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Abstract. Let F be an r-uniform hypergraph with f vertices, where f > r ≥ 3. In [12],
R. Yuster posed the problem of whether there exists an algorithm which, for a given r-uniform
hypergraph H with n vertices, computes the number of induced copies of F in H in time o(nf ).
The analogous question for graphs (r = 2) was known to hold from a O(nf−ε) time algorithm
of Nešetřil and Poljak [9] (for a constant ε = εf > 0 which is independent of n). Here, we
present an algorithm for this problem, when r ≥ 3, with running time O(nf/ log2 n).

1. Introduction

In this paper, we consider algorithms for computing the number of copies of a fixed r-uniform
hypergraph F which are induced subhypergraphs of a given r-uniform hypergraph H. Let F
have f vertices and let H have vertex set V = V (H). We write Find(H) for the collection of all
f -element vertex subsets S ∈

(
V
f

)
which induce a copy of F in H. (Note that

(
V
f

)
denotes the

family of all f -element subsets of V .) Elements of Find(H) correspond to unlabeled induced
copies of F in H. (We discuss labeled as well as not-necessarily induced copies below.) When
F = K

(r)
f is the f-clique, the complete r-uniform hypergraph on f vertices, we write K(r)

f (H)

for Find(H), and refer to K(r)
r+1 as the r-simplex.

In the case of graphs (r = 2), Nesětřil and Poljak [9] gave an algorithm that uses fast
matrix multiplication to determine |Find(H)| in time O

(
nωbf/3c+(f mod 3)

)
, where ω ≤ 2.376

(see [2]) is the exponent of matrix multiplication. In the course of studying this and several
related problems for hypergraphs, R. Yuster [12, 13] formulated the following problem (see
Problem 6.1 of [12]).

Problem 1.1 (Yuster [12, 13]). Let F be an r-uniform hypergraph with f > r ≥ 3 vertices.
Is there an algorithm which, for a given r-uniform hypergraph H with n vertices, computes
|Find(H)| in time o(nf )? In particular, when F = K

(r)
r+1 is the r-simplex, is there an algorithm

which, in time o(nr+1), determines if |K(r)
r+1(H)| > 0?

In this paper, we present such an algorithm. (All logarithms in this paper are taken base 2.)

Theorem 1.2. Let F be an r-uniform hypergraph with f > r ≥ 3 vertices. There exists an
algorithm AF which, for a given r-uniform hypergraph H with n vertices, computes the quantity
|Find(H)| in time O(nf/ log n). Moreover, AF finds an induced copy of F in H whenever there
is one.

Theorem 1.2 admits, as corollaries, algorithms for counting the number of labeled copies of
F in H, in both the induced and not-necessarily induced cases (summarized below in Corol-
lary 1.3). For the induced case, let ~Find(H) denote the family of all injections ψ : V (F) → V (H)

Research partially supported by NSF grant DMS 0639839.

1



2 BRENDAN NAGLE

satisfying that, for each r-tuple R ∈
(
V (F)

r

)
, ψ(R) ∈ H if, and only if, R ∈ F . Note that

~Find(F) = Aut(F) corresponds to the automorphism group of F , the size of which is com-
putable in constant time. Since | ~Find(H)| = |Aut(F)|×|Find(H)|, Theorem 1.2 implies | ~Find(H)|
is computable in time O(nf/ log n). For the not-necessarily induced case, let ~F(H) denote the
family of all injections ψ : V (F) → V (H) satisfying that ψ(R) ∈ H for each R ∈ F . To
compute | ~F(H)|, let F denote the family of all ‘superhypergraphs’ G ⊇ F on vertex set V (F).
For G1,G2 ∈ F , let G1 ∼ G2 if, and only if, G1 and G2 are isomorphic, and let F∼ be a class
of representatives from the partition of F induced by the equivalence relation ∼ (which is con-
structable in constant time.) Then | ~F(H)| =

∑
G∈F∼ |~Gind(H)|, where each of these terms is

computable in time O(nf/ log n).

