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Abstract

Extending the Szemerédi Regularity Lemma for graphs,
P. Frankl and the third author [11] established a 3-graph
Regularity Lemma guaranteeing that all large triple sys-
tems admit partitions of their edge sets into constantly many
classes where most classes consist of regularly distributed
edges. Many applications of this lemma require a com-
panion Counting Lemma [26] allowing one to estimate the
number of copies of �

�����
	 in a “dense and regular” envi-

ronment created by the 3-graph Regularity Lemma. Com-
bined applications of these lemmas are known as the 3-
graph Regularity Method. In this paper, we provide an al-
gorithmic version of the 3-graph Regularity Lemma which,
as we show, is compatible with a Counting Lemma. We also
discuss some applications.

For general k-uniform hypergraphs, Regularity and
Counting Lemmas were recently established by Gowers
[16] and by Nagle, Rödl, Schacht, and Skokan [27, 35]. We
believe the arguments here provide a basis toward a general
algorithmic hypergraph regularity method.

1. Introduction

Szemerédi’s Regularity Lemma [38] for graphs is one
of the most powerful tools in combinatorics, with applica-
tions ranging across combinatorial number theory, extremal
graph theory and theoretical computer science (see [24] for
an excellent survey of applications).

The great importance of Szemerédi’s Regularity Lemma
has led to a search for extensions to 
 -uniform hypergraphs,
for example [3, 6, 10, 12, 13]. While these early general-
izations did lead to some interesting applications, they did

�
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not seem to capture the full power of Szemerédi’s lemma
for graphs. In particular, they did not allow for the embed-
ding of small subsystems within a regular structure. The
first generalized regularity lemma that did have this prop-
erty was the lemma of Frankl and Rödl [11] for 3-uniform
hypergraphs (3-graphs). In what follows we refer to this
result as the 3G-Lemma, for short. It guarantees that any
large 3-graph � admits a bounded partition of its triples,
most classes of which are “regularly distributed”. The em-
bedding of small subsystems is made possible by a compan-
ion result, called the Counting Lemma [26], which together
with the 3G-Lemma has resulted in various applications to
hypergraph problems [5, 18, 22, 21, 26, 25, 30, 31, 36].

The original proof of Szemerédi’s Regularity Lemma for
graphs was not algorithmic. An algorithmic version of Sze-
merédi’s Lemma was later established in [1, 2, 9] by Alon,
Duke, Lefmann, Rödl and Yuster, rendering constructive
solutions to many problems where Szemerédi’s Lemma is
applied (see [2] for applications). Our object is to estab-
lish compatible algorithmic versions of the hypergraph reg-
ularity lemma and the Counting Lemma. Algorithmic ver-
sions of earlier hypergraph regularity lemmas have been
established, including important work of Frieze and Kan-
nan [12, 13] (cf. [6]), but since these do not allow for the
embedding of small substructures, their power is restricted
to applications not requiring this feature.

Extending the 3G-Lemma, regularity lemmas and count-
ing lemmas for 
 -uniform hypergraphs, also allowing the
embedding of small substructures, were developed later by
Gowers [16, 17] and Nagle, Rödl, Schacht and Skokan
[27, 35] (for a recent survey on these topics see [29]). We
refer to the use of a regularity lemma and a counting lemma
together as the Hypergraph Regularity Method. An im-
mediate application of the hypergraph regularity method
proves a so-called ‘Removal Lemma’ (cf. [16, 27, 34, 39]).
This lemma, in turn, allows alternative proofs (cf. [11, 33])
of partition theorems originally obtained by Szemerédi,
Furstenberg and Katznelson [14, 15, 37], including Sze-



merédi’s celebrated Density Theorem: for fixed
�����

and
integer 
 , every subset ���	��

������������� , � � ����� � � 
�� ,
of size � ��� ��� � , contains an arithmetic progression of
length 
 . Very recently, a hypergraph regularity lemma was
developed by Tao [39] for some striking number theory ap-
plications. Other applications of the regularity method to

 -uniform hypergraphs can be found in [28, 29, 32, 33, 34].

Since the 3G-Lemma has already led to many applica-
tions, and also to minimize technical details, we will re-
strict our attention here to the 3-graph case. Our work
here completes a project begun in Dementieva, Haxell, Na-
gle and Rödl [7], and we will require a main result of [7]
for a crucial step in our proof (see Section 4). It appears
that our argument here uses some similar ideas to those
in the regularity lemma for � -uniform hypergraphs inde-
pendently obtained by Gowers [17], and in this way it is
likely closer to the work of Gowers than to the work on

 -uniform hypergraph regularity by Nagle, Rödl, Schacht
and Skokan [27, 35]. We believe that there should be no
principle obstacle to developing a completely algorithmic
regularity method for general 
 . Gowers’ [16] version of
his lemma for 
 -uniform hypergraphs reinforces our belief.

