I+ : |S ∩ U i

1| 6=
(
1± η2

)
s

n1
|U i

1|
]
≤ 2dη−2e exp

{
− η4

3
s

n1
|U i

1|
}
≤ 4

η2 exp
{
− η8

3 s
}
≤ exp

{
− η8

6 s
}
.

Consider the event that for each i ∈ I+, |S ∩ U i
1| = (1± η2) s

n1
|U i

1|. Then dG(k)(S) is at least

1
s

∑
i∈I+

∑
u∈S∩Ui

1

dG(k)
u

(U2, . . . , Uk) ≥ η2

s

∑
i∈I+

(i− 1)|S ∩ U i
1| ≥ (1− η2)(ρ− 2η2)− η2 ≥ ρ− 4η2 > ρ− η,

and similarly, dG(k)(S) ≤ (1 + η2)(ρ + 2η2) + s−1
∑

i∈I− |S ∩U i
1|. Since

∑
i∈I− |S ∩U i

1| = s−
∑

i∈I+ |S ∩
U i

1| ≤ s− (1− η2) s
n1

∑
i∈I+ |U i

1| ≤ 3η2s, we obtain dG(k)(S) ≤ ρ + 8η2 < ρ + η. �

Acknowledgement. The authors are indebted to the referees for their very careful reading and insightful
comments, which improved the exposition of this paper.

2. Proof of Theorem 1.5

Notice that, in Theorem 1.5, the constant dk ∈ [0, 1] is quantified after d2, . . . , dk−1 ∈ (0, 1] (and,
allowed to be zero). We consider the following analogous statement where all d2, . . . , dk−1, dk > 0 are
quantified together, and up front.

Theorem 2.1. For all integers k ≥ 2 and constants d2, . . . , dk−1, dk, ε′ > 0, there exist ε = εThm. 2.1 > 0
and c = cThm. 2.1 > 0 and integers s0 = sThm. 2.1 and m0 = mThm. 2.1 so that, whenever H = {H(j)}k

j=1

is an (ε, (d2, . . . , dk−1, dk))-regular (k, k)-complex, where |Vi| = mi > m0 for 1 ≤ i ≤ k, then, for all s0 ≤
s ≤ m1, all but exp{−c s}

(
m1
s

)
sets S ∈

(
V1
s

)
yield S = (S, V2, . . . , Vk) for which H[S] def= {H(j)[S]}k

j=1

is an (ε′, (d2, . . . , dk))-regular (k, k)-complex.

Clearly, Theorem 1.5 implies Theorem 2.1, but these statements are, in fact, equivalent. We establish
that Theorem 2.1 implies Theorem 1.5 in the Appendix. In the remainder of this section, we prove
Theorem 2.1. To that end, our proof takes place in three steps. In Section 2.1, we prove Theorem 2.1
for k = 2. In Section 2.2, we show that the case k = 2 implies the case when, in the complex H,
H(k−1) = K(k−1)[V1, . . . , V`]. In Section 2.3, we show the latter case implies Theorem 2.1 in full.

2.1. Proof when k = 2. The proof of Theorem 2.1 when k = 2 is well-known (and short). We include
it here for completeness, and to that end, use the following lemma of Alon et al. [2] (adapted from [3]).

Lemma 2.2. Let d > 0 be given and let F be a bipartite graph with bipartition X∪Y . If 0 < 4µ < d2 and
F is (µ, d)-regular (w.r.t. X ∪ Y ), then all but 2µ|X| vertices x ∈ X satisfy deg(x) = (d±µ)|Y |, and all
but 4µ|X|2 pairs x, x′ ∈ X satisfy deg(x, x′) = (d± µ)2|Y |. Conversely, if |X|, |Y | are sufficiently large
w.r.t. d, µ and all but µ|X| vertices x ∈ X have deg(x) = (d ± µ)|Y | and all but µ|X|2 pairs x, x′ ∈ X
have deg(x, x′) = (d± µ)2|Y |, then F is (3µ1/5, d)-regular.

Proof of Theorem 2.1 (k = 2). Let d2, ε
′ > 0 be given. Set ε = d2

2(ε
′/5)5 and c = (εd2)2/24. Let

s0 ≥ 96/(ε3d2
2) be large enough (as a lower bound on |X|, |Y |) to enable an application of Lemma 2.2.

We take m1,m2 sufficiently large whenever needed. Let H = H(2) be an (ε, d2)-regular bipartite graph
with bipartition H(1) = V1 ∪ V2, where |V1| = m1 and |V2| = m2. For s0 ≤ s ≤ m1, let S ∈

(
V1
s

)
be

chosen uniformly at random. For vertices v2, v
′
2 ∈ V2, write degS(v2) = |NH(v2)∩S| and degS(v2, v

′
2) =

|NH(v2, v
′
2) ∩ S|, where NH(v2, v

′
2) = NH(v2) ∩NH(v′2). Let V ′

2 be the set of vertices v2 ∈ V2 for which
deg(v2) = (d2±ε)m1 and let

(
V2
2

)′
be the set of pairs {v2, v

′
2} ∈

(
V2
2

)
for which deg(v2, v

′
2) = (d2±ε)2m1.

For fixed v2 ∈ V ′
2 , the Chernoff-Hoeffding inequality (1) gives

P
[
degS(v2) 6= (d2±3ε)s

]
≤ P

[
degS(v2) 6= (1±ε)E degS(v2)

]
≤ 2 exp

{
− ε2

3 (d2−ε)s
}
≤ 2 exp

{
− ε2

6 d2s
}
.
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Similarly, for fixed {v2, v
′
2} ∈

(
V2
2

)′
, we have P[degS(v2, v

′
2) 6= (d2 ± 3ε)2s] ≤ 2 exp{−(ε2/12)d2

2s}. Now,
define V ′

2,S ⊆ V ′
2 to be the set of vertices v2 ∈ V ′

2 for which degS(v2) 6= (d2±3ε)s and define
(
V2
2

)′
S
⊆

(
V2
2

)′
to be the set of pairs {v2, v

′
2} ∈

(
V2
2

)′
for which degS(v2, v

′
2) 6= (d2 ± 3ε)2s. By the Markov inequality,

P
[
|V ′

2,S | ≥ εm2 or
∣∣(V2

2

)′
S

∣∣ ≥ εm2
2

]
≤ 2

ε exp
{
− ε2

6 d2s
}

+ 2
ε exp

{
− ε2

12d2
2s

}
≤ exp

{
− ε2

24d2
2s

}
= exp

{
−cs

}
.

The event |V ′
2,S | < εm2 and

∣∣(V2
2

)′
S

∣∣ < εm2
2 implies H[S, V2] is (ε′, d2)-regular. Indeed, by Lemma 2.2,

|V2 \ V ′
2 | < 2εm2 so that with |V ′

2,S | < εm2, we have all but 3εm2 vertices v2 ∈ V2 satisfying degS(v2) =

(d2 ± 3ε)s. By Lemma 2.2,
∣∣(V2

2

)
\

(
V2
2

)′∣∣ < 4εm2
2 so that with

∣∣(V2
2

)′
S

∣∣ < εm2
2, we have all but 5εm2

2

pairs {v2, v
′
2} ∈

(
V2
2

)
satisfying degS(v2, v

′
2) = (d2 ± 3ε)2s. As such, Lemma 2.2 says that H[S, V2] is

(3(5ε)1/5, d2)-regular, and so is (ε′, d2)-regular. �

2.2. Proof for complete underlying cylinders. We use the following lemma of Kohayakawa, Rödl
and Skokan [7], which is an extension of Lemma 2.2. Let F (j) be a (j, j)-cylinder with V (F (j)) =
X1 ∪ · · · ∪ Xj . For x, y ∈ V (F (j)), let F (j)

x = {J \ {x} : x ∈ J ∈ F (j)} and F (j)
xy = F (j)

x ∩ F (j)
y . Let

K
(j)
2,j denote the complete j-partite j-graph with 2 vertices in each class and let K2,j(F (j)) denote the

family of all (2j)-element subsets of V (F (j)) which span a copy of K
(j)
2,j in F (j). Lemma 2.3 establishes

the equivalence of the following three statements:
S1(d, η1) : F (j) is (η1, d)-regular (w.r.t. K(j−1)[X1, . . . , Xj ]).
S2(d, η2) : All but η2|X1| vertices x ∈ X1 satisfy that F (j)

x is (η2, d)-regular (w.r.t. K(j−2)[X2, . . . , Xj ])
and all but η2|X1|2 pairs x, x′ ∈ X1 satisfy that F (j)

xx′ is (η2, d
2)-regular.