Corollary 1.3. Let F be an r-uniform hypergraph with f > r ≥ 3 vertices. There exist
algorithms which, for a given r-uniform hypergraph H with n vertices, compute the quantities
| ~Find(H)| and | ~F(H)| in time O(nf/ log n).

Algorithms for closely approximating |Find(H)| can have significantly lower complexity than
their exact counterparts. In the case of graphs (r = 2), Duke, Lefmann and Rödl [4] gave a
O(n2.376) algorithm for approximating |Find(H)| within an error of o(nf ). This algorithm is
based on an algorithmic version of the celebrated Szemerédi regularity lemma [10, 11] given
by Alon, Duke, Lefmann, Rödl and Yuster [1] (also considered in [4]). Kohayakawa, Rödl
and Thoma [7] later improved the running time of [4] to O(n2) by establishing an improved
constructive version of the regularity lemma. In the case of 3-uniform hypergraphs, Haxell,
Nagle and Rödl [6] established a O(n6) algorithm approximating |Find(H)| within an error of
o(nf ). This algorithm is based on an algorithmic version of a hypergraph regularity lemma of
Frankl and Rödl [5] (cf. [3, 8]).

To conclude this introduction, we believe that it would be interesting to improve the exponent
of computing |Find(H)| for a fixed but arbitrary r-uniform hypergraph F .

Problem 1.4. For each r-uniform hypergraph F with f > r ≥ 3 vertices, do there exist
ε = ε(F) > 0 and an algorithm ÂF which, for a given r-uniform hypergraph H with n vertices,
computes the quantity |Find(H)| in time O(nf−ε)?

Our paper is organized as follows. The heart of the proof of Theorem 1.2 concerns the
special case when F = K

(r)
r+1 is the r-simplex, to which we devote Section 2. Section 3 handles

all remaining details of Theorem 1.2.

Acknowledgement. The author would like to thank the referees for their careful reading, and
for their very helpful comments which improved our exposition.

2. Proof of Theorem 1.2 for r-simplices

For r ≥ 3, let r-uniform hypergraph H be given on vertex set V , where |V | = n. We shall
assume that H is represented by its characteristic function χH :

(
V
r

)
→ {0, 1}, where for a given

R ∈
(
V
r

)
, χH(R) = 1 if, and only if, R ∈ H. We establish the algorithm Ar which computes

|K(r)
r+1(H)| in time O(nr+1/ log n). At the end of the section, it will be easy to indicate how Ar

can also find an r-simplex in H, when there is one. We now describe the first (and main) step
of the algorithm Ar.
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Step 1. Let U1 = {u1, . . . , um} ∈
(

V
m

)
be an arbitrary set of m vertices, where m = b(1/2) log nc.

The main goal of Step 1 is to count the number of r-simplices in H having at least one vertex
in U1. To that end, let K(r)

r+1(U1,H) denote the collection of sets S ∈
(

V
r+1

)
which span an

r-simplex in H and which satisfy S ∩ U1 6= ∅. We assert the following.

Proposition 2.1. The quantity |K(r)
r+1(U1,H)| can be computed in time O(nr).

Theorem 1.2 (for r-simplices) now follows by iterating Step 1. Indeed, let V1 = V \U1 and H1 =
H[V1], whereH[V1] is the subhypergraph ofH induced on V1 = V \U1. Let U2 ⊆ V1 be a subset of
size m. Step 2 computes, in time O(nr), the number |K(r)

r+1(U2,H1)| of r-simplices in H1 having

at least one vertex in U2. (Note that K(r)
r+1(U2,H1) and K(r)

r+1(U1,H) are disjoint.) Repeating1

this procedure n/m times computes all of |K(r)
r+1(H)|, in time O(nr+1/m) = O(nr+1/ log n), as

promised.

