EFFICIENT TESTING OF HYPERGRAPHS
(EXTENDED ABSTRACT)

Y. KOHAYAKAWA*, B. NAGLE**, AND V. RODL***

ABSTRACT. We investigate a basic problem in combinatorial property testing, in the sense of Gol-
dreich, Goldwasser, and Ron [9, 10], in the context of 3-uniform hypergraphs, or 3-graphs for short.
As customary, a 3-graph F' is simply a collection of 3-element sets. Let Forbi,q(n, F') be the family
of all 3-graphs on n vertices that contain no copy of F' as an induced subhypergraph. We show
that the property “H € Forbi,a(n, F)” is testable, for any 3-graph F'. In fact, this is a consequence
of a new, basic combinatorial lemma, which extends to 3-graphs a result for graphs due to Alon,
Fischer, Krivelevich, and Szegedy [2, 3].

Indeed, we prove that if more than ¢(n® (¢ > 0) triples must be added or deleted from a 3-
graph H on n vertices to destroy all induced copies of F', then H must contain > en!V )N induced
copies of F, as long as n > ng((, F'). Our approach is inspired in [2, 3], but the main ingredients
are hypergraph regularity lemmas and counting lemmas for 3-graphs.

1. INTRODUCTION

We consider combinatorial property testing, in the sense of Goldreich, Goldwasser, and Ron [9, 10]
(see also Ron [14] for a recent survery). We address the problem of testing hypergraph properties;
we in fact focus on testing induced subhypergraphs in 3-uniform hypergraphs. (For a recent result
on hypergraph property testing, see Czumaj and Sohler [6], where k-colourability is proved to be
testable.)

We start with some basic definitions. A k-uniform hypergraph H, k-graph for short, is a family
of k-element sets. When k = 2, we speak of graphs, and when k = 3, we have triple systems. A
k-graph property P is an infinite class of k-graphs closed under isomorphism. A k-graph H satisfies
property P if H € P. A k-graph H is said to be (-far from property P if every k-graph H € P
with V(H) = V(H) differs from H in at least ¢|V(H)|¥ k-tuples of vertices (i.e., the symmetric
difference H A H has size at least ¢|V (H)|¥).

A (-test for property P is a randomized algorithm which, given as input a k-graph H and n =
| H]|, is allowed to make queries whether any given k-tuple of vertices belongs to H or not, and
distinguishes, with high probability, between the case that H satisfies P and the case that H is
(-far from P. A property P is said to be testable if, for every ¢ > 0, there exists a function f(()
and an (-test for P which makes a total of f({) queries for any input k-graph. Note that, in
particular, the number of queries does not depend on the order of the input k-graph. A (-test is
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said to be a one-sided test if when H satisfies property P, the test determines that this is the case
with probability 1. A property P is said to be strongly-testable if for every ¢ > 0, there exists a
one sided (-test for P.

For a k-graph F', we let Forbj,q(n, F') be the property of all k-graphs on n vertices not containing
a copy of F' as an induced subhypergraph. Recently, Alon, Fischer, Krivelevich and Szegedy [2, 3]
studied the graph properties Forbinq(n, F') for arbitrary graphs F. Among other results, they proved
that all graph properties of the type Forbi,q(n, F) are strongly-testable. A statement central to
their main result was the following combinatorial theorem.

Theorem 1. For every { > 0 and every graph F, there exists ¢ > 0 so that if a graph G on
n > ng(C, F) vertices is C-far from Forbing(n, F), then G must contain at least ecn!V )l copies of F
as an induced subgraph.

Observe that Theorem 1 implies that Forbinq(n, F') is a strongly-testable property; if f = |V (F)|,
then the maximum number of queries required is O(f?/c): we simply sample «/c random vertices
from F', where o > 0 is some large enough constant, and check O(f?/c) suitable adjacencies. This is
a strong (-test: suppose a given graph GG on n vertices contains no copy of F' as an induced subgraph.
Then, our test will certainly find no copy of F' in GG as an induced subgraph. Consequently, the test
correctly decides with probability 1 that G € Forbj,q(n, F'). On the other hand, if G is (-far from
Forbinq(n, F), then, by Theorem 1, the graph G contains cn/ copies of F' as an induced subgraph.
This means that our randomized algorithm (which makes O(f?/c) queries) is able to locate a copy
of F' with high probability.