The original 3G-Lemma [11] is based on a notion of
hypergraph regularity called � � �! 
� -regularity which we de-
fine in Definition 7 of this paper. As can be seen in Defi-
nition 7, � � �! 
� -regularity has a somewhat technical defini-
tion, and verifying it is certainly a co-NP-complete prob-
lem. While this fact in itself is not necessarily an insur-
mountable problem in developing an algorithmic version
(see e.g. [2]), here our algorithmic lemma does not attempt
to capture fully the property of � � �! 
� -regularity. It uses in-
stead a weaker notion, which is nevertheless sufficient to
provide algorithmic proofs for a number of existing applica-
tions of the 3-graph regularity method, and to provide new
ones.

In the next section we describe some algorithmic appli-
cations of our main results. In Section 3, we state our main
results and we sketch their proofs in Section 4. Some de-
tails are omitted in this extended abstract due to space lim-
itations. The full details will appear in a complete paper
version [19].

2. Applications

The algorithmic version of Szemerédi’s Regularity
Lemma lead to many applications to constructive graph
problems (cf. [1, 2]). The work of our paper enables most of
these graph applications to be extended to analogous state-
ments for 3-graphs. In this section, we discuss two appli-
cations of our work, and refer the reader to [19] for other
applications.

Our first example considers algorithmic enumeration of
a fixed 3-graph " � appearing as a subsystem of a given 3-

graph � . To that end, let " � � �#� denote the family of copies
of "$� appearing as subsystems of � and let "&%('!)� � �#� denote
the family of copies of "$� appearing as induced subsystems
of � . We are interested in estimating � "$��� �#��� and � "�%('!)� � �#���
for arbitrary but fixed "$� and arbitrary but large � . Clearly,
these parameters could be computed precisely in time * 	

,
where * denotes the number of vertices of � . However,
with the methods developed here, we can approximate these
parameters, up to an error of +��,* 	 � , in time -.�,*0/
� .
Theorem 1 Let integers 
012� and 3 �4� and 3-graph " �
on 
 vertices be given. Then there exists *5�768*9��� 
:�!3��
such that for any 3-graph � with * � *5�;� 
:�!3;� vertices,
the quantities � "$��� �$��� and � "�%('!)� � �#��� may be approximated,
in time -.�<*=/
� , within an additive error of 3>* 	

.

Theorem 1 is actually a straightforward consequence of
the algorithmic methods we establish in this paper. For il-
lustrative purposes, however, we sketch the proof of how
Theorem 1 follows from our methods in Section 5.

Our next example considers a hypergraph packing ap-
proximation scheme. Let a fixed 3-graph ? be given. For
a 3-graph � , an ? -packing of � is a collection of pairwise
triple-disjoint copies ?@� of ? contained in � . We denote
by ACBD� �#� the maximum size of an ? -packing of � . Set-
ting EGFBIH to be the set of copies ?@� of ? contained in � , a
fractional ? -packing of � is any function JLK$EMFBIH9NPO � �

MQ
such that for every fixed edge R�S � , T �VUW �MX BZY X�[ J\�<? � �^]
 . Then, A:_B � �#� is defined to be the maximum value of
T BZYM` � UW � J\�,? � � taken over all fractional ? -packings of � .

It is not hard to see that A�_B � �$�a1bA B � �#� holds for all 3-
graphs � .

While computing A�BD� �#� is an NP-hard problem (cf. [8]),
computing A:_B � �#� is a linear programming problem (and
hence can done in polynomial time). Extending a result of
the first and third author [20] for graphs, the current authors
proved in [18] that

A _B � �$�$cdA B � �$�e6f+��G�hg.� �#��� � � (1)

holds for all 3-graphs � . Quite recently, the asymptotic (1)
was extended to 
 -graphs by Schacht, Siggers, Tokushige
and the third author in [32] using the hypergraph regularity
method.

The results of this paper may be combined with the ar-
guments of [18] to give the following constructive extension
of (1). We give the details in a forthcoming paper.