Proof of Proposition 2.1. We first perform a greedy process, so that the remainder of the
proof addresses only essential details. Note that the elements S ∈ K

(r)
r+1(U1,H) fall into two

classes: those for which |S∩U1| ≥ 2, and those for which |S∩U1| = 1. Let #U1 denote the size of
the former class, which can be greedily computed in time O

(
m2nr−1

)
= O(nr−1 log2 n) = o(nr).

We now determine |K(r)
r+1(U1,H)| −#U1 , which counts the elements S ∈ K

(r)
r+1(U1,H) meeting

U1 exactly once. We begin with a sketch of the approach.

Sketch. Observe that

|K(r)
r+1(U1,H)| −#U1 =

∑
{degU1

(H) : H ∈ H1} , (1)

where for H ∈ H1, degU1
(H) = |{u ∈ U1 : {u} ∪H ∈ K(r)

r+1(U1,H)}|. Our plan is to construct,
in time O(nr), a partition ΠH1 of H1 into O(nr−1) classes H ∈ ΠH1 with the property that,
whenever H,H ′ ∈ H ∈ ΠH1 , then degU1

(H) = degU1
(H ′). In this way, for each class H ∈

ΠH1 , we have that degU1
(H) is constant, and so computed in time O(m). Therefore, the

degrees degU1
(H), over all O(nr−1) classes H ∈ ΠH1 , are computed in time O(mnr−1) =

O(nr−1 log n) = o(nr). We then compute (1) by

|K(r)
r+1(U1,H)| −#U1 =

∑
{degU1

(H)× |H| : H ∈ ΠH1} . (2)

Note that we may assume the sizes |H| are computed when ΠH1 was constructed. (Alterna-
tively, once ΠH1 is constructed, we may construct the list {|H| : H ∈ ΠH1} of sizes in time∑
{O(|H|) : H ∈ ΠH1} = O(|H1|) = O(nr).) This completes the sketch of the proof. 2

What essentially remains is to construct the partition ΠH1 , for which we now prepare. To
that end, we first construct the following partition Π(r−1)

V1
of

(
V1

r−1

)
, the family of (r − 1)-tuples

Q ∈
(

V1

r−1

)
from V1 = V \ U1. To describe Π(r−1)

V1
, consider the mapping ψ :

(
V1

r−1

)
→ {0, 1}m

defined by, for Q ∈
(

V1

r−1

)
,

ψ(Q) = uQ =
(
χH({u1} ∪Q), . . . , χH({um} ∪Q)

)
∈ {0, 1}m , (3)

1More formally, repeat this procedure almost n/m times, until say O(
√

n) vertices remain, and finish the job
by exhaustively searching for the remaining r-simplices.
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where recall that χH is the characteristic function for H and that U1 = {u1, . . . , um}. Now, for
u ∈ {0, 1}m, set

Qu = ψ−1(u) =
{
Q ∈

(
V1

r−1

)
: uQ = u

}
,

which is an (r − 1)-uniform hypergraph on vertex set V1. The promised partition Π(r−1)
V1

of(
V1

r−1

)
is then

Π(r−1)
V1

=
{
Qu : u ∈ {0, 1}m

}
.

We claim that ψ and Π(r−1)
V1

may be constructed in time O(nr−1 log n). Indeed, first construct
the space {0, 1}m in time O(2m) = O(

√
n) = o(nr−1) (recall 2m ≤ log n and r ≥ 3). Then,

construct ψ in time O(nr−1m) = O(nr−1 log n). Observe that Π(r−1)
V1

is constructed from ψ

in time
∑{

O(|ψ−1(u)|) : u ∈ {0, 1}m
}

= O(nr−1) (note that at most O(
√
n) = o(nr−1) zero

terms are considered).
To construct the promised partition ΠH1 , we now consider the following mapping % : H1 →∏r
k=1{0, 1}m = {0, 1}m×· · ·×{0, 1}m. For H = {v1, . . . , vr} ∈ H1, write

(
H

r−1

)
= {Q1, . . . , Qr},

where Qi = H \ {vi}, for all 1 ≤ i ≤ r. Define

%(H) = (uQ1 , . . . ,uQr) = (ψ(Q1), . . . , ψ(Qr)) ∈
r∏

k=1

{0, 1}m ,

where ψ is the mapping constructed above for the partition Π(r−1)
V1

. Now, for (u1, . . . ,ur) ∈∏r
k=1{0, 1}m, let

Hu1,...,ur = %−1(u1, . . . ,ur) =
{
H ∈ H1 : %(H) = (u1, . . . ,ur)

}
.