The goal of this paper is to extend Theorem 1 to 3-graphs. Since the connection between
testability and the combinatorial property illustrated in Theorem 1 remains unchanged from graphs
to hypergraphs, we choose to present our work in a purely combinatorial language.

Theorem 2. For every ¢ > 0 and 3-graph F, there exists ¢ > 0 so that if a 3-graph G on
n > ng(C, F) vertices is C-far from Forbing(n, F), then G contains at least en!V I copies of F as
an induced subhypergraph.

We conjecture that Theorems 1 and 2 are true for general k-graphs.

Conjecture 3. For every ¢ > 0 and k-graph F, there exists ¢ > 0 so that if a k-graph G on
n > ng(C, F) vertices is C-far from Forbing(n, F), then G contains at least en!V I copies of F as
an induced subhypergraph.

In Sections 1.1 and 1.2 below, we discuss Conjecture 3 and some related problems.

1.1. On Conjecture 3: the Special Case F(¥) = K,gli)l The validity of Conjecture 3 in the
special case F¥) = K ,glj_)l, the complete k-graph on k + 1 vertices, has an interesting connection to
the following well known and deep problem concerning arithmetic progressions.

Let rx(n) be the maximum cardinality of a set of integers A C {1,...,n} which contains no
arithmetic progressions of length k. A conjecture of Erdés and Turdn from 1936 stated that
rk(n) = o(n). Roth [15] proved r3(n) = o(n). In 1975, Szemerédi proved his celebrated result
that r,(n) = o(n), confirming the Erdés—Turdn conjecture. Furstenberg [8] and, more recently,
Gowers [11] have given alternative proofs. The sharpest result to date for £ = 3 is due to Bougain [5].

In [16], Ruzsa and Szemerédi solved an extremal combinatorial problem yielding an alternative

proof to Roth’s theorem [15]. In [7], the following extremal problem was considered. Let Fl(kH) be
the (k+1)-graph consisting of two edges intersecting in k points. Let FQ(kH) be the (k+1)-graph with



2k + 2 vertices {ai,...,ak+1,01,...,bpr1} and all (k+1)-tuples of the form {a1,...,art1,b;}\{a;},
1 <i<k+1. Let ex(n, {Fl(k+1), FQ(kH)}) denote the maximum number of edges of any (k 4 1)-

graph H*+1 not containing Fl(kH) or FZ(kH) as a (not necessarily induced) subhypergraph. In [7],
a constructive argument was given showing that

ex(n, {FETD FFTIY) > pp (myn? L. (1)

To verify Conjecture 3 for general k, even in the special case when F ®) = K®)  will not be

= Bt
easy. Indeed, we claim that if Conjecture 3 is proved for general £ and F k) = K ,g’j_)l, then one may
quickly deduce Szemerédi’s theorem ri(n) = o(n).

Proof of Claim. Indeed, fix ¢ > 0 and let H* D be a (k + 1)-graph on n points and ¢(n* edges

not containing Fl(kH) as a subhypergraph. We shall prove that H (k+1) must contain F2(k+1) if n is
large enough. Consequently, for n sufficiently large, we have
k+1 k+1
ex(n, {F" D, By < n. (2)

Let

H® =(K: |K| =k, K C E for some E € H*+D}
be the set of all k-tuples contained in some (k + 1)-tuple of H®+D | Since H* 1 contains no copy
of Fl(k+1), every k-tuple K € H&) belongs to precisely one (k+1)-tuple H € HE+D), Consequently,

H®) is ¢-far from being K,g’j_)l—free.