Theorem 2 For all fixed 3-graphs ? and constants i ��
, there exists * � so that for all 3-graphs � on * � * �

vertices, an ? -packing of � of size A B � �#�\cji�* �
can be

constructed in polynomial time.
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3. Algorithmic 3G-Method

We begin our discussion by reviewing the notion of
an i -regular pair (as in Szemerédi’s Lemma). A bipar-
tite graph

� 6��������e��� � is ��	:�Gi
� -regular if for every��
 ��� , � ��
V� � i�� � � , and �

 ��� , � �

 � � i � � � ,
we have � 	�������
 ����
,� c�	 ��� i where 	��.����
 ���

 ��6� � O ��
<����
hQG� � ��
 ����� � ��
V����� is the density of the bipartite
graph

� O ��
 ����
(Q induced on the sets ��
 and ��
 . The pair� , � is i -regular if it is ��	 �Mi
� -regular for some 	 .
The notion of i -regularity in bipartite graphs is a global

property, in the sense that it asserts a fact about all reason-
ably large subsets of � and � . In the algorithmic version
of Szemerédi’s Lemma [2], the key idea is that i -regularity
is essentially equivalent to an easily verifiable local prop-
erty, depending only on the sizes of the vertex neighbor-
hoods and the pairwise intersections of vertex neighbor-
hoods. This local property implies another equivalent prop-
erty (see e.g. [23]), that a bipartite graph is i -regular if it has
close to the minimum possible number of 4-cycles amongst
all bipartite graphs of its size and density. (Similar ideas
capturing global properties with local ones were used earlier
in e.g. [4, 40]). Here we focus on a similar local property
of 3-graphs  based on the number of copies of the fixed
3-graph �

�����!�"�!�"�! in  , where �
�����!�"�!�"�! denotes the complete 3-

partite 3-graph with 2 vertices in each class (see Definition
3 below).

Szemerédi’s Lemma [38] states that, given i � � and #M� ,
there exists $��76%$ �;�,i>�&#V��� , such that every large enough
graph ' has a vertex partition into # almost equal parts g)( ,
such that # � ]*#9]*$ � , and all but at most i+# ! of the pairs
� g ( ��g-,
� induce i -regular subgraphs of ' . In other words,' has a partition of its underlying vertex set into a con-
stant number of parts, such that almost all the edges of '
lie in subgraphs that are “regularly distributed” between two
parts. Analogously, given a 3-graph � with vertex set g , the
3G-Lemma guarantees a partition . of the underlying set,
which this time consists of both the vertex set g and the set
of pairs E0/ ! H , with respect to which � behaves ‘regularly’.

The type of partitions we consider, called �21
�&#!�Mi
� -
partitions, have the following form.

1. . has auxiliary vertex partition g 6 g � �435363)� g87
satisfying �hg � �>]936353;]��(g�7!�>] �hg � �;: 
 ;

2. . partitions each � � g ( ��g<,
�&6>=
?@;A � B ( ,@ , 
 ]�CD�E ]F# , into bipartite graphs
B ( ,@ , each of which is�V
6G61
�Gi
� -regular. Here � � g ( ��g<, � denotes the complete

bipartite graph with vertex bipartition g ( �0g<, .
For an �21
�H#!�Gi
� -partition . , any 3-partite graph

B
of the

form
B 6 B ( ,@ � B , 	I � B ( 	J , where 
a]KCL� E � 
 ]M# ,
 ]ON:��P���Q ]R1 , is called a triad of . . Denote by SUTHV2WYX �Z. �

the set of all such triads
B

.

In the 3G-Lemma, the triads of a partition . play the
same role as the pairs of vertex classes in Szemerédi’s
Lemma. Thus in particular we will have a notion of den-
sity of a 3-graph with respect to an underlying triad of . .
For a vertex-pair partition . of g and for

B S[SUTHV2WYXZ�2.5� ,
let \ � ! �� � B � denote the system of triangles of

B
:

\ � ! �� � B � 6 ] �<^Z�;_;�;`;� S*a g �cb K
�-^ ��_ ��` � induces a triangle �

� ! �� in
Bed �

Now, let � be a 3-graph on the vertex set g . For
B SSfT&V2WYXZ�2.5� , we write �hg 6 �ji[\ � ! �� � B � and define the

density of �kg with respect to
B

as lmgP6n	 FYo � B �L6� � g � G:� \ � ! �� � B ��� . Set

\ � � �!�"�!�"�! � � g �#6 ]qp S a g r b Kp
induces a copy of �

� � �!�"�!�"�! in �hg\� d
We now arrive at our central definition, Definition 3

below. Let triad
B SsSUTHV2WYXZ�2.5� be fixed where

B 6B ( ,@ � B , 	I � B ( 	J , 
�]tC
� E � 
 ]�# , 
 ]uN �;P���Q&]�1 .
With � g 6 �Ri�\ � ! �� � B � , we set l g 6v	 F o � B � as the
density. It was shown in [5] that, with i sufficiently small,www \ �����!�"�!�"�! � � g � www 1 lfxg1 � ! a � y b �
z


 c7i �&{;� �;| �
The following definition is therefore motivated.