S3(d, η3) : F (j) has density dF(j)(X1, . . . , Xj) = d±η3 and
∣∣K2,j(F (j))

∣∣ = (1±η3)(d±η3)2
j ∏j

i=1

(|Xi|
2

)
.

Statements S1, S2 and S3 are equivalent in the following sense.

Lemma 2.3 (Kohayakawa, Rödl, Skokan [7]). Let j ≥ 2 be an integer, let d > 0 be given and fix
1 ≤ a, b ≤ 3. For all ηa > 0, there exists ηb > 0 so that whenever F (j) is a (j, j)-cylinder (as above) with
each |X1|, . . . , |Xj | sufficiently large, then, if F (j) satisfies Sb(d, ηb), then it also satisfies Sa(d, ηa).

Proof of Theorem 2.1 (complete underlying cylinders). Let integer k ≥ 3, dk, ε′ > 0 be given. We define
the promised constants ε, c, s0 in terms of auxiliary constants (and provide a summary of constants below
in (2)). Let η7 = ηLem. 2.3(dk, ε′) be the constant guaranteed by Lemma 2.3 to satisfy S3(dk, η7) =⇒
S1(dk, ε′) (with j = k). Set

η6 = 1
5 min

{
η2k

7 , d2k

k − (dk − η7)2
k}

and let η5 = ηThm. 2.1,k=2(d2k−1

k , η6), c∗ = cThm. 2.1,k=2(d2k−1

k , η6, η5) and s∗ = sThm. 2.1,k=2(d2k−1

k , η6, η5)
be the constants guaranteed to exist by Theorem 2.1 (k = 2). (As we shall use, the proof of Theorem 2.1
(k = 2) gives c∗ = d2k

k η2
5/24.) Set η4 = (η5/3)5 and η3 = d2

k2−2k

η4. Let η2 = ηLem. 2.3(dk, η3) be the con-
stant guaranteed by Lemma 2.3 to satisfy both S1(dk, η2) =⇒ S3(dk, η3) and S1(d2

k, η2) =⇒ S3(d2
k, η3)

(with j = k − 1). Let η1 = ηLem. 2.3(dk, η2) be the constant guaranteed by Lemma 2.3 to satisfy
S1(dk, η1) =⇒ S2(dk, η2) (with j = k). Define ε = η1, c = c∗/2 and s0 = max{s∗, 4/c, 2/(d2k

k η7), 24/η10
6 }.

Note that all constants above can be summarized by the following hierarchy:

dk, ε′ � η7 � η6 � η5 �

η4 =
(

η5
3

)5 � η3 = d2
k2−2k

η4 � η2 � η1 = ε

max
{

c∗ = d2k

k η2
5

24 = 2c, 1
s∗

}
≥ min

{
c∗,

1
s∗

}
≥ 1

s0
.

(2)

We take m0 sufficiently large with respect to all constants above whenever needed. Now, let H(k) be a
(k, k)-cylinder with vertex partition V1 ∪ · · · ∪ Vk, where for each 1 ≤ i ≤ k, |Vi| = mi ≥ m0, and where
H(k) is (ε, dk)-regular (w.r.t. K(k−1)[V1, . . . , Vk]). For given s0 ≤ s ≤ m1, we show all but exp{−cs}

(
m1
s

)
sets S ∈

(
V1
s

)
yield S = (S, V2, . . . , Vk) for which H(k)[S] is (ε′, dk)-regular.

We use the following auxiliary bipartite graph F with bipartition V (F ) = X ∪ Y , where X = V1 and
Y = K2,k−1(K(k−1)[V2, . . . , Vk]). Note that |X| = m1 and |Y | =

∏k
i=2

(
mi

2

)
. For x ∈ X and y ∈ Y , let
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{x, y} ∈ F if and only if y ∈ K2,k−1(H(k)
x ). We claim that F is (η5, d

2k−1

k )-regular, and more strongly
(cf. Lemma 2.2) that

all but η4|X| vertices x ∈ X satisfy degF (x) =
(
d2k−1

k ± η4

)
|Y |

and all but η4|X|2 pairs {x, x′} ∈
(
X
2

)
satisfy degF (x, x′) =

(
d2k−1

k ± η4

)2|Y |. (3)

To see (3), observe first that for each {x, x′} ∈
(
X
2

)
, degF (x) =

∣∣K2,k−1(H(k)
x )

∣∣ and degF (x, x′) =∣∣K2,k−1(H(k)
xx′)

∣∣, where these quantities can be estimated with Lemma 2.3. Indeed, since H(k) is (ε, dk)-
regular, Lemma 2.3 (S1 =⇒ S2) asserts that all but η2|V1| vertices x ∈ V1 satisfy that H(k)

x is
(η2, dk)-regular, and for a fixed such x ∈ V1, Lemma 2.3 (S1 =⇒ S3) also asserts that∣∣K2,k−1(H(k)

x )
∣∣ = (1± η3)(dk ± η3)2

k−1
k∏

i=2

(
mi

2

)
=

(
d2k−1

k ± η4

)
|Y |.

This establishes the first assertion in (3), and an analogous argument establishes the second one.
Since F is (η5, d

2k−1

k )-regular, Theorem 2.1 (k = 2) ensures that all but exp{−c∗s}
(
m1
s

)
sets S ∈

(
X
s

)
=(

V1
s

)
satisfy that F [S, Y ] is (η6, d

2k−1

k )-regular. For V = (V1, . . . , Vk), set d = dH(k)(V ) so that d = dk±ε.
Fact 1.6 ensures that all but exp{−(η8

6/6)s}
(
m1
s

)
sets S ∈

(
V1
s

)
satisfy that dH(k)(S) = d± η6 = dk ± η7.

Fix a set S satisfying both conditions, noting that a proportion of at most exp{−c∗s}+exp{−(η8
6/6)s} ≤

exp{− c∗
2 s} = exp{−cs} sets of

(
X
s

)
would not. Since F [S, Y ] is (η6, d

2k−1

k )-regular, Lemma 2.2 says that
all but 2η6|Y | vertices y ∈ Y satisfy degS(y) = (d2k−1

k ± η6)s. The construction of the graph F ensures
|K2,k(H(k)[S])| =

∑
y∈Y

(
degS(y)

2

)
, and so∣∣K2,k(H(k)[S])

∣∣ ≤ (
d2k−1

k + η6

)2 s2

2 |Y |+ η6s
2|Y | ≤

(
d2k

k + 5η6

)(
1 + 1

s−1

)(
s
2

)
|Y |

≤ (1 + η7)
(
d2k

k + η2k

7

)(
s
2

)
|Y | ≤ (1 + η7)(dk + η7)2

k(
s
2

) k∏
i=2

(
mi

2

)
, and

∣∣K2,k(H(k)[S])
∣∣ ≥ (

d2k−1

k − η6

)2 s2

2

(
1− 1

(d2k−1
k −η6)s

)
(|Y | − 2η6|Y |) ≥ (1− η7)

(
d2k

k − 4η6

)(
s
2

)
|Y |

≥ (1− η7)(dk − η7)2
k(

s
2

) k∏
i=2

(
mi

2

)
=⇒

∣∣K2,k(H(k)[S])
∣∣ = (1± η7)(dk ± η7)2

k(
s
2

) k∏
i=2

(
mi

2

)
.

But now, H(k)[S] has density dH(k)(S) = dk ± η7 and satisfies the estimates above so that Lemma 2.3
(S3 =⇒ S1) implies that H(k)[S] is (ε′, dk)-regular. �

2.3. Proof of Theorem 2.1. We now prove that Theorem 2.1 follows from the special case of the
previous subsection. A tool in our argument is the following ‘dense counting lemma’ of Kohayakawa,
Rödl and Skokan (Theorem 6.5 in [7]).

Lemma 2.4 (Dense Counting Lemma). For all integers ` ≥ j ≥ 2 and γ, dj , . . . , d2 > 0, there exist
an ε = εLem. 2.4 > 0 and a positive integer m0 = mLem. 2.4 so that whenever H = {H(h)}j

h=1 is an
(ε, (d2, . . . , dj))-regular (`, j)-complex with |Vi| = mi > m0 for 1 ≤ i ≤ `, then |K`(H(j))| = (1 ±

γ)
∏j

h=2 d

(
`
h

)
h ×

∏`
i=1 mi.