(The object Hu1,...,ur , an r-uniform subhypergraph of H1, is a class H from the Sketch.) The
promised partition ΠH1 (from the Sketch) is then

ΠH1 =
{
Hu1,...,ur : (u1, . . . ,ur) ∈

r∏
k=1

{0, 1}m
}
.

Note that ΠH1 is a partition with at most∣∣ΠH1

∣∣ ≤ 2mr ≤ nr/2 = O(nr−1) (4)

classes, since 2m ≤ log n and r ≥ 3. We claim that both % and ΠH1 may be constructed in time
O(nr). Indeed, to construct %, first construct the space

∏r
k=1{0, 1}m in time O(2mr) = O(nr−1).

Then, for each H ∈ H1, where
(

H
r−1

)
= {Q1, . . . , Qr}, one recalls (ψ(Q1), . . . , ψ(Qr)) in constant

time (cf. (3)). Thus, % is constructed in time O(nr). From %, one constructs ΠH1 in time∑ {
O(|%−1(u1, . . . ,ur)|) : (u1, . . . ,ur) ∈

r∏
k=1

{0, 1}m
}

= O(|H1|) = O(nr) (5)

(note that at most O(nr−1) zero terms are considered). For future reference, let us also now
compute,

for each (u1, . . . ,ur) ∈
∏r

k=1{0, 1}m, the size |Hu1,...,ur |, (6)
which can be done simultaneously in (5).

We return to (1) and (2), and consider |K(r)
r+1(U1,H)| − #U1 =

∑
H∈H1

degU1
(H). The

following claim addresses how we compute degrees in this sum.

Claim 2.2. Fix H ∈ Hu1,...,ur ∈ ΠH1.
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(1) If, for some 1 ≤ i ≤ m, the projection πi onto the ith coordinate satisfies
∏r

j=1 πi(uj) =

1, then {ui} ∪H ∈ K(r)
r+1(H);

(2) degU1
(H) =

∑m
i=1

∏r
j=1 πi(uj);

(3) degU1
(H) does not depend on H ∈ Hu1,...,ur , but only on the class Hu1,...,ur to which H

belongs.

Proof. Let H = {v1, . . . , vr} ∈ Hu1,...,ur ∈ ΠH1 be given, where we assume that for each
1 ≤ j ≤ r, where Qj = H \ {vj}, we have uQj = uj . Now, suppose some 1 ≤ i ≤ m satisfies∏r

j=1 πi(uj) = 1. Then, for each 1 ≤ j ≤ r, we have πi(uj) = 1 = χ({ui} ∪ Qj) (recall χ
is the characteristic function of H), in which case {ui} ∪ Qj ∈ H. Since this holds for every
1 ≤ j ≤ r, then together with H, {ui}∪H spans an r-simplex K(r)

r+1 in H. The second assertion
now follows from the first, and third assertion follows from the second. �

We conclude the proof of Proposition 2.1. For a class Hu1,...,ur ∈ ΠH1 , the quantity∑m
i=1

∏r
j=1 πi(uj) is a multilinear form (generalizing the dot product), which we abbreviate

to 〈u1, . . . ,ur〉. Then, from (2) and Claim 2.2, we see that degU1
(Hu1,...,ur) = 〈u1, . . . ,ur〉. As

such, from (1), (2) and Claim 2.2,

|K(r)
r+1(U1,H)| −#U1 =

∑
H∈H1

degU1
(H) =

∑ {
〈u1, . . . ,ur〉 × |Hu1,...,ur | : Hu1,...,ur ∈ ΠH1

}
.