Definition 3 ( ��l � � � -minimality) For
�.� �

, we say the 3-
graph � g , as above, is ��l g � � � -minimal with respect to

B
if www \ �����!�"�!�"�! � � g � www ] lUxg1 � ! a � y b �

�V
}: � �:�
If �hg is not ��lfg � � � -minimal with respect to

B
, then we say

�hg is ��lUg � � � -excessive with respect to
B

.

We may now state our algorithmic 3G-Lemma.

Theorem 4 For all
�=� �

and l � � � , integers # � and 1 �
and functions ~7K)��� N � � � 
�� , there exist integers $ � , � �
and * � so that for every 3-graph � on vertex set g , �(g.�;6* � *9� , there exist integers 1 � ]�1 ]O�I� and #�� ]�#\]�$:�
and an �Z1 �H#!�H~��21���� -partition . of g such that the following
holds.

For all but
� # � 1 � triads

B S SfT&V2WYXZ�2.5� of den-
sity 	 FYo � B � 6�lUg 1�lI� , we have that

B
is ��lmg\� � � -

minimal with respect to � g .
Moreover, there exists an algorithm which produces the

partition . in time - �,*0/�� .

3



3.1. Counting

Many applications of Szemerédi’s Regularity Lemma are
based on the fact that one can embed constant-sized sub-
graphs within an appropriately given i -regular partition ren-
dered by the Regularity Lemma. This result is formally due
to the following “counting result”, which follows from the
definition of i -regularity of graphs.

Fact 5 For all integers 
 and non-negative 	 , there exists
i � 6 i � � 
:��	�� ��� so that for all

� �4i ��i � , there exists
integer � � so that whenever

� 6 = � � (�� , � 	 � ( , is a 
 -
partite graph on g � � �����Z� g 	 , �hg � �
6 ������6 �hg 	 �
6 � � �:� ,
where each

� ( , , 
9]*C}� E ] 
 , is ��	:�Mi � -regular, then the

number of 
 -cliques in
�

, � \ � ! �
	 � � ��� , satisfies � \ � ! �

	 � � ���
6	 ���� � � 	 E 
�� iY�&{ 	 H .
Here the notation N 6OPC�V
�� Q�� , N:�;P���Q\1 � , means P
�V
>c Q��@]Nf]tP
�V
 : Q�� . We note that the error term i � { 	 in Fact 5
is not optimal and we use it here only because its form is
convenient and will be consistent with other error estimates
we make later.

We prove an analogous hypergraph Counting Lemma
compatible with our algorithmic regularity lemma, Theo-
rem 4. In what follows, for a hypergraph � on vertex set g
and an integer 
 , let \ �����

	 � �#� denote the system of 
 -cliques
in � :

\ �����
	 � �#�#6

]
� S a g 
 b K
� induces a clique �

�����
	 of size 
 in � d �

The Counting Lemma is given as follows.

Theorem 6 (Counting Lemma) For all integers 
 and re-
als lI� � �

, there exists
� � 6 � �;� 
���lI�!� � �

so that
for all

� � � � � � and for all integers 1 there existsi � �
and integer �:� so that the following holds. LetB 69= � � (�� , � 	 B ( , be a 
 -partite graph with vertex classesg 6 g � ��353635�0g 	 , �:�9]2�0] �hg � �;]*36363�] �hg 	 �;]2��: 
 ,

and let  6 = � �
	 � (�� , � 	  	 ( , be a 3-graph where  �\ � ! �� � B � . Suppose that

1. for each 
 ]4Cm� E ] 
 ,
B ( , is ��
5G61
�Mi � -regular,

2. for each 
f]���� C�� E ] 
 ,  	 ( , is ��l 	 ( ,;� � � -
minimal with respect to

B 	 ( � B ( , � B 	 , where l 	 ( , 1lI� ,
then www \ �����

	 �Z � www 6 
 � �
	 � (�� , � 	 l 	 ( ,1 ��� � � � 	
z

�� � �&{ 	 | �

We make an important remark about the constants in
Theorem 6. Observe that the quantification there renders
the hierarchy




 ��lI��� � 1�� V�� ] � � 
1 �

� i�� 

�

which includes the case




 ��l � � � � 
1 � i�� 


� � (2)

An application of the Regularity Lemma, Theorem 4, can’t
avoid the outcome (2), but it can enforce it. The quantifi-
cation of Theorem 6 is therefore formulated as such so that
Theorems 4 and 6 will be compatible.