Proof of Theorem 2.1. Let integer k ≥ 3 and dk, dk−1, . . . , d2, ε
′ > 0 be given. Without loss of gen-

erality, assume ε′ < 1
2

∏k−1
h=2 d

(
k−1

h

)
h . We define the promised constants ε, c, s0 in terms of auxiliary

constants. For 3 ≤ j ≤ k, let ε̂j = εLem. 2.4(j, j − 1, 1/2, dj−1, . . . , d2) and m̂j = mLem. 2.4(j, j −
1, 1/2, dj−1, . . . , d2) be the constants guaranteed by Lemma 2.4. We shall assume, w.l.o.g., that 2ε′ ≤
min{ε̂3, . . . , ε̂k,

∏k−1
j=2 dkj

j }. For 2 ≤ j ≤ k, let εj = εThm. 2.1, comp(dj , (ε′)2), cj = cThm. 2.1, comp(dj , (ε′)2)
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and sj = sThm. 2.1, comp(dj , (ε′)2) be the constants guaranteed by Theorem 2.1 (for complete underlying
cylinders). Set

ε = 1
2 min{ε2

2, . . . , ε
2
k} , c = 1

2 min{c2, . . . , ck} and s0 = max{s2, . . . , sk, m̂3, . . . , m̂k, 2k/c} .

We shall take m0 sufficiently large whenever needed. With these constants, let H = {H(j)}k
j=1 be an

(ε, (d2, . . . , dk))-regular (k, k)-complex, where |Vi| = mi > m0 for each 1 ≤ i ≤ k. Let s0 ≤ s ≤ m1 be
given. We prove that all but exp{−cs}

(
m1
s

)
sets S ∈

(
V1
s

)
yield S = (S, V2, . . . , Vk) for which H[S] is an

(ε′, (d2, . . . , dk))-regular (k, k)-complex.
We prove, by induction on 2 ≤ j ≤ k, that for each choice of indices 2 ≤ i2 < · · · < ij ≤ k,

all but
(
m1
s

) j∑
i=2

(
j−1
i−1

)
exp{−cis} sets S ∈

(
V1
s

)
satisfy that

H(j)[S, Vi2 , . . . , Vij ] is an (ε′, (d2, . . . , dj))-regular (j, j)-complex, (4)

where H(j) = {H(h)}j
h=1. Theorem 2.1 then easily follows from (4) with j = k. Note that (4) for

j = 2 holds on account of the first subsection. Now, fix indices 2 ≤ i2 < · · · < ij ≤ k, w.l.o.g.,
i2 = 2, . . . , ij = j. If (4) holds through 2 ≤ j − 1 < k, then all but

(
m1
s

) j−1∑
i=2

(
j−2
i−1

)(
j−1
j−i

)
exp{−cis} =

(
m1
s

) j−1∑
i=2

(
j−1
i−1

)
exp{−cis}

sets S ∈
(
V1
s

)
yield S

def= (S, V2, . . . , Vj) for which H(j−1)[S] = {H(h)[S]}j−1
h=1 is an (ε′, (d2, . . . , dj−1))-

regular (j, j − 1)-complex. Let us denote the collection of these sets S by
(
V1
s

)
<j

. Verifying (4) then
reduces to showing that

all but exp{−cjs}
(
m1
s

)
sets S ∈

(
V1
s

)
<j

(5)

yield S = (S, V2, . . . , Vj) for which H(j)[S] is (ε′, dj)-regular w.r.t. H(j−1)[S]. To that end, write H(h)

in place of H(h)[V1, . . . , Vj ], 1 ≤ h ≤ j, so that H(j) = {H(h)}j
h=1 is an (ε, (d2, . . . , dj))-regular (j, j)-

complex (H(1) = V1 ∪ · · · ∪ Vj) satisfying that all sets S ∈
(
V1
s

)
<j

yield S = (S, V2, . . . , Vj) for which

H(j−1)[S] is an (ε′, (d2, . . . , dj−1))-regular (j, j − 1)-complex. We make the following claim.

Claim 2.5. There exists a (j, j)-cylinder H̃(j) with vertex partition V = (V1, . . . , Vj) which is (2ε1/2, dj)-
regular w.r.t. K(j−1)[V ] and for which H(j) = H̃(j) ∩ Kj(H(j−1)).

Now, by Theorem 2.1 (complete underlying cylinders), all but exp{−cjs}
(
m1
s

)
sets S ∈

(
V1
s

)
<j

yield

H̃(j)[S] which is ((ε′)2, dj)-regular (w.r.t. K(j−1)[S]). We claim that any such S ∈
(
V1
s

)
<j

also satisfies

that H(j)[S] is (ε′, dj)-regular w.r.t. H(j−1)[S]. Indeed, fix such an S ∈
(
V1
s

)
<j

and let Q(j−1) ⊆
H(j−1)[S] ⊆ K(j−1)[S] satisfy |Kj(Q(j−1))| > ε′|Kj(H(j−1)[S])|. Lemma 2.4, implies∣∣Kj(H(j−1)[S])

∣∣ ≥ 1
2

j−1∏
h=2

d

(
j
h

)
h × s

j∏
i=2

mi > ε′s

j∏
i=2

mi =⇒
∣∣Kj(Q(j−1))

∣∣ > (ε′)2s
j∏

i=2

mi.

Since H̃(j)[S] is ((ε′)2, dj)-regular, we have |H̃(j)[S]∩Kj(Q(j−1))| = (dj±ε′)|Kj(Q(j−1))|. Since Q(j−1) ⊆
H(j−1), Claim 2.5 implies H̃(j)[S] ∩ Kj(Q(j−1)) = H(j)[S] ∩ Kj(Q(j−1)), which proves (5). �

Proof of Claim 2.5. We define H̃(j) by adding to H(j) each j-tuple J ∈ K(j)[V ] \ Kj(H(j−1)) indepen-
dently with probability dj . Clearly, H(j) = H̃(j) ∩ Kj(H(j−1)). Standard details now show that, w.h.p.,

H̃(j) is (2ε1/2, dj)-regular. Indeed, let Q̃(j−1) ⊆ K(j−1)[V ] satisfy |Kj(Q̃(j−1))| > 2ε1/2
∏j

i=1 mi
def=

2ε1/2M . Write Q(j−1) = Q̃(j−1) ∩ H(j−1) and observe that Kj(Q̃(j−1)) ∩ Kj(H(j−1)) = Kj(Q̃(j−1) ∩
H(j−1)) = Kj(Q(j−1)). Since H̃(j) ∩ Kj(Q(j−1)) = H(j) ∩ Kj(Q(j−1)), the (ε, dj)-regularity of H(j)

w.r.t. H(j−1) implies |H̃(j) ∩ Kj(Q(j−1))| = (dj ± ε)|Kj(Q(j−1))| if |Kj(Q(j−1))| > ε|Kj(H(j−1))|, and
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is at most εM otherwise. From the Chernoff-Hoeffding inequality (1), we have with probability 1 −
exp{−Ω(M/ log M)} that |H̃(j) ∩ (Kj(Q̃(j−1)) \ Kj(H(j−1)))| = (dj ± o(1))|Kj(Q̃(j−1)) \ Kj(H(j−1))| if
|Kj(Q̃(j−1)) \ Kj(H(j−1))| > M/ log M , and is at most M/ log M otherwise. Altogether, we conclude
that with probability 1− exp{−Ω(M/ log M)} (recall |Kj(Q̃(j−1))| > 2ε1/2M),∣∣H̃(j) ∩ Kj(Q̃(j−1))

∣∣ ≤ (
dj + ε + o(1)

)∣∣Kj(Q̃(j−1))
∣∣ + εM + M

log M ≤
(
dj + 2ε1/2

)∣∣Kj(Q̃(j−1))
∣∣, and∣∣H̃(j) ∩ Kj(Q̃(j−1))

∣∣ ≥ (
dj − ε− o(1)

)∣∣Kj(Q̃(j−1))
∣∣− εM − M

log M ≥
(
dj − 2ε1/2

)∣∣Kj(Q̃(j−1))
∣∣.