Assuming Conjecture 3 (for F' = K ,g’j_)l), we get that H*) contains
an+1 > an — |H(k+1)|

copies of K ,Eli)l

Let {ai,...,axt1} span a copy of K]g]j_)l in H®) for which {a1,...,a41} & HETD. Clearly, each
{at,...,ap41} \ {ai}, 1 <i < k+1, is an edge of H®)_ Consequently, there exists b; such that
{a1,... ,aps1,b;} \ {a;} is an edge of H¥*Y Since |H, N Hy| < k for all distinct Hy, Hy € H*+D,
these b;, 1 <14 < k4 1, have to be distinct. Consequently, H®+ contains a copy of F2(k+1) as a
subhypergraph. O

Owing to (1) and (2), we see rpq1(n)nF~! < ex(n, {Fl(k+1),F2(k+1)}) < (nF. Consequently,
ri41(n) < ¢nk for large enough n.

1.2. On the Non-induced Case. Note that Conjecture 3 is formulated for classes of k-graphs not
containing F' as an induced subhypergraph (a feature of no importance when F is a clique). One
may also consider the class Forb(n, F') of all k-graphs on n vertices which do not contain a copy of
F as a (not necessarily induced) subhypergraph. We state the following analogue to Conjecture 3.

Conjecture 4. For every ¢ > 0 and k-graph F, there exists ¢ > 0 so that if a k-graph G on
n > no(¢, F) vertices is C-far from Forb(n, F), then G contains at least ecn!V ) copies of F as a
subhypergraph.

For £k = 2 and k = 3, Conjecture 4 is true. For k = 2, Conjecture 4 follows by a standard
application of Szemerédi’s regularity lemma. For k = 3, the result follows from results of [7] and

[12]. Recently, Conjecture 4 was proved for k =4 and F = KEE4) (see [13]).



Since Conjecture 4 is true for k¥ = 2, we may define the following (finite) function C((, F) =
C5(¢, F'). Recall that the quantification of Conjecture 4 is of the form “(V(, F')(3¢,ng)”. For given
F and (, let C((, F) be the supremum of all ¢ for which the implication in Conjecture 4 holds (for
the given value of ¢ and the given graph F') for some large enough ngy. The question of how C((, F)
behaves for a fixed F' as a function of { has been addressed recently by Alon [4], who proved the
following theorem.

Theorem 5. For a fized graph F, the function C((, F) is polynomial in ¢ if and only if F is
bipartite.

Preliminary results suggest that Theorem 5 extends to k-graphs. Indeed, if F' is a k-partite
k-graph with partition classes of size t1,...,t, then, for a constant ¢; = c¢;(F) depending only
on F', we have

C(C,F) < (]{;/C)Cltl...tk‘

On the other hand, there exist non k-partite F' (e.g., FF = K ,Eli)l), for which there is a constant
¢o = c(F') depending only on F, so that

C((, F) = ¢e2loete,

2. DEFINITIONS AND NOTATION

2.1. Graph Concepts. We begin with some basic notation. As is customary, if X is a set, we
write [X]* for the set of k-element subsets of X. For a graph P and two disjoint sets X, Y C V(P),
we set P[X,Y] = {{x,y} eP:zeX, yc€ Y}. We define the density dp(X,Y) of P with respect
to X and Y # 0 by dp(X,Y) = |P[X,Y]|/|X||Y].

For a graph P, we let IC3(P) be the set of vertex sets of triangles in P. Thus, {z,y, 2z} € K3(P)
if and only if z, y, and z are mutually adjacent in P.

A graph P with a fixed k-partition Vi U--- UV} is referred to as a k-partite cylinder. We write
P =Ucicjci, P, where PY = P[V;,Vj], 1 <i < j <k. For B € [k]*, we sometimes write P(B)
to denote the subgraph of P induced on the vertex set Uicg Vi- When k = 3, we call P a triad.

We proceed with the following definitions.

Definition 6 ((«, ¢)-regularity). For a and € > 0 reals, we say that a bipartite graph P with vertex
bipartition X UY is (a,¢)-regular if a(l —¢) < dp(Xo,Yy) < a(l + €) for every pair of subsets
Xo C X and Yy CY with | Xy| > ¢|X| and |Yy| > ¢|Y].

Definition 7 ((¢,¢,k)-cylinder). For an integer £ and a real ¢ > 0, we call a k-partite cylinder
pP= U1<i<j<k P an (¢,e,k)-cylinder if each bipartite graph P, 1 <i < j <k, is (1/¢,€)-regular.