4. Proof Sketches

In this section, we highlight important features of the
proofs of Theorem 4 and 6. We begin with the former.

4.1. On Theorem 4

We require some background considerations and be-
gin by defining the concept of � � �! 
� -regularity from [11].
Suppose � has vertex set g and let . be an �21
�H#!�Gi
� -
partition of g . Fix a triad

B S SfTHV W X �2.5� and recall

� g 6 ��i \ � ! �� � B � .
Definition 7 ( � � �! 
� -regularity) For

� �P�
, and an inte-

ger  , we say �hg is � � �� 
� -regular w.r.t.
B

if for any se-
quence ��� of subgraphs �L(e� B , 
 ]OC�]j ,www��� � ( � � \ � ! �� ��� ( � www � � www \ � ! �� � B � www

6�� � 	 F o � � � ��c�	 F � B ��� � �
where

	 F o � �����e6
www � g i = � � ( � � \ � ! �� ��� ( � wwwwww = � � ( � � \ � ! �� ��� ( � www

is the density of �hg w.r.t. the sequence �!� .

If � g is not � � �� 
� -regular w.r.t.
B

, then we say � g is � � �� 
� -
irregular w.r.t.

B
, and any sequence �"� violating the reg-

ularity condition above is said to be a witness of the � � �! 
� -
irregularity of �hg w.r.t.

B
.

For a 3-graph � on vertex set g with �21
�&#!�Mi
� -partition . ,
define the index of . w.r.t. � asV#�)X�.�6 $gI`&%(' %*)M) �,+ � 	 !F o � B � www \ � ! �� � B � www �

4



The parameter V�� X�. was introduced by Szemerédi [37, 38]
and is defined here according to [11]. It is an important but
easy observation that V�� X�. ]2
 for any partition . .

The following lemma (cf. Lemma 3.1, [19]) is the central
idea in proving Theorem 4.

Lemma 8 For all lI�
� � � � �
, there exists

��� � �
so that

for all integers 1 , there exist i 6 i;�21�� � �
and an inte-

ger  �6  ;�21�� so that the following holds for all sufficiently
large * . Let � be a 3-graph with vertex set g and �21
�&#!�Mi
� -
partition . , where �hg �C6j* . Let

B S�SfT&V2WYX �Z.5� satisfy

1. 	 F o � B �#64l g 1Rl � ,
2. � g is ��l g � � � � -excessive w.r.t.

B
, i.e., � \ �����!�"�!�"�! � � g ��� �

��lfxg G61<� ! � E � ! H � �V
}: � � � .
Then, �hg is � ��� �� 
� -irregular w.r.t.

B
. Moreover, there ex-

ists an algorithm which, in time -.�<* � � constructs a wit-
ness �!� " g of the � ��� �! 
� -irregularity of �hg w.r.t.

B
.

Lemma 8 is an extension of an earlier result of the present
authors and Dementieva (cf. Lemma 3.3, pp 299, [7]).

With Lemma 8, the proof of Theorem 4 is essentially at
hand. Indeed, with appropriately defined constants, sup-
pose � -graph � with vertex set g , �hg �&6 * , is given
with �21���� ) �H#	�
� ) �Mi��Z1���� ) �V� -partition .���� ) . We may easily
check, in time *0/ , if � g is ��l g � � � � -minimal w.r.t.

B
.

Indeed, for each of the E 7� H 1 � triads
B SsSUTHV2WYXZ�2.���� ) � ,

one counts � \ �����!�"�!�"�! � �hg#��� . If fewer than
� � # � 1 � triads . SSUTHV2WYXZ�2. ��� ) � of density 	 FYo � B � 6*lfgj19l � are ��lfg\� � � � -

excessive, then . ��� ) is the partition promised by Theorem 4.
Otherwise, at least

� � # � 1 � triads . S SfT&V2WYXZ�Z. ��� ) �
are ��lfg � � � � -excessive. By Lemma 8, we therefore have
‘many’ � � � �! ;�21���� ) ��� -irregular triads

B S SUTHV2WYXZ�2.���� ) �
in our partition, and we now explicitly resume the line
of argument from [11]. Indeed, we use Lemmas 3.9
and 3.10, pp 145-149, from [11], to infer there exists a�21 ' 
�� �&# ' 
�� �Gi;�21 ' 
�� �V� -partition . ' 
�� of g (a ‘refinement’
of .���� ) ) for which

V�� X�. ' 
�� 1RV#�)X�.���� ) : ����y
holds and for which 1 ' 
�� and # ' 
�� are bounded by con-
stants independent of the integer * . Thus this step could
be repeated at most

y G ���� times before a partition satisfying
Theorem 4 is reached.

