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Abstract. For k-graphs F0 and H, an F0-packing of H is a family F of pairwise edge-disjoint copies
of F0 in H. Let νF0

(H) denote the maximum size |F | of an F0-packing of H. Already in the case of

graphs, computing νF0
(H) is NP-hard for most fixed F0 (Dor and Tarsi [6]).

In this paper, we consider the case when F0 is a fixed linear k-graph. We establish an algorithm
which, for ζ > 0 and a given k-graph H, constructs in time polynomial in |V (H)| an F0-packing of H

of size at least νF0
(H) − ζ|V (H)|k. Our result extends one of Haxell and Rödl, who established the

analogous algorithm for graphs.

1. Introduction

For k-uniform hypergraphs (k-graphs, for short) F0 and H, an F0-packing of H is a family F of
pairwise edge-disjoint copies of F0 in H. Let νF0

(H) denote the maximum size |F | of an F0-packing
in H. Already in the case of graphs, computing νF0

(H) is NP-hard for any fixed graph F0 having a
component with 3 or more edges (Dor and Tarsi [6]). Haxell and Rödl proved, however, that nearly
optimal F0-packings can be polynomially constructed for graphs H satisfying νF0(H) = Ω(n2).

Theorem 1.1 (Haxell and Rödl [12]). For every graph F0 and for all ζ > 0, there exists n0 = n0(F0, ζ)
and an algorithm which, for a given graph H on n > n0 vertices, constructs in time polynomial in n an
F0-packing of H of size at least νF0

(H)− ζn2.

Note that Theorem 1.1 remains true when n ≤ n0, but it isn’t interesting. In this case, one exhaustively
searches for the optimal F0-packing of H in time O(1).

The aim of this paper is to provide an extension of Theorem 1.1 to the case of linear hypergraphs F0.
A k-graph F0 is said to be linear if every pair of its edges meet in at most one vertex (which is true of
all (simple) graphs F0).

Theorem 1.2. For every linear k-graph F0 and for all ζ > 0, there exists an integer n0 = n0(F0, ζ) and
an algorithm which, for a given k-graph H on n > n0 vertices, constructs in time polynomial in n an
F0-packing of H of size at least νF0(H)− ζnk.

The proofs of Theorems 1.1 and 1.2 both rely on the following well-known relaxation of an F0-packing.
A function ψ :

(
H
F0

)
→ [0, 1] is a fractional F0-packing of H if for each edge e ∈ H,∑{
ψ(F ) : F ∈

(
H

F0

)
satisfies e ∈ F

}
=
∑{

ψ(F ) : F ∈
(
H

F0

)
e

}
≤ 1, (1)

where
(
H
F0

)
denotes the family of all copies of F0 in H and

(
H
F0

)
e

denotes the family of all such copies

containing the edge e. The size |ψ| of a fractional F0-packing ψ is given by |ψ| =
∑
{ψ(F ) : F ∈

(
H
F0

)
} and

ν∗F0
(H) denotes the maximum size |ψ| of a fractional F0-packing ψ of H. Note that the characteristic

function of an F0-packing is a fractional F0-packing, and hence νF0(H) ≤ ν∗F0
(H). It is known that

building a fractional F0-packing ψ of maximum size ν∗F0
(H) is a linear programming problem, and hence

constructible in time polynomial in |V (H)|.

Doctoral research partially supported by NSF grant DMS 1001781.
Research partially supported by NSF grant DMS 1001781.

Mathematics Subject Classifications: 05C35, 05C65, 05C85.

1



2 JILL DIZONA AND BRENDAN NAGLE

Theorem 1.2 is not the first partial hypergraph extension of Theorem 1.1 (cf. Remark 1.4).

Theorem 1.3 ( [12, 13, 20, 26]). For every k-graph F0 and for all ζ > 0, there exists n0 = n0(F0, ζ) so
that for every k-graph H on n > n0 vertices,

ν∗F0
(H)− νF0

(H) ≤ ζnk.

Theorem 1.3 implies that the parameter νF0(H), when large enough, can be approximated in poly-
nomial time by the parameter ν∗F0

(H). When k = 2, Theorem 1.3 was a corollary of Theorem 1.1 since

Haxell and Rödl, in fact, built F0-packings of H of size ν∗F0
(H) − ζn2. An alternative proof of Theo-

rem 1.3 when k = 2 was later given by Yuster [26], which allowed F0 to be replaced with a family of
graphs. Theorem 1.3 when k = 3 was proven by Haxell, Rödl and the second author [13]. Finally, for
k ≥ 2, Theorem 1.3 was established by Rödl, Schacht, Siggers and Tokushige [20]. For future reference,
we make the following remark, indicating the main difference between Theorems 1.2 and 1.3.

Remark 1.4. Theorem 1.3 is not restricted to the case that F0 is linear, but claims no algorithm for
building a nearly optimal F0-packing of H. Theorem 1.2 provides such an algorithm, but only in the
case when F0 is linear. We explain the reason for this difference in upcoming Remarks 2.8 and 2.9.