Note that when a triad P is an (¢, ¢, 3)-cylinder with 3-partition satisfying |Vi| = |Va| = |V3| = n,
the number |K3(P)| of triangles in P is about n3/¢3.

2.2. Hypergraph Concepts. We refer to any k-partite 3-uniform hypergraph H with a fixed
k-partition V; U--- UV}, as a k-partite 3-cylinder. For B € [k], we set H(B) to be the set of triples
of H induced on the vertex set |J;c5 Vi.

Let a 3-uniform hypergraph H and a graph P be given so that V(H) = V(P). We say that
P underlies H if H C K3(P). In the remainder of this paper, we only consider hypergraphs H
together with graphs P that underly them. We continue with the following technical definitions.

Definition 8 (Density of 5; density of a triad). Let H be a 3-partite 3-cylinder with underlying
3-partite cylinder P = P'?2 U P2 U P'3. Let 6 = (Q(1),...,Q(r)) be an r-tuple of 3-partite



cylinders Q(s) = Q'2(s) U Q*(s) U Q'3(s) satisfying that, for every s € {1,2,...,r} and for each
{i,5}, 1 <i < j <3, we have Q¥(s) C PY. Let ]Cg(a) =U._, K3(Q(s)). We define the density
dy{(a) ofa as 6
|H N ]C3( )| if |)C 0
w@ = @ @0 3)

0 otherwise.
If r = 1, we have the notion of the density dy (P) of a (single) triad P with respect to H.

Definition 9 ((«, 0, r)-regularity). Let H be a 3-partite 3-cylinder with underlying 3-partite cylin-
der P = P2UPZUP'3. Let a positive integer r and a real § > 0 be given. We say that the 3-cylinder
H is (a, d, )-regular with respect to P if for any r-tuple of 3-partite cylinders ay: (Q(1),...,Q(r))
as above, if‘ng(a)‘ = ‘ Uiy K3(Q(s))| > 6|K3(P)|, then |d7{(a) —al <6.

We say H is (0,r)-reqular with respect to P if it is («, d, r)-regular for some «. If the regularity
condition fails to be satisfied for every «, we say that H is (0,r)-irregular with respect to P.

2.3. A Hypergraph Regularity Lemma. In this section, we state the a Hypergraph Regularity
Lemma, due to Frankl and Rédl [7]. First, we state a number of supporting definitions.
Definition 10 ((¢,t,,¢)-partition). Let V be a set with |V| = N. An (¢,t,v,¢)- partition P of
[V]? is an (auxiliary) partition V. = Vi U--- UV, of V, together with a system of edge-disjoint
bipartite graphs {Py : 1 <i < j <t, 0 < «a </}, such that
(1) V =Uj<;<; Vi is a t-equitable partition, i.e., we have |[N/t| < |V;| < [N/t] for all1 <i <t,
(i) Uﬂ:o e = K(V;,V;) for all i, j, 1 < i < j < t, where K(V;,V;) denotes the complete
bipartite graph with vertex bipartition V; UV}, -
(iii) for all but y(3)¢ indices 1 <i < j <t, 1< a <¥, the graph Py is ({7, ¢)-regular.

If we do not have or do not care about (7ii), and, moreover, ng =0 for all 1 <4 < j <{, we say
that P above is an (¢, t)-partition of [V]2. For an (¢,t)-partition P = {Py/: 1 <i<j<t, 0<a<
¢} of [V]?, the set of triads generated by P is

I‘riad(P):{P:ngupg’“UP;’k:1gz'<j<kgt, Oga,ﬂ,ygﬁ}.

Definition 11 ((0,r)-regular partition). Let H be a 3-uniform hypergraph with vertex set V' where
|V| = N. We say that an ({,t,,¢)-partition P of [V]? is (0, r)-regular for H if

3 {|IC3(P)|: P € Triad(P) is (4, r)—irregular} < ON3,

Theorem 12 (Hypergraph Regularity Lemma [7]). For every & and v with 0 < v < 26*, for all
integers ty and £y and for all integer-valued functions r(t,?) and all functions €(¢) > 0, there exist
Ty, Lo, and No such that any 3-uniform hypergraph H C [N]?, N > Ny, admits a (5,7 (t,£))-regular
(£,t,7y,e(£))-partition for some t and £ satisfying to <t < Ty and £y < ¢ < Ly.