(7)
Since ΠH1 was already constructed (recall (6)), the sum in (7) is computed in an additional time
of O(mnr−1) = O(nr−1 log n). Indeed, for each Hu1,...,ur ∈ ΠH1 , 〈u1, . . . ,ur〉 requires O(m)
computations, and ΠH1 consists of O(nr−1) elements (recall (4)). This completes the proof of
Proposition 2.1.

On finding an r-simplex in H. The algorithm Ar will find an r-simplex in H when there is
one. Indeed, suppose that Step i (recall Step 1), 1 ≤ i = O(n/ log n), is the first for which Ar

determines that |K(r)
r+1(H)| > 0. Without loss of generality, suppose i = 1. Recall that Ar per-

forms an exhaustive search to compute #U1 (recall (1)), and so it could return the first instance
it finds verifying that #U1 > 0. Suppose, otherwise, that #U1 = 0 so that, for some (first)
class Hu1,...,ur ∈ ΠH1 (cf. (7)), the algorithm determines that both 〈u1, . . . ,ur〉, |Hu1,...,ur | > 0.
Then, let 1 ≤ i ≤ m be the first coordinate for which

∏r
j=1 πi(uj) = 1. Then Ar takes any

H ∈ Hu1,...,ur and returns {ui} ∪H.

3. Proof of Theorem 1.2

The work that remains is quite standard, but we will consider separately the two cases when
F = K

(r)
f is complete (an f -clique) and when F is not necessarily complete. In particular,

we will first show how the algorithm Ar of the previous section can be extended to provide an
algorithm Ar,f which computes, for a given r-uniform hypergraph H on n vertices, the quantity
|K(r)

f (H)| in time O(nf/ log n). The algorithm Ar,f can also find an f -clique in H when there
is one. Afterward, we will show, for an arbitrary r-uniform hypergraph F on f vertices, how
the algorithm Ar,f can be extended to provide the promised algorithm AF .

Algorithm Ar,f . Fix an integer r ≥ 3. We proceed by induction on f ≥ r+1. When f = r+1,
we take Ar,r+1 = Ar as the algorithm of the previous section. Now, for f − 1 ≥ r + 1, assume
there exists an algorithm Ar,f−1 which, for a given r-uniform hypergraph H on n vertices,
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computes |K(r)
f−1(H)| in time O(nf−1/ log n). Suppose, moreover, that Ar,f−1 can also find an

(f − 1)-clique in H when there is one. We now describe the promised algorithm Ar,f .
Let H be a given r-uniform hypergraph with an n-element vertex set V , where we assume

that H is represented by its characteristic function χH :
(
V
r

)
→ {0, 1}. Fix an arbitrary vertex

u = u1 ∈ V , and construct the following two hypergraphs:

Qu =
{
Q ∈

(
V \{u}
r−1

)
: χH({u1} ∪Q) = 1

}
; Hu = H ∩K(r−1)

r (Qu) .

Note that Qu is an (r − 1)-uniform hypergraph whose edges Q ∈ Qu, together with u, form
an edge H ∈ H. Note that Hu is an r-uniform hypergraph whose edges H ∈ Hu span an
(r − 1)-simplex K(r−1)

r in Qu. Clearly, Qu can be constructed from χH in time O(nr−1). Note
that Hu can be constructed from χH in time O(|H|) = O(nr). Indeed, for a fixed H ∈ H, one
computes χH({u} ∪Q) for each Q ∈

(
H

r−1

)
.

Now, observe that the quantity |K(r)
f−1(Hu)| counts the number of cliques K(r)

f in H which

contain the vertex u. By induction, Ar,f−1 counts K(r)
f−1(Hu) in time O(nf−1/ log n). Moreover,

Ar,f−1 finds an (f − 1)-clique in Hu, if there is one, which combined with u forms an f -clique
in H. We repeat this procedure for a vertex u2 ∈ V \ {u} for the hypergraph H[V \ {u}], and
so on. After n iterations, we have counted all of K(r)

f (H) in time O(nf/ log n), and have found
an f -clique in H, if there is one. This describes the algorithm Ar,f .