The proofs of Theorems 1.1–1.3 all depend heavily on graph and hypergraph versions of the Regu-
larity Method, which relates to the celebrated Szemerédi Regularity Lemma. We shall next present the
regularity tools we need for this paper. More generally, we proceed along the following itinerary.

Itinerary of paper. In Section 2, we present five algorithmic tools we need, each of which has a
graph analogue in Haxell and Rödl [12]. In particular, we present three Regularity tools: a Regularity
Lemma (upcoming Theorem 2.1 – due to Czygrinow and Rödl [4]), a Slicing Lemma (Lemma 2.3), and
a Packing Lemma (Lemma 2.6). We also present two Supplemental (non-regularity) tools: a Crossing
Lemma (Lemma 2.10 – due to Haxell and Rödl [12]) and a Bounding Lemma (Lemma 2.12). In Section 3,
we use these tools to prove Theorem 1.2. In Section 4, we prove the Packing Lemma. In Section 5, we
prove the Slicing Lemma. In Section 6, we prove the Bounding Lemma.

Acknowledgment. We would like to thank our referee for their careful and thorough reading, and for
their very helpful comments.

2. Algorithmic tools: Regular and Supplemental

In this section, we to present the regularity and supplemental tools advertised in the Itinerary.

2.1. Regularity, Slicing and Packing Lemmas. We require the following concepts. For a k-graph
H, let nonempty pairwise-disjoint subsets U1, . . . , Uk ⊂ V (H) be given. Write H[U1, . . . , Uk] for the
edges of H which intersect each Ui, 1 ≤ i ≤ k. The density of (U1, . . . , Uk) is defined as

d(U1, . . . , Uk) =
|H[U1, . . . , Uk]|
|U1| . . . |Uk|

.

For d ∈ [0, 1] and ε > 0, we say that (U1, . . . , Uk) is (d, ε)-regular if for all U ′i ⊆ Ui, 1 ≤ i ≤ k, where
|U ′i | > ε|Ui|, we have

|d(U ′1, . . . , U
′
k)− d| < ε.

We say that (U1, . . . , Uk) is ε-regular if it is (d, ε)-regular for some d ∈ [0, 1], and ε-irregular otherwise.
When k = 2, the celebrated Szemerédi Regularity Lemma [23, 24] guarantees that, for all ε > 0, there

exist integers T0 = T0(ε) and N0 = N0(ε) so that every graph H on n ≥ N0 vertices admits a vertex
partition V (H) = V1 ∪ · · · ∪ Vt into t ≤ T0 parts where all but ε

(
t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-

regular. (Moreover, these parts can be arranged to have nearly the same size |V1| ≤ · · · ≤ |Vt| ≤ |V1|+1.)
Alon, Duke, Lefmann, Rödl and Yuster [1] showed that the partition V (H) = V1∪· · ·∪Vt in Szemerédi’s
Regularity Lemma can be constructed in time O(M(n)) = O(n2.3727), where M(n) is the time needed
to multiply two n × n matrices with 0,1-entries over the integers (see [25]). Kohayakawa, Rödl and
Thoma [18] improved this running time to O(n2).
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For k ≥ 2, the following hypergraph version of Szemerédi’s Regularity Lemma was established by
Frankl and Rödl [7], where the algorithmic assertion was established by Czygrinow and Rödl [4]. (In
the following statement, the input k-graph H is equipped with a vertex partition V (H) = V1 ∪ · · · ∪ V`
which is refined into a regular partition - a common ability of any regularity lemma.)

Theorem 2.1 (Regularity Lemma [4, 7]). For all ε > 0 and all positive integers k and `, there exist
integers T0 = T0(ε, k, `) and N0 = N0(ε, k, `) so that the following holds.

Let k-graph H on n ≥ N0 vertices be given with a vertex partition V (H) = V1 ∪ · · · ∪ V` satisfying
|V1| ≤ · · · ≤ |V`| ≤ |V1|+ 1. Then, one may construct, in time O(n2k−1 log2 n), a refined partition

Vi = Vi0 ∪ Vi1 ∪ · · · ∪ Vit, with m
def
= |Vi1| = · · · = |Vit|,

1 ≤ i ≤ `, where t ≤ T0, where V0 = V10 ∪ · · · ∪ V`0 has size |V0| < εn, and where all but ε
(
`
k

)
tk many

k-tuples (Vi1j1 , . . . , Vikjk), 1 ≤ i1 < · · · < ik ≤ `, 1 ≤ j1, . . . , jk ≤ t, are ε-regular and labeled as such.

Remark 2.2. The ‘labeling’ assertion of Theorem 2.1 is not explicitly stated in [4], but is implicit in
their proof [5]. For completeness, we mention a recent result of Conlon, Hàn, Person and Schacht [3]
which would make the labeling easy to see (but at the cost of producing a larger polynomial running
time). The authors in [3] established a k-graph Mk with 2k edges and k2k−1 vertices for which the
following equivalence holds with d = dH(Vi1j1 , . . . , Vikjk):

(1) If δ > 0 is sufficiently smaller than ε > 0, and if H[Vi1j1 , . . . , Vikjk ] has within d2k

mk2k−1

(1± δ)
copies of Mk, then (Vi1j1 , . . . , Vikjk) is (d, ε)-regular.