2.4. The Counting Lemma. In this section, we present the Counting Lemma, Lemma 14 below.
We begin by describing the context in which this lemma applies.

Setup 13. Fix integers f, ¢, and r. Let § and ¢ > 0 be given, together with an indexed family
{ap: B € [f]3} of positive reals. We consider the following conditions on a given hypergraph H
and underlying graph P.

(i) #H is an f-partite 3-cylinder with f-partition Vi U--- UV}, where |Vi| = --- = |V{| = m.



(1) P=Ui<icj<y P is an underlying (£, ¢, f)-cylinder of H.
(iii) For all B € [f]3, the 3-partite 3-cylinder H(B) is (ap, 0, r)-regular with respect to the triad
P(B) (cf. Definition 9).

Finally, suppose F is a 3-uniform hypergraph with vertex set V(F) = [f]. For B € [f]?, we
let pp =apif B€ F,and we let pp =1 —ap if B ¢ F. In the main lemma of this section, we are
concerned with the number of induced, transversal copies of F in H, by which we mean the number
of functions v: V(F) = [f] = V(H) with ¢(z) € Vj for all 1 < i < f that induces an isomorphism
of F onto the image H[im¢] = H N [im¢]* of .. We denote the set of such ¢ by Fina(H; Vi, ..., Vy).

Lemma 14 (Counting Lemma [12]). Let f > 3 be a fized integer. For all constants o and 3 > 0,
there exists 6 > 0 for which the following holds. For all integers £, there exist an integer r and a
real € > 0 so that whenever an f-partite 3-cylinder H with an underlying cylinder P satisfy the
conditions of Setup 13 with constants f, 6, I,  and ¢ and an indexed family {ap: B € [f]*} of
reals, with a < ap <1 —« for all B € [f]?, we have

1I .
B:+])‘°’p3mf(l — B) < |Fina(H; Vi, ..., Vp)| < CBEUPPE
2

for any triple system F on [f].

3. THE PERFECT REDUCTION LEMMA

It is well-known that in the regularity lemma of Szemerédi, one cannot avoid the existence of
irregular pairs [1]. It proved to be vital for the proof of Theorem 1 to develop a version of the
regularity lemma that, within large subsets of a Szemerédi partition, admits no irregular pairs.
Here, we need a similar version of Theorem 12 that admits no irregular triads.

3.1. Preliminary Definitions. In this section, we consider the following setup.

Setup 15. Let H be a 3-uniform hypergraph on n vertices. Let V(H) = V1 U--- UV, be a
t-equitable partition, that is, for all 1 < i < t, suppose we have |n/t| < |V;| < [n/t]. Let

P= {ng: 1<i<j<tl<a< e} be an (£, t)-partition of [V (H)]2.

Observe that @ > 1 in Setup 15, since in (¢, t)-partitions we have ng = 0.

Definition 16 ((dy, 7)-reduction). Let H and P as in Setup 15 be given. For 0y, T > 0, we say the
graph Q is a (o, 7)-reduction of P if the following hold:

1. @ has a t-partition V(Q) = Uy <;<; Wi, where W; C V;, 1 <i <t, and [Wy| =--- = |W;| >
™.
2. For all but 6y(4)¢3 indices 1 <i < j <k <t 1<a,B,7 </, the triads P = Py upg’c U piF
and Qp = Q N P satisfy |d7{(Qp) — d’H(P)| < dg.
Definition 17 ((d,r, ¢, ¢ )-perfect reduction). Let H and P as in Setup 15 be given. Let a graph
Q be a (g, 7)-reduction of P. For reals § and ¢ > 0 and for integers r and ¢, we say that Q) is a
(0,7, e,£")-perfect reduction of P if Q) satisfies the following conditions:
1. Foreach1<i<j<t,1<a<0{, the graph QN PY is ((¢0)=1, €)-regular.
2. Foreach1 <i<j<k<t 1<apfv</{, the triad QN (Péj U ng U Pvlk) is (8, r)-regular.

