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Abstract. For a positive integer k, a k-square Sk (more generally, a square) in Z × Z is any set

{(i, j), (i + k, j), (i, j + k), (i + k, j + k)} ⊂ Z× Z. Let Sk denote the class of k-squares Sk ⊂ Z× Z. A
set A ⊂ Z × Z is said to be Sk-free if, for each Sk ∈ Sk, we have that Sk 6⊆ A. For positive integers

M and N , let LM,N = [0,M − 1]× [0, N − 1] be the M ×N non-negative integer lattice. For positive

integers k1, . . . , k`, set

ex(LM,N , {Sk1
, . . . ,Sk`

}) = max
{
|A| : A ⊆ LM,N is Ski

-free for all 1 ≤ i ≤ `
}
,

and when {Sk1
, . . . ,Sk`

} = {Sk}, we abbreviate this parameter to ex(LM,N ,Sk).
Our first result gives an exact formula for ex(LM,N ,Sk) for all integers k,M,N ≥ 1, where

ex(LM,N ,Sk) = (3/4 + o(1))MN holds for fixed k and min{M,N} → ∞. Our second result iden-

tifies a set A0 ⊂ LM,N of size |A0| ≥ (2/3)MN with the property that, for any integer k 6≡ 0 (mod 3),
A0 is Sk-free. Our third result shows that |A0| is asymptotically best possible, in that for all integers

M,N ≥ 1, ex(LM,N , {S1,S2}) ≤ (2/3)MN +O(M +N). When M = 3m is divisible by three, our esti-

mates on the error O(M + N) render exact formulas for ex(L3m,3, {S1,S2}) and ex(L3m,6, {S1,S2}).

1. Introduction

We consider an extremal problem on finite lattices. For a positive integer k, a k-square Sk (more
generally, a square) in Z× Z is any set {(i, j), (i+ k, j), (i, j + k), (i+ k, j + k)} ⊂ Z× Z. When k = 1,
we call a 1-square a unit square, and when k = 2, we call a 2-square a bi-unit square. Let Sk denote
the class of all k-squares Sk ⊂ Z × Z. A set A ⊂ Z × Z is said to be Sk-free if, for each Sk ∈ Sk, we
have that Sk 6⊆ A. Now, for positive integers M and N , consider the M ×N non-negative integer lattice
LM,N = [0,M − 1]× [0, N − 1]. For positive integers k1, . . . , k`, let

ex(LM,N , {Sk1 , . . . ,Sk`}) = max {|A| : A ⊆ LM,N is Ski-free for all 1 ≤ i ≤ `}
denote the extremal number for the simultaneous avoidance of Sk1 , . . . ,Sk` in LM,N . When ` = 1 and
k1 = k, we write this parameter as ex(LM,N ,Sk).

Our first result gives an exact formula for ex(LM,N ,Sk), for all integers M,N, k ≥ 1.

Theorem 1.1. For all integers M,N, k ≥ 1, where rM = M (mod 2k) and rN = N (mod 2k),

ex(LM,N ,Sk) = MN −
(
M − rM

2
+ max {rM − k, 0}

)(
N − rN

2
+ max {rN − k, 0}

)
.

We prove Theorem 1.1 in Section 2. Note that Theorem 1.1 gives ex(LM,N ,S1) = MN − bM/2cbN/2c,
for all integers M,N ≥ 1, and ex(LM,N ,Sk) = (3/4)MN , whenever M and N are divisible by 2k.

Our next result concerns the parameter ex(LM,N , {Sk1 , . . . ,Sk`}) when ` ≥ 2.

Theorem 1.2. For all integers M,N ≥ 1, there exists A0 ⊂ LM,N of size |A0| = b(2/3)MNc+ 1 with
the property that for all positive integers k 6≡ 0 (mod 3), A0 is Sk-free.