What remains is to understand the complexity of the op-
eration above. Lemma 8 constructs, in time - �,* � � , wit-
nesses �!� " g for every

B SsSUTHV2WYXZ�2. ��� ) � for which �hg
is ��lfg � � � � -excessive. With a little work, one may show
from the methods in [11] (cf. Lemmas 3.9 and 3.10, pp
145–149, [11]) that . ' 
�� can be constructed from these wit-
nesses in time -.�<* ! � . Thus the complexity of the whole

algorithm is determined by the -.�<* / � operation of count-
ing � \ �����!�"�!�"�! � � g ��� for each

B
, of which there are a constant

number.

4.2. On Theorem 6

In the discussion that follows, we focus on the case of the
Counting Lemma where all triad densities l 	 ( , , 
a] �4�Cq� E ] 
 , are the same, i.e., l 69l 	 ( , , 
 ] ��� Cq� E ]

 . The more general case formulated in Theorem 6 is, in
fact, a corollary of this special case.

The proof of Theorem 6 proceeds by induction on 
 1� , where the base case is trivial. With appropriate con-
stants 
:��l � � �&1
�Mi��!� (cf. (2)), let  and

B
be given as in the

hypothesis of Theorem 6. To establish the inductive step,
observewww \ �����

	 �2 � www 6 $� ` / �
www \ � ! �	 �c� � � � �hi \ � � �

	 �c� �Z O g ! �������M��g 	 Q � www
(3)

where, for ^aS7g � fixed,� � 6 � �-_ ��` �9S B K��<^Z�;_;�;`;� S  d (4)

is the link graph of ^ and, as usual,  O g ! ����������g 	 Q is
the � 
 c 
�� -partite subsystem of  induced on the ver-
tices g ! � 35363 �\g 	 . While we discuss how to handle the inter-
section momentarily, we see (3) determines � \ �����

	 �Z ��� as a

function of � \ �����
	 ��� �Z O g ! �������G��g 	 Q<��� (which we handle with

induction) and � \ � ! �	 ��� � � � ��� (which, importantly, is only a
graph parameter).

We find it convenient to rewrite (3) in terms of the
following bipartite graphs � ��� with vertex biparti-
tion � � � :

1. set � 6 g � and � 6*\ � ! �
	 �c� � B O g ! �������M��g 	 Q � so that �

is the family of cliques �
� ! �
	 �c� in the � 
�c 
�� -partite

graph
B O g ! �������V��g 	 Q ;

2. for ^aS�� and � � S�� , let �<^Z� ���I� S�� if, and only
if, ��� � * g � ^:� where * g � ^:� is the neighborhood
of ^ in the graph

B
;

3. for ^�S�� and � � S�� , let �-^ � � �#� S�� if, and only

if, E����! H � � � , where E����! H � B is the set of (graph)

edges of the � 
 cj
�� -clique � �76 �
� ! �	 �c� .

Set �! 269\ � � �
	 �c� �2 O g ! �������M��g 	 Q � and observe that �! �� . The crucial observation is that (3) may be reformulated

as www \ �����
	 �Z � www 6 www � O �����  Q www 6 $

� � `�"$#
X&%�')(#� � � �M� (5)
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Since our induction hypothesis gives � �  5� 6
��l ��� � �� � G61 ��� � �� � �V� 	 �c����
"� � � { � 	 �c� � � , it suffices to prove
the following claim (the proof of which we discuss
momentarily).