Algorithm AF . Let r-uniform hypergraph F on f > r ≥ 3 vertices be given. Let H be a
given r-uniform hypergraph with an n-element vertex set V . (In this proof, we make only
tacit use of the characteristic function representing H.) We begin with a greedy procedure,
so that only essential details remain. For t = blog nc, construct (in linear time) any partition
V (H) = V1 ∪ · · · ∪ Vt for which |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1. Employ an exhaustive search for all
elements S ∈ Find(H) for which |S∩Vi| ≥ 2 for some 1 ≤ i ≤ t, which clearly may be completed
in time O(t

(dn/te
2

)
nf−2) = O(nf/ log n). If any such S is found in this search, return the first

one for the promised example of an induced copy of F in H.
The remainder of AF will count crossing copies S ∈ Find(H), that is, f -tuples S ∈ Find(H)

for which |S ∩ Vi| ≤ 1 for all 1 ≤ i ≤ t. Write F×
ind(H) for the family of all crossing copies

S ∈ Find(H). In what follows, we shall consider two partitions of Find(H) (see upcoming (8)
and (9)), where the second partition (9) will refine the first (8). These partitions provide us an
identity in upcoming (10) for computing |F×

ind(H)|. Our next several efforts will be to describe
these partitions. At the end of the section, we handle all remaining constructive details of AF .

First partition. For F = {i1, . . . , if} ∈
([t]

f

)
, consider

F×
ind(H;F ) = F×

ind(H) ∩ Find(H[Vi1 , . . . , Vif ]) ,

where H[Vi1 , . . . , Vif ] is the f -partite subhypergraph of H induced by the partition Vi1∪· · ·∪Vif .
In other words, F×

ind(H;F ) is the family of all crossing S ∈ F×
ind(H) whose vertices lie within

Vi1 ∪ · · · ∪ Vif . Then

F×
ind(H) =

⋃ {
F×

ind(H;F ) : F ∈
([t]

f

)}
(8)

is a partition. We shall consider a refinement of (8) (in upcoming (9)), but will first require a
few preparations.

Fix F0 = {i1, . . . , if} ∈
([t]

f

)
, and define FF0 to be the family of f !/|Aut(F)| many distinct

(unlabeled) copies of F on vertex set F0. Fix a copy F0 ∈ FF0 , and consider the following
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r-partite r-uniform hypergraph G = GF0,F0 with vertex partition Vi1 ∪ · · · ∪ Vif . For each
R = {j1, . . . , jr} ∈

(
F0

r

)
, define

GR = GF0,F0,R =
{

H[Vj1 , . . . , Vjr ] if R ∈ F0,
K(r)(Vj1 , . . . , Vjr) \ H if R 6∈ F0,

where K(r)(Vj1 , . . . , Vjr) is the complete r-partite r-uniform hypergraph with vertex partition
Vj1 ∪ · · · ∪ Vjr . Define

G = GF0,F0 =
⋃ {

GR : R ∈
(
F0

r

)}
.

We consider two properties of the hypergraph G = GF0,F0 .

Fact 3.1. Each element of K(r)
f (G) = K

(r)
f (GF0,F0) corresponds to an element of F×

ind(H;F0).