Remark 1.3. In some cases, Theorem 1.2 can be slightly improved: if M ≡ N (mod 3), where M 6= N
or 1 6= M ≡ 1 (mod 3), then |A0| = b(2/3)MNc+ 2. We prove this, and Theorem 1.2, in Section 3. 2

Theorem 1.2 implies that for all positive integers k1, . . . , k` 6≡ 0 (mod 3), ex(LM,N , {Sk1 , . . . ,Sk`}) ≥
(2/3)MN . Our final result shows that this bound is asymptotically best possible.
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Theorem 1.4. Let integers M,N ≥ 1 be given, where N = 3n is divisible by three. Then,

ex(LM,3n, {S1,S2}) ≤
2

3
MN +

{
n if n ≡ 0 (mod 2),

n+ 1 if n ≡ 1 (mod 2).

Consequently, for all integers M,N ≥ 1, ex(LM,N , {S1,S2}) ≤ (2/3)MN +O(M +N).

Remark 1.5. Theorem 1.4 is best possible when n = 1, 2 and M = 3m > N is divisible by three. Indeed,
then Theorem 1.2, Remark 1.3, and Theorem 1.4 combine to give the formulas ex(L3m,3, {S1,S2}) =
6m+ 2 and ex(L3m,6, {S1,S2}) = 12m+ 2. We have recently learned from [1] (in progress) that a linear
term in Theorem 1.4 is, to some extent, necessary. There, it was shown that ex(LM,N , {S1,S2}) ≥
(2/3)MN + (2/27)N holds for (at least) infinitely many pairs of integers M ≥ N ≥ 1. 2

The paper is organized as follows. We prove Theorem 1.1 in Section 2. We prove Theorem 1.2 in
Section 3. We prove Theorem 1.4 in Section 4. We conclude the Introduction with the following remark.

Remark 1.6. The problem of forbidding fixed squares in LM,N bears some resemblance to a case of the
classical problem of Zarankiewicz [4]. In the language of M × N lattices, one seeks the maximum size
z(M,N) = |A| of a subset A ⊂ LM,N which forbids an arbitrary rectangle {(a, c), (a, d), (b, c), (b, d)} ⊆
LM,N . It is known from the work of Kővári, Sós, and Turán [2] that z(M,N) < (N −1)M1/2 + 2M , and

a (projective plane) construction of Reiman [3] shows z(N,N) = N3/2(1 + o(1)). The maximum size |A|
of a subset A ⊂ LM,N which forbids an arbitrary square is discussed in [1].

Acknowledgment. The authors wish to thank the Referees, whose careful reading and helpful suggestions
lead to an improved presentation of our work. The second and third authors wish to thank K. Milans,
from whom they learned about the problems considered in this paper.

2. Proof of Theorem 1.1

Fix integers M,N > k ≥ 1. For an integer t ∈ Z, write t2k = t (mod 2k), where 0 ≤ t2k < 2k. Set

Bk = {(i, j) ∈ LM,N : i2k ≥ k and j2k ≥ k} and Ak = LM,N \Bk, (1)

where Figure 1 gives a visual example of B3 ⊂ L13,11. We prove that ex(LM,N ,Sk) = |Ak|, which
(if true) implies the formula for ex(LM,N ,Sk) promised by Theorem 1.1. Indeed, let qM , qN ∈ N and
0 ≤ rM < 2k and 0 ≤ rN < 2k satisfy M = (2k)qM + rM and N = (2k)qN + rN . Then, it is easy to see
that

|Bk| = (kqM + max {rM − k, 0}) (kqN + max {rN − k, 0}) ,
which implies the formula for ex(LM,N ,Sk) = |Ak| = MN − |Bk| promised by Theorem 1.1.

To prove that ex(LM,N ,Sk) ≥ |Ak|, we show that Ak contains no k-squares. Indeed, assume, on the
contrary, that {(i, j), (i+ k, j), (i, j + k), (i+ k, j + k)} ⊂ Ak, and w.l.o.g., let i2k < k. If j2k < k, then
(i+ k, j + k) ∈ Bk, and if j2k ≥ k, then (i+ k, j) ∈ Bk, which is a contradiction either way.

To prove that ex(LM,N ,Sk) ≤ |Ak|, let A ⊆ LM,N be given satisfying that

(a) A contains no k-squares;
(b) |A| = ex(LM,N ,Sk).