We are now able to state the main lemma in this section.



Lemma 18 (Perfect Reduction Lemma). For all integers tg, for all 69 > 0, for all functions 6(£),
e(?), and r(¢), there exist T > 0 and integers Ty, Lo, Ly and Ny for which the following holds: for
any H on n > Ny vertices, there exist integers to <t <Tp, 1 <L < Ly, 1 <V < Lf], such that

(a) there exists an (¢,t)-partition P = {Péj: 1<i<j<t,1<a< E}, as in Setup 15,
(b) there exists a (0o, T)-reduction Q of P (see Definition 16) which is a (§(£),r(¢'€),e(¢'l),0')-
perfect reduction of P (see Definition 17).

4. SKETCH OF THE PROOF OF THEOREM 2

4.1. Definition of the Constants. Theorem 2 asserts that for any triple system F and any ¢ > 0,
there is a constant ¢ > 0 for which we have |Fing(#)| > enlV)l whenever H is ¢-far from
Forbing(n, F). Thus, suppose we are given F and ¢ > 0. We let f = |V(F)|. All the constants
below are defined in terms of f and (.

In fact, for simplicity, and also because we do not care about the exact value of the constants
(and we do not know their best possible values), we only give the ‘hierarchy’ governing their sizes.
Roughly speaking, in what follows, when we already have B and we say ‘A < B’, we mean that A
should be small enough with respect to B.

We start by letting ap < (. We apply Lemma 14, the Counting Lemma, with f = |V (F)],
a = ap, and § = 1/2. Lemma 14 then gives us a constant dcr, = dcr(f, @, 1/2) > 0. Given that the
quantification in Lemma 14 is “(Vf, o, 3)(36)(V€)(3r,€)”, that lemma gives us functions r/®59(¢)
and e/209(0). We let rep(€) = rir@"/*7°0 (6) and e, (€) = el >0 (0).

One part of the proof we sketch below is based on a lemma, the statement of which is implicit
in Section 4.2.2: roughly speaking, this lemma says that there exists a real number

>0 (4)

and there exist integers

Kl :Kl(faC) and KZZKQ(faC) (5)

for which one may produce the setup described in (S1)-(S3) and (P4)-(P7) (see Section 4.2.2).
Now, once we have the constants K; and Ko as in (5), we may complete the definition of our
constants.

We now invoke Lemma 18, the Perfect Reduction Lemma, with constants ¢y > 1/¢ and 6y < .
We let the functions 6(¢), £(£), and r(¢) in the statement of that lemma be §(¢) = dc/K; K3,
e(?) = ecr(¥), and r(¢) = rcL(¢). Lemma 18 then gives us a real constant 7 > 0 and integers T,
Lo, L6 and N().

We remark in passing that 7/ in (4) may be taken to be 7/K;. In fact, K; and K3 in (5)
arise from an application of a certain variant of Theorem 12 (see Nagle and R6dl [12]): roughly
speaking, K7 is an upper bound for the number of parts into which we split the vertex set of a
given hypergraph and Ks is an upper bound for the number of parts into which we split certain
bipartite graphs.

Finally, we define the constant ¢ = ¢(/f,¢) > 0 by putting

f
a(()z) (T/)f
2(LoLh Kz)(2)
Claim 19. The constant ¢ = c(f,) > 0 defined above will do in Theorem 2.

Cc =



4.2. Proof of Claim 19. We split the proof into Steps I to IV. Suppose we are given a hyper-
graph H on V = |JH as in the statement of the theorem.

4.2.1. Step I. We first apply Lemma, 18, the Perfect Reduction Lemma, to obtain
(a) an (¢,t)-partition P of [V]? on V = Uy, Vi,
(b) a (6(¢),r(el"),e(el'),t")-perfect (4, 7)-reduction @ of P,

where 1) <t <Tp, 1 <¢ < Ly, and 1 < ¢ < Lj,.

4.2.2. Step II. Applying a variant of Theorem 12 (see Nagle and Rodl [12]) and several further
combinatorial arguments (Turdn type arguments and Ramsey type arguments), we obtain the
setup we shall now describe. The objects that constitute our setup are described in (S1)-(S3)
below.