Claim 9 All but � � � { � !�� � 	 �c� � � � �  5� vertices � � S��! have

degree X&%�' (#� ���I�#64��l ��� � �� � G61 	 �c�G���I�V
��f� � �&{ � ! � � 	 �c� � � � .
The lower bound for the Counting Lemma is now immedi-
ate:www \ �����

	 �Z � www 1 l ��� � �� �1 	 ��� � z 
 c � � �&{ � ! � � 	 �c� � � |
�
z

 cd� � �&{ !�� � � 	 �c� � � | � �! 5� � ! �1 l � � � �1 ���� � � 	

z

 c � �&{ 	 |

where the last inequality follows from our inductionhypoth-
esis. Proving the upper bound is essentially the same, pro-
vided we care for one additional detail. Observe from our
hierarchy (2), i.e.,

� � 
5G-1 , that even � � � { � !�� � 	 �c� � � � �! 5�
vertices � � S �! of large degree, say, for a simple ex-
ample, X&%�' (#� ���#�#64� , would ruin the formula we seek to
prove:

� � { � !�� � 	 �c� � � � 	1 � � � ��9� � l ��� � �1 ���� � � 	 �
To overcome this technicality, recall that � � � so
that X&%�' (#� � � � ]>X&%�'��\� � � � for each � � Su� . It is
standard to prove the graph � is �21Y��� 	 �MiY�&{ 	 � � -regular, and
is therefore very tightly controlled by the parameter i (cf.
(2)). Standard arguments then finish the proof of the upper
bound for Theorem 6.

Claim 9 asserts that vertices ��� S �! are (virtually)
degree regular in the graph � . This feature holds, in fact,
over vertices � � S�� (from which we then infer Claim 9).
To prove (virtual) degree-regularity of vertices ��� S � , it
suffices to prove the following stronger assertion.

Claim 10 For all but
� �&{ � � vertices ^aS�� ,

X %�' (#� ^:� 6 z l 1 | � � � �� � z � 1 | 	 �c� z 
�� � �&{ � � � 	 �c� � � |
and for all but

� �&{ � � ! pairs �-^ �;_;�9SfE � ! H ,
X %�' (#� ^ ��_>�#6 a l !1�b � � � ��5� z �1 ! | 	 �c� z 
�� � �&{ � � � 	 �c� � � | �

In other words, setting 		6 l ��� � �� � G-1 	 �c� and � 6
� 	 ����G61 ��� � �� � , Claim 10 asserts that most vertices ^ S� have degree essentially 	�� and most pairs of ver-
tices �-^ ��_ � S E � ! H have codegree essentially 	 ! � . Claim 9
then follows from Claim 10 by a standard Cauchy-Schwarz

argument. The connection between Claims 9 and 10 is, in
essence, analogous to Lemma 3.2 in [2].

To prove Claim 10, observe that for ^aS�� fixed,X %�' ( � ^:� 6 www � � ! �	 ��� � � � � www
where � � is the link graph defined in (4). Similarly,
for ^Z�;_fS E � ! H fixed, set � �	� 6>� � i�� � to be the col-
ink graph so thatX %�' (#� ^ ��_>�#6 www � � ! �

	 ��� � � �	� � www �
Using our hypothesis that  �� ( , , 
v� C � E ] 
 ,
is ��l � � � -minimal, it is not difficult to show (using standard
Cauchy-Schwarz and double-countingarguments) that most
links � � , ^�S � , and most colinks � �	� , �-^ �;_;�9S E � ! H , sat-
isfy the hypothesis of the following auxiliary graph count-
ing lemma, from which both estimates of Claim 10 then
follow.

Lemma 11 For all integers # and constants

 � 1 �

there
exists

� � "�� Y ��� so that for all
� � � � Y ] � � "�� Y and 
 � �

there exists i�� � �
and integer � � so that the following

holds:
Let

� 6 �� � (�� , � 7 � ( , ��� 6 �� � (�� , � 7 � ( ,
be # -partite graphs with common # -partition � � �0�����5���f7 ,� � ( �C6�� � � � , satisfying that for all 
 ]OC��6 E ]�# ,

1. � � ( , � G � � ( , �C6 
 1 
 � ,
2. all but

� � Y � ! pairs � � ��� ! S�� ( satisfyX&%�'���� � ��� � � � ! �I6 � 
 
 � ! �4�M
�� � � Y �Z� (6)

3. the graph � ( , is �!
 �Gi���� -regular.

Then, www \ � ! �7 � � � www 6 � 
 
 � �#"� � � 7 z 
�� � �&{ 7� Y | �
Indeed, one can prove that Lemma 11 applies to most
links � � , ^dS g � , with parameters #@6 
�c2
 , 
 6Ml , 
=6
5G-1 and �b64�hG-1 and to most colinks � �	� , �-^ ��_ �5S E / �! H ,
with parameters # 6 
$c&
 , 
 6 l ! , 
&6 
5G-1 and � 6j�hG-1 ! .