Without loss of generality, assume that A is chosen to additionally satisfy that

(c) |A ∩Bk| is a minimum.

We will show that A ∩Bk = ∅ (see Figure 1) so that (1) gives A ⊆ Ak, and hence |A| ≤ |Ak|.
Assume, on the contrary, that A ∩ Bk 6= ∅, and let (i, j) ∈ A ∩ Bk be the minimum w.r.t. the lex-

icographic order on LM,N . Since (i, j) ∈ Bk, we have from (1) that i ≥ i2k ≥ k and j ≥ j2k ≥ k, so
consider the points (i− k, j), (i, j − k), (i− k, j − k) ∈ LM,N . Since A contains no k-squares, not all of
these points can belong to A. We now consider these possibilities in cases (whose arguments are similar).

Case 1: (i− k, j) 6∈ A.
We claim that A∗ = (A \ {(i, j)}) ∪ {(i − k, j)} contains no k-squares Sk, which contradicts Condi-

tions (a)–(c) (since |A∗| = |A| and |A∗ ∩Bk| < |A ∩Bk|). Indeed, assuming otherwise, a k-square Sk in
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Figure 1. The set B3 ⊂ L13,11.

A∗ must contain (i− k, j). Since (i, j) 6∈ A∗, we must have (i− 2k, j) ∈ A, and so (i− 2k, j) ∈ A ∩ Bk
contradicts our choice of (i, j).

Case 2: (i, j − k) 6∈ A.
Now, A∗ = (A \ {(i, j)}) ∪ {(i, j − k)} contains no k-squares, since otherwise a k-square Sk in A∗

contains (i, j − k), and so (i, j − 2k) ∈ A ∩Bk contradicts our choice of (i, j).

Case 3: (i− k, j − k) 6∈ A.
Now, A∗ = (A \ {(i, j)})∪ {(i− k, j − k)} contains no k-squares, since otherwise a k-square Sk in A∗

contains (i−k, j−k) and at least one of (i−2k, j), (i−2k, j−2k), (i, j−2k) ∈ A∩Bk, which contradicts
our choice of (i, j). 2

Remark 2.1. A similar proof shows Bk ⊂ LM,N is a smallest set meeting all k-squares of LM,N . Indeed,
clearly Bk meets all k-squares of LM,N , so let B ⊂ LM,N also do so, where |B| = MN − ex(LM,N ,Sk) ≤
|Bk|. W.l.o.g., choose B so that |Bk \B| is a minimum. Assume Bk \B 6= ∅, and let (i, j) ∈ Bk \B be the
minimum w.r.t. the lexicographic order on LM,N . Thus, for each x ∈ {(i− 2k, j), (i, j − 2k), (i− 2k, j −
2k) ∈ Z × Z, if x ∈ LM,N , then x ∈ Bk ∩ B. Now, there exists y ∈ {(i − k, j), (i, j − k), (i − k, j − k)}
so that y ∈ B \ Bk. Define B∗ by replacing y ∈ B with (i, j) ∈ Bk, but leaving all other memberships
intact. Then, B∗ meets all k-squares of LM,N , while |B∗| = |B| and |Bk \B∗| < |Bk \B|. 2

3. Proof of Theorem 1.2

Fix integers M,N ≥ 1. Define A = {(i, j) ∈ LM,N : i 6≡ j (mod 3)} and A0 = A ∪ {(0, 0)}. Using
case-analysis on MN (mod 3), one may show that |LM,N \ A| = dMN/3e. As such, |A| = b2MN/3c
and |A0| = b2MN/3c+ 1. For a fixed positive integer k 6≡ 0 (mod 3), we show A0 contains no k-squares.
Indeed, assume that Sk = {(i, j), (i + k, j), (i, j + k), (i + k, j + k)} ⊂ A0, for some (i, j) ∈ LM,N . If
i = j = 0, then (k, k) ∈ A, which is impossible. We therefore assume that (i, j) 6= (0, 0) so that Sk ⊂ A,
and we consider the cases k ≡ 1 (mod 3) and k ≡ 2 (mod 3).