(S1) For every 1 < i < t, we have a partition W] = U<y, Air of a subset W of W; (see

Definition 16). Moreover, we suppose that the V; D W/ are totally ordered in such a way that A;; <
- < Ay for all .

(82) Forevery 1 <i < j <t 1<i,j <f and1l < a </, we have a subgraph *QU (', §")
of the bipartite graph Qd(i',j') = Qd N K (A, Ajj7) = QN Py N K(A;r, Ajj). Moreover, for
every 1 <i<tand1<i " <f withi #1i", we have a subgraph Q(i;4',i") of K (A, Ajn).

S3) We have functions x7i, x5, and x5 with domains and codomains as follows:
X1 X2 3

G (1 [ X [\ A o (£} (6)
where A = {(i,1): 1 <i < t} and Iy = [{] x [{], and
Xi: [t = {0, £}, (7)

where I3 = [¢] x [£] x [¢].
The various objects in (S1)-(S3) satisfy the properties (P4)—(P7) given below.
P4) We have |A;y| =m forall1 <i<t, 1< < f, where m > 7'n (see (4)).

(
(P5) ALL*QU(,5) (1 <i<j<t 1<ij <f 1<a<t¥)andalQ(iii) (1<i<Ht
1<dd" < f,i" #i") are (1/00'kq, e9(£l'k3))-regular for some ko < Koy = Ky(f, ().

(

P6) We have the following regularity conditions for the triads defined by the bipartite graphs
in (S2).
(i) For anyl <i<tandl < ii"i" < f, set Q'',i",i") = Q(i;i,i") U Q(3;i",i") U
Q(7;4',i""). Then all the triads Q’( """ are (dcr, roL (00 ks))-regular.

()Fora,ny1<z<j<t1<z
QUi 71) = QU ') U Qi (",
(0cr, ror (60 ks))-regular.

(iii) Forany 1 <i<j<k<t 1<,k <f, andany 1 < o, 8,y < £, set Q%(i',j',k') —

*QU (i, j)U *ij( )U*ng(i’, k'). Then all the triads Qggv(i’,j’, k') are (i, rcr, (00 ks))-
regular, where p' = Kf’K§5(€) = dcL.
(P7) The triads defined in (P6) satisfy the ‘density-coherence’ properties given below.
(i) For any 1 <i <t, the following holds.
(a) If xj(i) = —1, then dy(Q" (¥, z" i")) < 1/2 forall1 < <i" <i" < f.
(b) If x5 (i) =1, then dy (Q"(4', ", ”’)) >1/2 foralll <i <" <" < f.

i ,j’ < f with 4" # ", and any 1 < o, 8 < {, set
7Y U Q(i;i',4"). Then all the triads ijﬁ(i’,i”,j') are



(i4) For any 1 <i,j <t withi # j and any 1 < o, 8 < ¢, the following holds.
a) If (x5(i,9))(a, B) = —1, then dy(QY,(i',4",5")) < 1/2 for all 1 < ¢ < i" < f and for
2

af
all1 <j' < f. )
(b) If (x5(i,7)) (e, B) = 1, then dH(QZaJﬁ(i’,i”,j’)) >1/2 for all1 <4 <i" < f and for
all1 <j' < f.

(é6i) For any 1 <i < j <k <tandany 1< a,f,y </, the following holds.
a) If (xi({i, 5, k) (e, B,7) = —1, then dy(Q7F (i,§', k")) < ag for all 1 < i', ', k' < f.
3

apfy 2
(b) If (x5({i,5,k})) (0, B,7) = 0, then ag < dp(QU5 (¢',§',K)) < 1 —ay for all 1 <
i kK < f. .
(¢) If (3 ({74, k1)) (@, B,7) = 1, then dyy(QUE (i, 4, k) > 1 — g for all 1 < &', ', k' < f.