Since there are at most 2M
∑j

i=1 m−1
i = exp{o(M/ log M)} sub-hypergraphs Q̃(j−1) ⊆ K(j−1)[V ], we

conclude that, with probability 1− o(1), H̃(j) is (2ε1/2, d)-regular. �

3. Regular-approximation Lemma

In this section, we state a regular-approximation lemma (Theorem 3.4) from [11]. We then state and
prove a related proposition (Proposition 3.6).

3.1. Regular-approximation Lemma. The regular-approximation lemma for k-uniform hypergraphs
provides a well-structured family of partitions P = {P(1), . . . ,P(k−1)} of vertices, pairs, . . . , and
(k− 1)-tuples of a given vertex set V . We describe the form of these partitions inductively (cf. [10, 11]):

(a) Let P(1) = {V1, . . . , V|P(1)|} be a partition of V . Relatedly, for 1 ≤ j ≤ |P(1)|, let
• Crossj(P(1)) be the family of all crossing j-tuples J ;
• B(j) be the (auxiliary) partition of Crossj(P(1)) with classes K(j)[Vi1 , . . . , Vij

], 1 ≤ i1 <

· · · < ij ≤ |P(1)|.
(b) Fix an integer 1 ≤ j ≤ k − 1. Assume that, for each 1 ≤ i ≤ j − 1, a partition P(i) of

Crossi(P(1)) has been defined which refines B(i). (These partitions will, inductively, satisfy a
stronger condition revealed in the inductive step.) Relatedly,
• for each I ∈ Crossj−1(P(1)), write P(j−1)(I) for the unique partition class in P(j−1) that

contains I;
• for each J ∈ Crossj(P(1)), define the polyad of J by P̂(j−1)(J) =

⋃ {
P(j−1)(I) : I ∈

(
J

j−1

)}
,

which (since P(j−1) refines B(j−1)) is the union of the unique collection of j distinct
partition classes of P(j−1), each containing a (j − 1)-subset of J ;

• define the family of all polyads P̂(j−1) =
{
P̂(j−1)(J) : J ∈ Crossj(P(1))

}
, and view P̂(j−1)

as a set with elements P̂(j−1) ∈ P̂(j−1). (In particular, note that P̂(j−1)(J) and P̂(j−1)(J ′)
are not necessarily distinct for J 6= J ′.)

(c) Let P(j) be a partition of Crossj(P(1)) which refines the partition {Kj(P̂(j−1)) : P̂(j−1) ∈
P̂(j−1)} (which, in turn, refines the partition B(j)). Note, in particular, that
• the set of cliques spanned by a polyad in P̂(j−1) is sub-partitioned in P(j);
• every partition class in P(j) belongs to precisely one polyad in P̂(j−1).

This concludes our description.
We continue by defining some considerations and notation related to a family P as described above.

First, note that for each 1 ≤ j ≤ k − 1 and J ∈ Crossj(P(1)), P̂(j−1)(J) ∈ P̂(j) is a (j, j − 1)-cylinder.
More generally, for 1 ≤ i < j, note that P̂(i)(J) =

⋃ {
P(i)(I) : I ∈

(
J
i

)}
is a (j, i)-cylinder, and

therefore, P(J) = {P̂(i)(J)}j−1
i=1 is a (j, j− 1)-complex. When we drop the argument J and write P̂(j−1)

for P̂(j−1)(J), we shall correspondingly write

PP̂(j−1) = P(J) . (6)

In context, we want to control the number of partition classes from P(j) contained in Kj(P̂(j−1)) for
a fixed polyad P̂(j−1) ∈ P̂(j−1). The following definition makes this precise.
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Definition 3.1 (family of partitions). For a vector a = (a1, . . . , ak−1) of positive integers, we say
P = P(k − 1,a) = {P(1), . . . ,P(k−1)} is a family of partitions on V if P(1) is a partition of V into
a1 classes and P(j) is a partition of Crossj(P(1)) refining {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} where, for
every P̂(j−1) ∈ P̂(j−1), |{P(j) ∈ P(j) : P(j) ⊆ Kj(P̂(j−1))}| = aj. Moreover, we say P = P(k − 1,a)
is t-bounded if max{a1, . . . , ak−1} ≤ t.

We also want the families P to be ‘equitable’, in the following sense.

Definition 3.2 ((ε, a)-equitable). Suppose ε > 0, a = (a1, . . . , ak−1) is a vector of positive integers
and |V | = n. We say a family of partitions P = P(k − 1,a) on V is (ε, a)-equitable if ||Vi| − |Vj || ≤
1 for all i, j ∈ [a1] and if for every P̂(k−1) ∈ P̂(k−1), the (k, k − 1)-complex PP̂(k−1) (cf. (6)) is
(ε, (1/a2, . . . , 1/ak−1))-regular. For η > 0, we say the (ε, a)-equitable family of partitions P is (η, ε,a)-
equitable if, additionally, |[V ]k \ Crossk(P(1)) | ≤ η

(
n
k

)
.

The following definition describes when a hypergraph is ‘perfectly regular’ w.r.t. a family of partitions
P.

Definition 3.3 (perfectly ε-regular). Let ε > 0 be given. Let H(k) be a k-graph on vertex set V and
let P = P(k − 1,a) be a family of partitions on V . We say H(k) is perfectly ε-regular w.r.t. P if for
every P̂(k−1) ∈ P̂(k−1) we have that H(k)∩Kk(P̂(k−1)) is (ε, d)-regular w.r.t. P̂(k−1), for some d ∈ [0, 1].

The regular-approximation lemma of Rödl and Schacht is given as follows (see Theorem 14 of [11]).

Theorem 3.4 (Regular Approximation Lemma). Let k ≥ 2 be a fixed integer. For all positive con-
stants η and ν and every function ε : Nk−1 → (0, 1], there exist integers t = tThm. 3.4 and n0 = nThm. 3.4

so that for every k-uniform hypergraph G(k) with |V (G(k))| = n ≥ n0, there exist an (η, ε(aP),aP)-
equitable and t-bounded family of partitions P = P(k− 1,aP) and a k-uniform hypergraph H(k) which
is perfectly ε(aP)-regular w.r.t. P and where |G(k)4H(k)| < νnk.

In Remark 3.5 below, we describe a ‘k-partite’ version of Theorem 3.4, which was not specifically
stated in [11], but which follows2 from the proof in [11].

Remark 3.5. In Theorem 3.4, suppose G(k) is k-partite with k-partition V (G(k)) = U1 ∪ · · · ∪ Uk.
If each |Ui| = ni, 1 ≤ i ≤ k, is sufficiently large, then the vertex partition P(1) = {V1, . . . , Va1} of
P = P(k − 1,aP) can be taken to refine U1 ∪ · · · ∪ Uk, i.e., for each 1 ≤ j ≤ a1, there exists 1 ≤ i ≤ k
so that Vj ⊆ Ui, and for each 1 ≤ i ≤ k, there exist bi and indices 1 ≤ j1 < · · · < jbi

≤ a1 so that
Ui = Vj1 ∪ · · · ∪ Vjbi

. In this case, we shall rewrite P(1) = {V1, . . . , Va1} as P(1) = {Vij : 1 ≤ i ≤
k, 1 ≤ j ≤ bi} (so that a1 = b1 + · · · + bk), where for each 1 ≤ i ≤ k, Ui = Vi1 ∪ · · · ∪ Vibi

and where
||Vij | − |Vi′j′ || ≤ 1 for each i, i′ ∈ [k] and (j, j′) ∈ [bi]× [b′i]. In this context, the hypergraph H(k) can be
taken as k-partite and where |G(k)4H(k)| < νn1 · · ·nk.

3.2. Equitable partitions and (d, ζ)-uniformity. Suppose H(k) is perfectly ε-regular w.r.t. (ε, a)-
equitable family of partitions P. For a sequence of k vertex classes V from P(1), the following propo-
sition asserts that H(k)[V ] is (dH(k)(V ), δ)-uniform.

Proposition 3.6. For all k ≥ 2 and a = (a1 = k, a2, . . . , ak−1) and δ > 0, there exist ε > 0 and
positive integer m0 so that the following holds: Suppose P = P(k − 1,a) is an (ε, a)-equitable family
of partitions on a set X where P(1) = (X1, . . . , Xk) = X, i.e., X = X1 ∪ · · · ∪Xk, and suppose that a
(k-partite) k-uniform hypergraph H(k) with vertex set X = V (H(k)) is perfectly ε-regular w.r.t. P where
|X1|, . . . , |Xk| ≥ m0. Then H(k) = H(k)[X] is (dH(k)(X), δ)-uniform.