Case 1: k ≡ 1 (mod 3).
Since (i, j) ∈ A, we have i ≡ j + 1 (mod 3) or i ≡ j + 2 (mod 3). If i ≡ j + 1 (mod 3), then i ≡ j + k

(mod 3), in which case (i, j + k) 6∈ A, a contradiction. If i ≡ j + 2 (mod 3), then i+ k ≡ i+ 1 ≡ j (mod
3), in which case (i+ k, j) 6∈ A, a contradiction.

Case 2: k ≡ 2 (mod 3).
Again, i ≡ j + 1 (mod 3) or i ≡ j + 2 (mod 3). If i ≡ j + 1 (mod 3), then i+ k ≡ i+ 2 ≡ j (mod 3),

in which case (i+ k, j) 6∈ A, a contradiction. If i ≡ j + 2 (mod 3), then i ≡ j + k (mod 3), in which case
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(i, j + k) 6∈ A, a contradiction proving Theorem 1.2. 2

We now argue the assertion of Remark 1.3. Assume M ≡ N (mod 3), where M 6= N or 1 6= M ≡ 1

(mod 3). Define Â0 = A0∪{(M−1, N−1)}. Note that (M−1, N−1) 6∈ A0 because M ≡ N (mod 3) and

(M,N) 6= (1, 1). For k 6≡ 0 (mod 3), we claim Â0 contains no k-squares. Indeed, if Â0 contains a k-square

Sk, then (M − 1, N − 1) ∈ Sk, because A0 contains no k-squares. Now, (M − 1 − k,N − 1 − k) ∈ Â0.
Since M ≡ N (mod 3), it must be that k = M − 1 = N − 1, contradicting M 6= N or M ≡ 1 (mod 3).

4. Proof of Theorem 1.4

Let integers M,N ≥ 1 be given, where N = 3n is divisible by three, and let A ⊆ LM,N be a given
subset containing neither unit nor bi-unit squares. Our goal is to show that

|A| ≤ 2

3
MN +

{
n if n ≡ 0 (mod 2),

n+ 1 if n ≡ 1 (mod 2).
(2)

In Section 4.1, we prove (2) when n = 1. In Section 4.2, we use the case n = 1 to prove (2) in general.

4.1. Proof of (2) when n = 1. For each (i, j) ∈ LM,3, define

ai,j =

{
1 if (i, j) ∈ A,
0 if (i, j) 6∈ A,

ai =

 ai,2
ai,1
ai,0

 , and A = {a0,a1, . . . ,aM−1}, (3)

so that A is the set of incidence columns of A. For 0 ≤ s ≤ 3, let A(s) =
{
ai ∈ A : ||ai||2 = s

}
,

and define a characteristic function χs : A → {0, 1} by χ−1s (1) = A(s). We prove the following fact
momentarily.

Fact 4.1. |A(3)| ≤ |A(0)|+ |A(1)|+ χ3(a0)χ2(a1) + χ2(aM−2)χ3(aM−1).

Fact 4.1 quickly implies (2) when n = 1. Indeed, we have M = |A| =
∑3
s=0 |A(s)|, and so |A(2)| =

M − |A(0)| − |A(1)| − |A(3)|. Therefore,

|A| =
M−1∑
i=0

||ai||2 =

3∑
s=0

s|A(s)| = 2M + |A(3)| − |A(1)| − 2|A(0)|

Fact4.1

≤ 2M + χ3(a0)χ2(a1) + χ2(aM−2)χ3(aM−1), (4)

which implies (2) when n = 1. It remains to prove Fact 4.1. 2

Proof of Fact 4.1. We begin with a couple elementary observations for a fixed 1 ≤ i ≤ M − 2. First,
||ai−1||2 ≤ 2 or ||ai+1||2 ≤ 2, since otherwise A contains a bi-unit square. Moreover, if ||ai||2 = 3, then
||ai−1||2 ≤ 1 or ||ai+1||2 ≤ 1, since otherwise an easy case analysis reveals that A contains a unit or a
bi-unit square.