4.2.3. Step III. Based on the functions x7, x5, and xj from (S3), we define a ‘perturbation’ of .

Using the main hypothesis on H, namely, that any small perturbation of H does not destroy all

the induced copies of F present in H, we deduce that H' contains at least one induced copy of F.
Let us define the hypergraph H'. We shall have H' C [V]3, where V = |J, ., Vi- Let

Hi, ={EcH: |[ENVi|<1(1<i<t)} (8)

be the subhypergraph of H' formed by the ‘transversal’ triples in H'. Recall that we have the
(¢,t)-partition P of [V]2. We thus have the family of triads Triad(P) given by P. Now, the family
of triple systems K3(P) (P € Triad(P)) partitions the family {E € [V]3: |[ENV;| <1 (1 <i <)} of
the transversal triples in [V]3. Therefore, to define H{,, we may define H/, N K3(P) independently
for all P € Triad(P). For each P € Triad(P), if P = P} = P/ UP}* U P¥, we let

afy
0 if (x3({é,5,k})) (e, 8,7) = -1
Hi NK(P) = HNKs(P) if (x3({i, 4, k})) (@, B,7) =0 (9)
K3(P) if (x5({é,5, k) (e, B,7) = 1.

We now proceed to define H'\ H{.. We have the following natural partition of the non-transversal
triples in [V]3:

{Ee[VP: |[EnVi|>2somei} = | ViPU |J Ks(i,j;0,8),
1<i<t i),
where the last union is over all 1 <4,j <t withi# jand 1 <, < ¥, and
Ks(i,j;a,8) = {{u,v,w} €V UVj]?’: u,v € Vi, u<v, weV;, {u,w} € Péj, {v,w} € Péj}.

To define H'\ H},, we may therefore define (H'\ H{,)N[V;]* (1 <i <t) and (H'\H},) NK3(i, j; o, B)
(1<i,j<t,i#j,1<a,0</) independently. Fix 1 <i <t. We let

’ ’ 13 0 if xi(i) = —1
Now fix 1 <4, <twithi#jand 1 <, </l We let
! / . 0 if (X;(i’j))(aaﬁ) =-1
HA\H Ks(i,5; 0, 8) = o . e 11
(H'\ Hiy) N Ks(i, j; o, B) {]C3(Z’];a’ﬁ) i (et 7)) ) = 1. (11)

A crucial property about H’ defined above is given in Claim 20 below.

Claim 20. The hypergraphs H' and H are (-close. Therefore, H' contains an induced copy of F.



4.2.4. Step IV. We now fix an induced embedding ¢: |JF — JH of F into H. Using this em-
bedding, one may obtain a k-partite 3-cylinder H* C ‘H with underlying 2-cylinder P to which one
may apply Lemma 14, the Counting Lemma.

To simplify the notation, we may and shall assume that the image im ¢ of + meets only Vi,...,Vj.
Let h; = |im:NV;| (1 < i < g). One may then check that #* and P may be obtained as described
in Claim 21 below.

Claim 21. There is a choice of indices 1 < a(i,4',7,7) <l (1 <i<j<g, 1<74,5 <f) for which
the following holds. Consider the vertex sets Ajp (1 <1< g, 1<i <h;), and consider the k-partite
cylinder P on the partition Ui,i’ Ajir, where the union is over all 1 <1 < g and 1 < 1" < h;, given
by the following bipartite graphs: (i) for each 1 < i < g and each 1 < i <i" < h;, take Q(i;4',1")
and (i) for each 1 < i < j < g and for each 1 <7 < h;, 1 < j' < h;, take *Qg(i,i’,j,j’)(il’jl)'
Let H* C H be the subhypergraph of H formed by the triples in H N Ks(P). Then the hypotheses in
Lemma 14 apply, and, consequently, |Fina(H)| > cnk.

Sketch of Proof. Suppose imeNV; = {z1,...,xin, } (1 <i<g), where z;; < --- < z;p,, (recall that
we suppose that the V; are totally ordered; see (S1)). Fix 1 <i < j < gand 1 <7 < h; and
1 < j" < hj. We have {z;;,y;;} € Ps’ for some 1 < o <. We let a(i,7,7,5') = «, and assert that
this choice for a(i,i,7,5') (1 <i<j<g,1 <7 <h; 1<j <hj) will do in Claim 21. To verify
our assertion, it suffices to use the properties listed in (P7); we omit the details. |
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