2A well-known feature of graph (hypergraph) regularity lemmas is that, if a given graph (hypergraph) is equipped with
a fixed vertex partition, then a ‘regular partition’ of this graph (hypergraph) can be ensured which refines the given vertex

partition. For example, Gowers [5] formulated his hypergraph regularity lemma in this way.
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Before we may give the proof of Proposition 3.6, we require the following observation. In the context
above, fix a polyad P̂(k−1) ∈ P̂(k−1) and let W = (W1, . . . ,Wk), Wi ⊆ Xi, |Wi| > δ|Xi|, 1 ≤ i ≤ k be
given. Since P is (ε, a)-equitable, P = PP̂(k−1) (cf. (6)) is (ε, (1/a2, . . . , 1/ak−1))-regular. We need this
regularity to be preserved when P is induced on W .

Fact 3.7. For all j ≥ i ≥ 2 and di, . . . , d2, ε̃ > 0, there exist ε = εFact. 3.7 > 0 and positive m0 so that
whenever P = {P(h)}i

h=1 is an (ε, (d2, . . . , di))-regular (j, i)-complex with j-partition P(1) = X1∪· · ·∪Xj,
|Xa| ≥ m0, 1 ≤ a ≤ j, then for all vectors W = (W1, . . . ,Wj) of subsets Wa ⊆ Xa, |Wa| > ε̃|Xa|,
1 ≤ a ≤ j, the (j, i)-complex P [W ] def= {P(h)[W ]}i

h=1 is (ε̃, (d2, . . . , di))-regular.

Proof of Proposition 3.6. Let k ≥ 2 and a = (a1 = k, a2, . . . , ak−1) and δ > 0 be given. Set γ = δ4/5
and let ε1 = εLem. 2.4(k, k−1, γ, 1/ak−1, . . . , 1/a2) > 0 be the constant guaranteed by Lemma 2.4 (dense
counting lemma). Let ε2 = εFact. 3.7(k, k − 1, 1/ak−1, . . . , 1/a2, ε1) > 0 be the constant guaranteed by
Fact 3.7. Set ε = min{γk/4, ε1, ε2} and take m0 sufficiently large whenever needed. Let P = P(k−1,a),
X andH(k) be given as in Proposition 3.6 and let W = (W1, . . . ,Wk) be such that Wi ⊆ Xi, |Wi| > δ|Xi|,
1 ≤ i ≤ k. Observe that

|H(k)| =
∑

P̂(k−1)∈P̂(k−1)

∣∣H(k) ∩ Kk(P̂(k−1))
∣∣ =

∑
P̂(k−1)∈P̂(k−1)

d(H(k)|P̂(k−1))
∣∣Kk(P̂(k−1))

∣∣ , and

|H(k)[W ]| =
∑

P̂(k−1)∈P̂(k−1)

∣∣H(k)∩Kk(P̂(k−1)[W ])
∣∣ =

∑
P̂(k−1)∈P̂(k−1)

d(H(k)|P̂(k−1)[W ])
∣∣Kk(P̂(k−1)[W ])

∣∣ .

For a fixed P̂(k−1) ∈ P̂(k−1), Fact 3.7 gives that PP̂(k−1) [W ] is an (ε1, (1/a2, . . . , 1/ak−1))-regular
(k, k − 1)-complex. Lemma 2.4 therefore implies

∣∣Kk(P̂(k−1)[W ])
∣∣ = (1± γ)

k−1∏
i=2

(
1
ai

)(k
i

)
× |W1| . . . |Wk| ≥ 1

2δk
k−1∏
i=2

(
1
ai

)(k
i

)
× |X1| . . . |Xk| , and

∣∣Kk(P̂(k−1))
∣∣ = (1± γ)

k−1∏
i=2

(
1
ai

)(k
i

)
× |X1| . . . |Xk| ≤ 2

k−1∏
i=2

(
1
ai

)(k
i

)
× |X1| . . . |Xk| . (7)

Then |Kk(P̂(k−1)[W ])| > ε|Kk(P̂(k−1))|, implying d(H(k)|P̂(k−1)[W ]) = d(H(k)|P̂(k−1))± ε, and so

|H(k)[W ]| =
∑

P̂(k−1)∈P̂(k−1)

d(H(k)|P̂(k−1))
∣∣Kk(P̂(k−1)[W ])

∣∣± ε
∑

P̂(k−1)∈P̂(k−1)

∣∣Kk(P̂(k−1)[W ])
∣∣

(7)
=⇒ dH(k)(W ) = ±ε + (1± γ)

k−1∏
i=2

(
1
ai

)(k
i

)
×

∑
P̂(k−1)∈P̂(k−1)

d(H(k)|P̂(k−1)) .

On the other hand, (7) also implies

dH(k)(X) = (1± γ)
k−1∏
i=2

(
1
ai

)(k
i

)
×

∑
P̂(k−1)∈P̂(k−1)

d(H(k)|P̂(k−1)) =⇒

dH(k)(X)− γ1/2 − ε ≤ 1− γ

1 + γ
dH(k)(X)− ε ≤ dH(k)(W ) ≤ 1 + γ

1− γ
dH(k)(X) + ε ≤ dH(k)(X) + γ1/2 + ε ,

from which dH(k)(W ) = dH(k)(X)± δ follows. �

Proof of Fact 3.7. It suffices to prove the statement for j = i, on which we induct and where the
base case i = 2 is well-known (see Fact 1.5, in [8]). Now, let i ≥ 3 and di, . . . , d2, ε̃ > 0 be given.
Let ε1 = εLem. 2.4(i, i − 1, 1/2, di−1, . . . , d2) > 0 be the constant guaranteed by Lemma 2.4 and ε2 =
εFact 3.7(i, i − 1, di−1, . . . , d2, ε̃) > 0 be the constant guaranteed by our induction hypothesis. Take
ε = 1

3 min{ε̃i+1, ε1, ε2} and m0 sufficiently large. With these constants, let P = {P(h)}i
h=1 and vector

W of subsets be given as in the hypothesis of Fact 3.7. Let Q(i−1) ⊆ P(i−1)[W ] satisfy |Ki(Q(i−1))| >
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ε̃|Ki(P(i−1)[W ])|. Since the (i, i−1)-complex {P(h)[W ]}i−1
h=1 is (ε̃, (d2, . . . , di−1))-regular (by induction),

Lemma 2.4 implies

|Ki(P(i−1)[W ])| > 1
2

i−1∏
h=2

d

(
i
h

)
h ×

i∏
a=1

|Wa| and |Ki(P(i−1))| < 3
2

i−1∏
h=2

d

(
i
h

)
h

i∏
a=1

|Xa|.

As such, |Ki(Q(i−1))| > ε|Ki(P(i−1))| and so the (ε, di)-regularity of P(i) w.r.t. P(i−1) implies |P(i)[W ]∩
Ki(Q(i−1))| = |P(i) ∩ Ki(Q(i−1))| = (di ± ε)|Ki(Q(i−1))|. �

4. Proof of Theorem 1.3

Let an integer k ≥ 2 and a constant ζ0 > 0 be given. Without loss of generality, assume ζ0 < 0.01 and
also assume k ≥ 3, since the case k = 2 is, in fact, proven in Section 2.1. Our definitions of the promised
constants ζ = ζThm. 1.3, c = cThm. 1.3 and s0 = sThm. 1.3 depend on auxiliary parameters which we now
define. For positive integer variables a2, . . . , ak−1, let ε′(a2, . . . , ak−1) = εProp. 3.6(k, a2, . . . , ak−1, δ =
ζ2k
0 ) > 0 be the function guaranteed by Proposition 3.6. Let

ε(a1, a2, . . . , ak−1) = εThm. 1.5(k, d2 = 1/a2, . . . , dk−1 = 1/ak−1, ε
′(a2, . . . , ak−1)) ,

cThm. 1.5(a2, . . . , ak−1) = cThm. 1.5(k, d2 = 1/a2, . . . , dk−1 = 1/ak−1, ε
′(a2, . . . , ak−1)) , (8)

sThm. 1.5(a2, . . . , ak−1) = sThm. 1.5(k, d2 = 1/a2, . . . , dk−1 = 1/ak−1, ε
′(a2, . . . , ak−1))

be the functions guaranteed by Theorem 1.5 (ε is constant in the variable a1). Let t = tThm. 3.4(ν =
ζ4k
0 , ε(a1, a2, . . . , ak−1)) be the constant guaranteed by Theorem 3.4. Set

sThm. 1.5 = max sThm. 1.5(a2, . . . , ak−1) and cThm. 1.5 = min{cThm. 1.5(a2, . . . , ak−1), 1} ,

where the max and min above are both taken over 1 ≤ a2, . . . , ak−1 ≤ t. Define

ζ =
1
2t

, s0 =
3 · 2k+3 ln (2t)
ζ32k
0 cThm. 1.5

and c =
ζ32k
0 cThm. 1.5

24t
. (9)

Now, with ζ given in (9), let G(k) be a (ρ, ζ)-uniform (k, k)-cylinder with k-partition V (G(k)) = U1∪· · ·∪
Uk, where ρ ∈ [0, 1], and each |Ui| = ni, 1 ≤ i ≤ k, is sufficiently large. For fixed s0 ≤ s ≤ n1, we show
that all but exp{−cs}

(
n1
s

)
sets S ⊆

(
U1
s

)
yield S = (S, U2, . . . , Uk) for which G(k)[S] is (ρ, ζ0)-uniform.