Now, define the graph G = (V = A, E) by putting, for each ai 6= aj ∈ V = A, {ai,aj} ∈ E if, and

only if, ai ∈ A(3), aj ∈ A(0) ∪ A(1), and |i − j| = 1. Since every edge of G has exactly one endpoint

in A(3), we have
∑

ai∈A(3) degG(ai) =
∑

aj∈A(0)∪A(1) degG(aj). By the preceding observations, all

aj ∈ A(0) ∪ A(1) have degG(aj) ≤ 1, and all ai ∈ A(3), except possibly a0 and aM−1 (if they belong to

A(3)), have degG(ai) ≥ 1. Thus,

|A(0) ∪ A(1)| ≥
∑

aj∈A(0)∪A(1)

degG(aj) =
∑

ai∈A(3)

degG(ai)

≥ |A(3) \ {a0,aM−1}|+ χ3(a0) degG(a0) + χ3(aM−1) degG(aM−1)

= |A(3)| − χ3(a0) (1− degG(a0))− χ3(aM−1) (1− degG(aM−1)) .
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Fact 4.1 now follows. Indeed, assume, e.g., that χ3(a0) = 1, and observe then χ2(a1) = 1−degG(a0). For
χ3(a0) = 1 gives a1 6∈ A(3), and so degG(a0) = 1, iff a1 ∈ A(0) ∪ A(1), iff a1 6∈ A(2), iff χ2(a1) = 0. �

4.2. Proof of (2). We use (4) to prove (2). For integers 0 ≤ j ≤ n − 1 and 0 ≤ s ≤ 3, define
LM,3,j = [0,M−1]× [3j, 3j+2] and Aj = A∩LM,3,j , and as in (3), define Aj = {a0,j ,a1,j , . . . ,aM−1,j},
A(s)
j ⊆ Aj , and χs,j : Aj → {0, 1}. Observe that (4) implies that for each 0 ≤ j ≤ n− 2,

|Aj | = 2M + 2 =⇒ |Aj+1| ≤ 2M and |Aj+1| = 2M + 2 =⇒ |Aj | ≤ 2M. (5)

To see (5), assume, e.g., that |A0| = 2M +2 and |A1| ≥ 2M +1. By (4), χ3,0(a0,0) = χ2,0(a1,0) = 1, and

w.l.o.g., χ3,1(a0,1) = χ2,1(a1,1) = 1. Then, a0,0 = a0,1 =
[

1 1 1
]T

, and since A0, A1 each contain

no unit squares, a1,0 = a1,1 =
[

1 0 1
]T

. Now, {(0, 2), (1, 2), (0, 3), (1, 3)} ⊂ A, a contradiction.
To prove (2), call an index 0 ≤ j ≤ n − 1 big (medium) ((small)) if |Aj | = 2M + 2 (|Aj | = 2M + 1)

((|Aj | ≤ 2M)). Let β (µ) ((σ)) be the number of big (medium) ((small)) indices 0 ≤ j ≤ n− 1. On the
one hand, σ + µ+ β = n, and so µ = n− σ − β. On the other hand, we have

|A| =
n−1∑
j=0

|Aj | =
∑

j is big

|Aj |+
∑

j is medium

|Aj |+
∑

j is small

|Aj | ≤ (2M + 2)β + (2M + 1)µ+ 2Mσ

= 2M(σ + µ+ β) + µ+ 2β = 2Mn+ n+ β − σ =
2

3
MN + n+ β − σ.

Observe that β ≤ σ + 1, and when n is even, β ≤ σ (which implies (2)). Indeed, let 0 ≤ j1 < · · · < jβ ≤
n−1 be the big indices. Then (5) implies that σ ≥ β−1, since between every consecutive pair j` < j`+1

is at least one small index. More strongly, σ ≥ β holds if j1 ≥ 1, or jβ ≤ n − 2, or j`+1 ≥ j` + 3, for
some 1 ≤ ` < β. Otherwise, j1 = 0, j2 = 2, j3 = 4, . . . , 2(β − 1) = jβ = n− 1, and so n is odd. 2
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