Proof. Indeed, let S = {vi1 , . . . , vif } ∈ K
(r)
f (G), where vi1 ∈ Vi1 , . . . , vif ∈ Vif . We claim that

ij 7→ vij , 1 ≤ j ≤ f , defines an isomorphism from F0 to H[S] = H ∩
(
S
r

)
. Indeed, fix R =

{j1, . . . , jr} ∈
(
F0

r

)
. Suppose R ∈ F0. Then GR = H[Vj1 , . . . , Vjr ], and so {vj1 , . . . , vjr} ∈ GR

implies {vj1 , . . . , vjr} ∈ H[S]. Suppose R 6∈ F0. Then, GR = K(r)(Vj1 , . . . , Vjr) \ H, and so
{vj1 , . . . , vjr} ∈ GR implies {vj1 , . . . , vjr} 6∈ H[S]. �

Fact 3.2. For every element S ∈ F×
ind(H;F0), there exists a unique FS ∈ FF0 for which

S ∈ K(r)
f (GF0,FS

).

Proof. Indeed, let S = {vi1 , . . . , vif } ∈ F×
ind(H;F0) be given, where vi1 ∈ Vi1 , . . . , vif ∈ Vif . Let

vij 7→ ij , 1 ≤ j ≤ f , be the isomorphism from H[S] (an induced copy of F) to an element

FS ∈ FF0 . We check that S ∈ K(r)
f (GF0,FS

). Indeed, suppose H = {vj1 , . . . , vjr} ∈ H[S] so that
R = {j1, . . . , jr} ∈ FS . Then, H ∈ H[Vj1 , . . . , Vjr ] = GF0,FS ,R, and so H ∈ GF0,FS

. Suppose,
on the other hand, that H = {vj1 , . . . , vjr} 6∈ H[S], so that R = {j1, . . . , jr} 6∈ FS . Then
H ∈ K(r)(Vj1 , . . . , Vjr) \ H = GF0,FS ,R, and so H ∈ GF0,FS

. The uniqueness assertion follows
easily. Indeed, let F1,F2 ∈ FF0 be given, where R ∈ F1 \ F2. Then, GF0,F1,R and GF0,F2,R are
disjoint, in which case K(r)

f (GF0,F1) and K(r)
f (GF0,F2) are also disjoint. �

Second partition. It follows from the facts above that

F×
ind(H;F0) =

⋃ {
K

(r)
f (GF0,F0) : F0 ∈ FF0

}
is a partition. Then

F×
ind(H) =

⋃ {
K

(r)
f (GF,F0) : F ∈

([t]
f

)
, F0 ∈ FF

}
(9)

is a partition which refines (8). As such,∣∣F×
ind(H)

∣∣ =
∑ {∣∣K(r)

f (GF,F0)
∣∣ : F ∈

([t]
f

)
, F0 ∈ FF

}
. (10)

To employ the identity in (10), we construct every hypergraph GF,F0 , over all F ∈
([t]

f

)
and

F0 ∈ FF . (Note that FF is constructable in constant, viz. O(f !), time.) For a fixed F ∈
([t]

f

)
and F0 ∈ FF , GF,F0 is constructed in time O

((
f
r

)
dn/ter

)
. Therefore, all such hypergraphs GF,F0

are constructed in time

O
((

t
f

)
f !

(
f
r

)
dn/ter

)
= O(nrtf−r) = O(nr logf−r n) = o(nf/ log n)
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(recall t = blog nc and f ≥ r + 1). Now, we apply the algorithm Ar,f to each term in the sum
in (10). Note that, for each F ∈

([t]
f

)
and F0 ∈ FF , the hypergraph GF,F0 has at most fdn/te

vertices. Therefore, Ar,f computes |K(r)
f (GF,F0)| in time O

(
(fn/t)f/ log(fn/t)

)
= O(nf/tf+1)

(recall t = blog nc). The time spent computing the terms |K(r)
f (GF,F0)|, over all F ∈

([t]
f

)
and

F0 ∈ FF , is therefore

O
((

t
f

)
f !

nf

tf+1

)
= O(nf/t) = O(nf/ log n) .

This concludes our count of |F×
ind(H)|.

Note that we will find a copy S ∈ F×
ind(H), if there is one, since Ar,f will find an f -clique in

some GF,F0 , for F ∈
([t]

f

)
and F0 ∈ FF . This completes our description of the algorithm AF .
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