With ν = ζ4k
0 and function ε(a1, a2, . . . , ak−1) of (8), apply Theorem 3.4 (see Remark 3.5) to G(k)

to obtain k-uniform hypergraph H(k) and (ε(aP),aP)-equitable and t-bounded family of partitions
P = P(k− 1,aP) with respect to which H(k) is perfectly ε(aP)-regular and for which |G(k)4H(k)| <
νn1 · · ·nk. From this application, a1 = b1 + · · · + bk (recall the notation of Remark 3.5), a2, . . . , ak−1

are now fixed, as are ε′(a2, . . . , ak−1) and ε(a1, . . . , ak−1) from (8), which we now abbreviate to ε′ and
ε, resp. Note that, after this application of Theorem 3.4, the constants above relate as follows:

1
k , ζ0 � ν = ζ4k

0 ≥ min
{
ν, 1

a2
, . . . , 1

ak−1

}
� ε′ � ε ≥ min

{
ε

2ζ = 1
t � max

{
1
s0

, c
}

.
(10)

We now consider some notation (see Remark 3.5). Fix j = (j1, . . . , jk) ∈ [b1] × · · · × [bk] def= J and
write V j = (V1j1 , . . . , Vkjk

). Call j a typical vector if |(G(k)4H(k))[V j ]| < ν1/2|V1j1 | . . . |Vkjk
|, and

write Jtyp ⊆ J for the set of typical vectors. Clearly,∣∣Jtyp

∣∣ ≥ (
1− 2ν1/2

)
|J| =

(
1− 2ν1/2

)
b1 · · · bk , (11)

since otherwise, |G(k)4H(k)| ≥ 2νb1 · · · bk · bn1/b1c · · · bnk/bkc > νn1 · · ·nk. For a subset S ⊆ U1, write
Sj1 = S ∩V1j1 and Sj = (Sj1 , V2j2 , . . . , Vkjk

). More generally, for a vector W = (W1, . . . ,Wk) of subsets
W1 ⊆ U1, . . . ,Wk ⊆ Uk, write W j = (W1j1 , . . . ,Wkjk

), where Wiji
= Wi ∩ Viji

for 1 ≤ i ≤ k. Call
S ∈

(
U1
s

)
a typical set if:

(1) |(G(k)4H(k))[S]| < 2νs · n2 · · ·nk, and for each j ∈ [b1], s/(2b1) ≤ |Sj | ≤ 2s/b1;
(2) for each j ∈ Jtyp, H(k)[Sj ] is (dH(k)(Sj), ζ2k

0 )-uniform with dH(k)(Sj) = ρ± 3ζ2k
0 .



ON RANDOM SAMPLING IN UNIFORM HYPERGRAPHS 11

Theorem 1.3 is established by the following claim.

Claim 4.1. For each typical set S ∈
(
U1
s

)
, G(k)[S] is (ρ, ζ0)-uniform. Moreover, all but exp{−cs}

(
n1
s

)
many S ∈

(
U1
s

)
are typical sets.

Proof of Claim 4.1 (first assertion). Fix a typical set S ∈
(
U1
s

)
, and then fix W = (W1, . . . ,Wk), where

W1 ⊆ S, W2 ⊆ U2, . . . ,Wk ⊆ Uk, and

|W1| > ζ0s , |W2| > ζ0n2 , . . . , |Wk| > ζ0nk . (12)

To show that dG(k)(W ) = ρ± ζ0, it is enough to show

dH(k)(W ) = ρ± ζ2
0 . (13)

Indeed, G(k)[W ] satisfies |G(k)[W ]| = |H(k)[W ]| ± |(G(k)4H(k))[W ]|, where Condition (1) ensures

|(G(k)4H(k))[W ]| ≤ |(G(k)4H(k))[S]| ≤ 2νs·n2 · · ·nk
(10)
= 2ζ4k

0 s·n2 · · ·nk. As such, dG(k)(W ) = ρ±ζ2
0±

2ζ4k
0 ζ−k

0 = ρ± ζ0, where we used (12). To establish (13), let F (k) ∈ {H(k),K(k) = K(k)[U1, . . . , Uk]} and
observe that |F (k)[W ]

∣∣ =
∑

j∈J |F (k)[W j ]|. Then
∑

j∈Jtyp
|F (k)[W j ]| ≤ |F (k)[W ]| ≤ 8ν1/2s ·n2 · · ·nk +∑

j∈Jtyp
|F (k)[W j ]| follows from (11) and Condition (1), since any j = (j1, . . . , jk) ∈ J \ Jtyp satisfies

|W1j1 | ≤ |Sj1 | ≤ 2s/b1 and |Wiji | ≤ |Viji | ≤ dni/bie, 2 ≤ i ≤ k. Now, call j = (j1, . . . , jk) ∈ Jtyp

big if |W1j1 | > ζ2k
0 |Sj1 |, |W2j2 | > ζ2k

0 |V2j2 |, . . . , |Wkjk
| > ζ2k

0 |Vkjk
|, and write Jbig

typ ⊆ Jtyp for the
set of all big and typical vectors. Then

∑
j∈Jbig

typ
|F (k)[W j ]| ≤

∑
j∈Jtyp

|F (k)[W j ]| ≤ 4ζ2k
0 sn2 · · ·nk +∑

j∈Jbig
typ
|F (k)[W j ]|, since each j = (j1, . . . , jk) ∈ Jtyp \ Jbig

typ satisfies |W1j1 | < ζ2k
0 |Sj1 | ≤ 2ζ2k

0 s/b1 (see

Condition (1)) or, for some 2 ≤ i ≤ k, |Wiji | < ζ2k
0 |Viji | ≤ ζ2k

0 dni/bie. Using ν = ζ4k
0 in (10) we have,

altogether, ∣∣F (k)[W ]
∣∣ = ±12ζ2k

0 s · n2 · · ·nk +
∑

j∈Jbig
typ

∣∣F (k)[W j ]
∣∣ . (14)

Now, fix j ∈ Jbig
typ and let F (k) = H(k). Condition (2) implies that H(k)[Sj ] is (ρ, 4ζ2k

0 )-uniform, which
with j being big, |H(k)[W j ]| = (ρ ± 4ζ2k

0 )|W1j1 | · · · |Wkjk
|. Then (14) yields |H(k)[W ]| = ±12ζ2k

0 s ·
n2 · · ·nk + (ρ± 4ζ2k

0 )
∑

j∈Jbig
typ
|W1j1 | · · · |Wkjk

| and so∣∣H(k)[W ]
∣∣ = ±12ζ2k

0 s · n2 · · ·nk +
(
ρ± 4ζ2k

0

)[∣∣K(k)[W ]
∣∣± 12ζ2k

0 s · n2 · · ·nk

]
,

which implies dH(k)(W ) = ρ± 4ζ2k
0 ± 24ζk

0 = ρ± ζ2
0 , where we used (12) (and ζ0 < 0.01 and k ≥ 3). �

Proof of Claim 4.1 (part 2). Using the definition, we enumerate the ‘atypical’ sets. For the first part of
Condition (1), apply Fact 1.6 with η = ν to the hypergraph D(k) = G(k)4H(k) (of density dD(k)(U) < ν)
to conclude all but exp{−ν8s/6}

(
n1
s

)
= exp{−ζ32k

0 s/6}
(
n1
s

)
sets S ∈

(
U1
s

)
satisfy dD(k)(S) = dD(k)(U)±

ν < 2ν, so that |G(k)4H(k)[S]| < 2νs ·n2 · · ·nk. For the second part of Condition (1), fix j ∈ [b1] and re-
call bn1/b1c ≤ |V1j | ≤ dn1/b1e. By the Chernoff-Hoeffding inequality (1), all but 2 exp{−s/(12b1)}

(
n1
s

)
≤

2 exp{−s/(12t)}
(
n1
s

)
sets S ∈

(
U1
s

)
satisfy s/(2b1) ≤ |S ∩ V1j | ≤ 2s/b1. Over all j ∈ [b1], all but

2b1 exp{−s/(12t)}
(
n1
s

)
≤ 2t exp{−s/(12t)}

(
n1
s

)
satisfy this property.