Proving Lemma 11 is not difficult and follows lines sim-
ilar to (but simpler than) our approach for proving Theo-
rem 6. Again we construct auxiliary bipartite graphs $ ��%
with bipartition &j�(' as follows:

1. &26�� � and '�6 \ � ! �7 ��� �)� O � ! �������M��� 7 Q � ;
2. for N�S*& and � � S+' , let �5N:� ���I��S*% if, and only

if, � � � *-, � ^ � ;
3. for NaS*& and � � S*' , let �6N � ���e�9S�$ if, and only

if, � � � * � � ^ � .
Convexity, degree and co-degree regularity arguments sim-
ilar to Claims 9 and 10 establish Lemma 11.
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5. Proof of Theorem 1

We sketch the proof of Theorem 1 in the special
case " � 6 �

�����
	 (in which case, " � � �#�&6 " %('!)� � �#� ), al-

though the argument isn’t much different for general " � .
Our basic approach is to apply Theorem 4 to � with ap-

propriately chosen parameters, to obtain a partition . . Then
with very few exceptions (we will show how to count these),
all copies of �

�����
	 lie in 
 -partite 3-graphs satisfying the as-

sumptions of Theorem 6. Moreover, the number of these

 -partite 3-graphs depends only on the input parameters 

and 3 , and not on * . Thus in each 
 -partite 3-graph we
may apply Theorem 6 to find the number of copies of �

�����
	

in each, then sum them all to find a close approximation
to � \ � � �

	 � �#��� .
We now make these steps more precise. To choose the

input parameters to Theorem 4 we do the following. Given

 and 3 , we choose

�
and the function i;�21�� such that

� � ��� V#���;� 3�G � � 	 � � � � 
:�!3�G � ��� (cf. Theorem 6),

� i��Z1��q� i � � �;�H1<�c�G� (cf. Fact 5),

� Theorem 6 holds for 
 , l � 6j3�G � and
�
.

Then the input parameters for Theorem 4 are
�
, l#�96438G � ,#V�D6�
 ��� G>3 , 1!�D6 
 , and function i��Z1 � . Theorem 4 provides

constants $:� , �I� and *9� , and a suitable partition . of the
vertex set g of � , in time -.�<* / � , where the constant hidden
in the - notation depends only on the input parameters and
hence only on 
 and 3 .

Now note that any triple R of � that does not lie in an
��l g � � � -minimal triad

B
of . of density l g � l � 6 3�G �

satisfies one of the following:

� R has two vertices inside the same g ( . There are at most#G� ! *>�f* � G6#V� ]j3>* � G 
 ��� such triples,

� R lies in a triad
B

that is ��lmg � � � -excessive, of which
there are at most

� # � 1 � . Because i;�21���� i��;� �;�H1 �c� � ,
by Fact 5 each

B
has at most 1 � � � � ��
 : i;�21���� { � �

triangles, so the number of such triples is at most� # � 1 � �Z1<� � � � ��
 : i��Z1����&{ � ���R� y � # � � � ]
y � * � �y

� 38G � � 	 * � � 3>* � G�� y ,
� R lies in a triad

B
that has density l g ��l � . Thus

by definition of density there can certainly be at mostlI��� \ � ! �� � ���9��� such triples, where ��� is the complete
graph on the vertex set g . Therefore there are at mostl � E � � H �j3>* � G y � such triples.

We call these triples bad for l � 623�G � .
We therefore see that, given 
 and 3 , if * � * � , we may

conclude that the number of bad triples for 3�G � in � is less

than 3>* � G � . Thus the number of copies of �
�����
	 in � that

contain a bad triple is less than 3>* 	 G � . Thus to estimate
� \ �����

	 � �#��� we simply count the copies of �
�����
	 in � that do

not contain a bad triple.

In . there are at most # 	 1 � � � � � $ 	� � ��� � �� 
 -partite 3-
graphs  satisfying the assumptions of Theorem 6 withl � 6j3�G � . The key point here is that the number of such  
is independent of * . Each copy of �

�����
	 in � whose triples

are all good for 3�G � lies in one of these  . For each  , The-

orem 6 tells us how many copies of �
�����
	 it contains, up to

a multiplicative factor of �V
��f3�G � � . Thus counting over all gives an estimate of � \ �����
	 � �#��� that differs from the exact

value by at most 3>* 	
. Because the number of such  is

a constant independent of * , the complexity of the whole
algorithm is still -.�<*=/
� .
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