To argue the density assertion of Condition (2), fix j = (j1, . . . , jk) ∈ Jtyp. Observe that dG(k)(V j) =
ρ± ζ since G(k) is (ρ, ζ)-uniform and each Viji ⊂ Vi, 1 ≤ i ≤ k, satisfies |Viji | ≥ bni/bic ≥ ni/(2t) = ζni

(cf. (10)). Now, since j ∈ Jtyp, dH(k)(V j) = ρ ± ζ ± ν1/2 = ρ ± 2ζ2k
0 . Apply Fact 1.6 with an

arbitrary integer s/(2b1) ≤ sj1 ≤ 2s/b1 (where s/2b1 ≥ s/2t is ‘large enough’ (cf. (9))) so that all
but exp{−ζ16k

0 sj1/6}
(|V1j1 |

sj1

)
≤ exp{−ζ16k

0 s/(12b1)}
(|V1j1 |

sj1

)
≤ exp{−ζ16k

0 s/(12t)}
(|V1j1 |

sj1

)
sets Sj1 ∈

(
V1j1
sj1

)
satisfy dH(k)(Sj) = dH(k)(V j)± ζ2k

0 = ρ± 3ζ2k
0 . This implies that all but

exp
{
− ζ16k

0
12t s

} ∑
s/(2b1)≤sj1≤2s/b1

(|V1j1 |
sj1

)(
n1−|V1j1 |

s−sj1

)
≤ exp

{
− ζ16k

0
12t s

}(
n1
s

)
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sets S ∈
(
U1
s

)
satisfy that s/(2b1) ≤ |Sj1 | ≤ 2s/b1 and that dH(k)(Sj) = ρ± 3ζ2k

0 . Over all j ∈ Jtyp, we
have all but b1 · · · bk exp{−ζ16k

0 s/(12t)}
(
n1
s

)
≤ tk exp{−ζ16k

0 s/(12t)}
(
n1
s

)
such sets S.

We now argue the uniformity assertion of Condition (2), and in fact, we argue a stronger property.
To that end, fix j ∈ Jtyp and write Pj for the subfamily of P induced on the vertex partition V j and
P̂

(k−1)
j for its corresponding family of polyads. For P̂(k−1) ∈ P̂

(k−1)
j , writeH(k)

P̂(k−1) = H(k)∩Kk(P̂(k−1)),

write HP̂(k−1) for the (k, k)-complex consisting of PP̂(k−1) (cf. (6)) together with H(k)

P̂(k−1) and write

dP̂(k−1) = (d2, . . . , dk−1, d(H(k)|P̂(k−1))). Theorem 3.4 guarantees that HP̂(k−1) [V j ] is an (ε, dP̂(k−1))-
regular (k, k)-complex (cf. (8)). For an integer s/(2b1) ≤ sj1 ≤ 2s/b1, Theorem 1.5 guarantees that
all but exp{−cThm. 1.5sj1}

(|V1j1 |
sj1

)
≤ exp{−cThm. 1.5s/(2b1)}

(|V1j1 |
sj1

)
≤ exp{−cThm. 1.5s/(2t)}

(|V1j1 |
sj1

)
sets

Sj1 ∈
(
V1j1
sj1

)
satisfy that HP̂(k−1) [Sj ] is an (ε′,dP̂(k−1))-regular (k, k)-complex. This implies that all but

exp
{
− cThm. 1.5

2t s
} ∑

s/(2b1)≤sj1≤2s/b1

(|V1j1 |
sj1

)(
n1−|V1j1 |

s−sj1

)
≤ exp

{
− cThm. 1.5

2t s
}(

n1
s

)
sets S ∈

(
U1
s

)
satisfy that s/(2b1) ≤ |Sj1 | ≤ 2s/b1 and that HP̂(k−1) [Sj ] is an (ε′,dP̂(k−1))-regular

(k, k)-complex. Over all∣∣P̂(k−1)
j

∣∣ = a

(
k
2

)
2 × a

(
k
3

)
3 × · · · × a

(
k

k−1

)
k−1 ≤ t2

k−k and
∣∣Jtyp

∣∣ ≤ tk

polyads P̂(k−1) ∈ P̂
(k−1)
j and j ∈ Jtyp, all but t2

k

exp{−cThm. 1.5s/(2t)
}(

n1
s

)
sets S ∈

(
U1
s

)
satisfy

that, for each j ∈ Jtyp and P̂(k−1) ∈ P̂
(k−1)
j , s/(2b1) ≤ |Sj1 | ≤ 2s/b1 and that HP̂(k−1) [Sj ] is a

(ε′,dP̂(k−1))-regular (k, k)-complex. But now, fix such a set S ∈
(
U1
s

)
and fix j ∈ Jtyp. Consider the

family Pj [Sj ] obtained by restricting Pj to the vertex sets Sj = (Sj1 , V2j2 , . . . , Vkjk
), i.e., for each

2 ≤ i ≤ k − 1, replace the (i, i)-cylinder P(i) ∈ Pj with P(i)[Sj ]. By our choice of S, Pj [Sj ] is an
(ε′, (a1 = k, a2, . . . , ak−1))-equitable partition of Sj1 ∪ V2j2 ∪ · · · ∪ Vkjk

with respect to which H(k)[Sj ] is
perfectly ε′-regular. Proposition 3.6 then guarantees that H(k)[Sj ] is (dH(k)(Sj), ζ2k

0 )-uniform.
Combining all estimates above, the number of atypical sets S ∈

(
U1
s

)
is at most(

exp
{
− ζ32k

0
6 s

}
+ 2t exp

{
− 1

12ts}+ tk exp
{
− ζ16k

0
12t s

}
+ t2

k

exp
{
− cThm. 1.5

2t s
})(

n1
s

)
≤ 4t2

k

exp
{
− ζ32k

0 cThm. 1.5
12t s

}(
n1
s

) (9)

≤ exp
{
− ζ32k

0 cThm. 1.5
24t s

}(
n1
s

) (9)
= exp{−cs}

(
n1
s

)
.

�

5. Appendix

To prove that Theorem 2.1 implies Theorem 1.5, we use the standard fact below (Proposition 5.1)
with the following complementary parts: in an appropriate setting, (1), a ‘regular’ hypergraph can be
split into edge-disjoint and ‘regular’ subhypergraphs, and (2), the union of edge-disjoint and ‘regular’
hypergraphs is itself ‘regular’.

Proposition 5.1. Let H(k−1) be a (k, k − 1)-cylinder, where V (H(k−1)) = V1 ∪ · · · ∪ Vk, |Vi| = mi,
1 ≤ i ≤ k. The following statements hold:

(1) if F (k) ⊆ Kk(H(k−1)) is (δ, σ)-regular w.r.t. H(k−1), where 0 < 2δ, ρ ≤ 1/2 ≤ σ ≤ 1, where each
mi ≥ m0 = m0(k, δ) is sufficiently large, and where |Kk(H(k−1))| ≥ (m1 · · · ·mk)/ ln(m1 · · ·mk),
then there exists a partition F (k) = F (k)

0 ∪ F (k)
1 ∪ · · · ∪ F (k)

p , p = bσ/ρc, where each F (k)
i ,

1 ≤ i ≤ p, is (3δ, ρ)-regular w.r.t. H(k−1), and where F (k)
0 is (3δ, σ − pρ)-regular w.r.t. H(k−1);

(2) if G(k)
1 , . . . ,G(k)

q ⊆ Kk(H(k−1)) are pairwise disjoint, where each G(k)
i , 1 ≤ i ≤ q, is (γ, di)-regular

w.r.t. H(k−1), then G(k) =
⋃q

i=1 G
(k)
i is (qγ, d)-regular w.r.t. H(k−1), where d =

∑q
i=1 di.
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Statement (1) of Proposition 5.1 follows by a standard probabilistic argument using the Chernoff in-
equality, and Statement (2) follows by a standard argument using the definition of (γ, di)-regularity.
These statements essentially appeared as Lemma 30 and Proposition 50 in [10], and as Propositions 20
and 22 in [11]. We omit their proofs.

Proof that Theorem 2.1 =⇒ Theorem 1.5. Let integer k ≥ 2 and constants d2, . . . , dk−1, ε
′ > 0 be

given. We define the promised constants εThm. 1.5, cThm. 1.5 and sThm. 1.5 in terms of auxiliary constants.
To that end, let εLem. 2.4 = εLem. 2.4(k, k−1, 1/2, dk−1, . . . , d2) be the constant guaranteed by Lemma 2.4.
Define auxiliary constants

ρ = min
{

1
2εLem. 2.4 , 1

8 (ε′)2
∏

2≤i≤k−1

d

(
k
i

)
i

}
and ε′′ = ρ2ε′

4 .

Let εThm. 2.1 = εThm. 2.1(k, d2, . . . , dk−1, ρ, ε′′), cThm. 2.1 = cThm. 2.1(k, d2, . . . , dk−1, ρ, ε′′) and sThm. 2.1 =
sThm. 2.1(k, d2, . . . , dk−1, ρ, ε′′) be the constants guaranteed by Theorem 2.1. We take

ε = εThm. 1.5 = 1
3 min

{
ρ , εThm. 2.1

}
, c = cThm. 1.5 = 1

2 min
{
cThm. 2.1 , ρ8

6

}
,

s0 = sThm. 1.5 = max
{
sThm. 2.1 , 24

ρ10c} ,

and we take m0 = mThm. 1.5 sufficiently large whenever needed.
With the constants d2, . . . , dk−1, ε > 0 and m1, . . . ,mk > m0 above, let H = {H(j)}k

j=1 be an
(ε, (d2, . . . , dk−1, dk))-regular (k, k)-complex, as in Theorem 1.5, where dk ∈ [0, 1] is now given. Fix
integer s0 ≤ s ≤ m1. To prove that all but exp{−c s}

(
m1
s

)
sets S ∈

(
V1
s

)
yield S = (S, V2, . . . , Vk) for

which H[S] is an (ε′, (d2, . . . , dk))-regular (k, k)-complex, we consider two cases.

Case 1 (dk ≥ 1/2). We first apply Statement (1) of Proposition 5.1 to the hypergraphH(k) ⊆ Kk(H(k−1))
(where F (k) = H(k), σ = dk, δ = ε). (To see that this statement applies, recall that our choice of
constants were sufficient to conclude, using Lemma 2.4, that |Kk(H(k−1))| = Ω(m1 · · ·mk).) Now, with
the constant ρ defined above, Statement (1) of Proposition 5.1 guarantees a partition H(k) = H(k)

0 ∪
H(k)

1 ∪· · ·∪H(k)
p , p = bdk/ρc, where each H(k)

i , 1 ≤ i ≤ p, is (3ε, ρ)-regular w.r.t. H(k−1), and where H(k)
0

is (3ε, dk − pρ)-regular w.r.t. H(k−1). In particular, |H(k)
0 | ≤ (dk − pρ + 3ε)|Kk(H(k−1))| ≤ 2ρm1 · · ·mk

(since dk − ρ ≤ pρ ≤ dk and 3ε ≤ ρ). We establish some notation related to this partition. For
1 ≤ i ≤ p, write Hi = {H(1), . . . ,H(k−1),H(k)

i }, write H(k)
∗ = H(k)

1 ∪ · · · ∪ H(k)
p = H(k) \ H(k)

0 , and write
H∗ = {H(1), . . . ,H(k−1),H(k)

∗ } and H(k−1) = {H(1), . . . ,H(k−1)}.
Now, for 1 ≤ i ≤ p, Hi is a (3ε, (d2, . . . , dk−1, ρ))-regular (k, k)-complex so that, by Theorem 2.1, all

but exp{−cThm. 2.1s}
(
m1
s

)
sets S ∈

(
V1
s

)
render an (ε′′, (d2, . . . , dk−1, ρ))-regular (k, k)-complex Hi[S].

We apply Fact 1.6 to the remainder H(k)
0 to conclude that all but exp{−(ρ8/6)s}

(
m1
s

)
sets S ∈

(
V1
s

)
render |H(k)

0 [S]| ≤ 3ρsm2 · · ·mk. As such, all but(
exp

{
− ρ8

6 s
}

+ p exp{−cThm. 2.1s}
) (

m1
s

)
≤ 2

ρ exp{−2cs}
(
m1
s

)
≤ exp{−c s}

(
m1
s

)
sets S ∈

(
V1
s

)
satisfy all properties immediately above (over all 1 ≤ i ≤ p). For the remainder of Case 1,

fix such a set S ∈
(
V1
s

)
. Statement (2) of Proposition 5.1 guarantees that H(k)

∗ [S] is (pε′′, pρ)-regular
w.r.t. H(k−1)[S], and so H∗[S] is a (pε′′, (d2, . . . , dk−1, pρ))-regular (k, k)-complex. Since 0 < pε′′ ≤ ρ
and dk−ρ ≤ pρ ≤ dk, we may say, more simply, that H∗[S] is a (2ρ, (d2, . . . , dk))-regular (k, k)-complex.
We argue that, consequently, H[S] is an (ε′, (d2, . . . , dk))-regular (k, k)-complex, and in particular, that
H(k)[S] is (ε′, dk)-regular w.r.t. H(k−1)[S].

Let Q(k−1) ⊆ H(k−1)[S] satisfy |Kk(Q(k−1))| ≥ ε′|Kk(H(k−1)[S])|, where

|Kk(H(k−1)[S])| ≥ (1/2)
∏

2≤i≤k−1

d

(
k
i

)
i × sm2 · · ·mk (15)
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follows from Lemma 2.4. (Indeed, since H∗[S] is a (2ρ, (d2, . . . , dk))-regular (k, k)-complex, H(k−1)[S]
is a (2ρ, (d2, . . . , dk−1))-regular (k, k − 1)-complex.) The (2ρ, (d2, . . . , dk))-regularity of H∗[S] (recall
ε′ ≥ ρ) implies |H(k)

∗ [S] ∩ Kk(Q(k−1))| = (dk ± 2ρ)|Kk(Q(k−1))|, and so

|H(k)[S] ∩ Kk(Q(k−1))| = |H(k)
∗ [S] ∩ Kk(Q(k−1))|+ |H(k)

0 [S] ∩ Kk(Q(k−1))|
satisfies

(dk − 2ρ)|Kk(Q(k−1))| ≤
∣∣H(k)[S] ∩ Kk(Q(k−1))

∣∣ ≤ (dk + 2ρ)|Kk(Q(k−1))|+ |H(k)
0 [S]|

≤ (dk + 2ρ)|Kk(Q(k−1))|+ 3ρsm2 · · ·mk

(15)

≤
(
dk + 8ρ

∏
2≤i≤k−1

d
−
(
k
i

)
i /ε′

)
|Kk(Q(k−1))| .

From our choice of ρ, |H(k)[S] ∩ Kk(Q(k−1))| = (dk ± ε′)|Kk(Q(k−1))| follows, concluding Case 1.

Case 2 (dk < 1/2). Consider the (k, k)-complex H = {H(1), . . . ,H(k−1),Kk(H(k−1)) \ H(k)}, which is
(ε, (d2, . . . , dk−1, 1−dk))-regular. By Case 1, all but exp{−c s}

(
m1
s

)
sets S ∈

(
V1
s

)
satisfy that H[S] is an

(ε′, (d2, . . . , dk−1, 1−dk))-regular (k, k)-complex, or equivalently, that H[S] is an (ε′, (d2, . . . , dk−1, dk))-
regular (k, k)-complex.

�
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[2] Alon, N., Duke, R., Lefmann, H., Rödl, V., Yuster, R., The algorithmic aspects of the Regularity Lemma, J. Algorithms

16 (1994), 80–109.
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