(2) If ε > 0 is sufficiently smaller than δ > 0, and if (Vi1j1 , . . . , Vikjk) is (d, ε)-regular, then

H[Vi1j1 , . . . , Vikjk ] has within d2k

mk2k−1

(1± δ) copies of Mk.

(In fact, when k = 2, M2 turns out to be C4 (the 4-cycle), and the equivalence above is precisely the one
devised and used by Alon et al. [1] for their algorithmic version of Szemerédi’s Regularity Lemma.) Now,
employing the result above in the proof of Theorem 2.1 would render the promised labeling. The running
time would increase to O(k2k−1), but for the purpose of proving Theorem 1.2, it wouldn’t matter.

We shall now present the Slicing Lemma.

Lemma 2.3 (Slicing Lemma). For every integer k ≥ 2 and for all d0, ε
′ > 0, there exists ε =

εLem.2.3(k, d0, ε
′) > 0 so that the following holds.

Let G be an ε-regular k-partite k-graph with vertex partition V (G) = V1 ∪ · · · ∪Vk, where |V1| = · · · =
|Vk| = m is sufficiently large. Suppose that p1, . . . , ps ≥ d0 are given with

∑s
i=1 pi ≤ dG(V1, . . . , Vk).

Then, there exists an algorithm which, in time O(mk), constructs an edge-partition G = G0 ∪ G1 ∪
· · · ∪Gs, where each Gi, 1 ≤ i ≤ s, is (pi, ε

′)-regular.

Remark 2.4. In the context of the Slicing Lemma, it is an easy consequence that the class G0 is
(p0, sε

′)-regular, where p0 = D −
∑s

i=1 pi. (In this paper, however, we don’t use this feature.)

Our final regularity tool is the Packing Lemma, which considers the following setup.

Setup 2.5 (Packing Setup). Let F0 be a linear k-graph with vertex set V (F0) = [f ] = {1, . . . , f}, and
let G be an f -partite k-graph with vertex partition V (G) = V1∪ · · · ∪Vf satisfying |V1| = · · · = |Vf | = m.

Suppose, moreover, that for some d, ε > 0, G has the following property. For each {i1, . . . , ik} ∈
(

[f ]
k

)
,

(1) if {i1, . . . , ik} ∈ F0, then (Vi1 , . . . , Vik) is (d, ε)-regular;
(2) if {i1, . . . , ik} /∈ F0, then G[Vi1 , . . . , Vik ] = ∅.

In the context of Setup 2.5, a subhypergraph F ′ of G on vertices v1, . . . , vf is a partite-isomorphic copy
of F0 if vi ∈ Vi for all 1 ≤ i ≤ f , and if vi → i defines an isomorphism from F ′ to F0.

Lemma 2.6 (Packing Lemma). Let F0 be a fixed linear k-graph with V (F0) = [f ]. For all d0, µ > 0,
there exists ε = εLem.2.6(d0, µ) > 0 so that the following holds.

Let G be a k-graph satisfying the hypothesis of Setup 2.5 with F0 above, with some d > d0, with ε =
εLem.2.6 above, and with m sufficiently large. Then, there exists an algorithm which, in time polynomial
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in m, constructs an F0-packing FG of G covering all but µ|G| edges of G, and which consists entirely
of partite-isomorphic copies of F0 in G. In particular,

|FG| ≥ (1− µ)(d− ε)mk.

Remark 2.7. The last assertion of the Packing Lemma is an easy consequence of its predecessor. Indeed,
in the context above, let G′ ⊆ G denote the set of edges covered by FG. Every element F ∈ FG covers
precisely |F0| edges of G′, and every edge of G′ is covered by precisely one element F ∈ FG. Thus,

|FG|×|F0| = |G′| ≥ (1−µ)|G| = (1−µ)
∑
{|G [Vi1 , . . . , Vik ]| : {i1, . . . , ik} ∈ F0} ≥ (1−µ)|F0|(d−ε)mk,

where the last inequality follows from the definition of (d, ε)-regularity. The result now follows.

Remark 2.8. For k ≥ 3, the conclusion of Lemma 2.6 is false when F0 is not linear. Indeed, for
example, consider when k = 3, f = 4, F0 consists of the triples {1, 2, 3} and {2, 3, 4}, and G is defined
as follows. Take the random bipartite graph G(V2, V3, 1/2). For each v2 ∈ V2 and v3 ∈ V3, if {v2, v3} ∈
G(V2, V3, 1/2), put {v1, v2, v3} ∈ G for every v1 ∈ V1. Otherwise, put {v2, v3, v4} ∈ G for every v4 ∈ V4.
Clearly, G contains no copies of F0. However, by the Chernoff inequality, w.h.p. both of (V1, V2, V3) and
(V2, V3, V4) are (1/2, o(1))-regular.

Remark 2.9. The papers [13, 20] proving Theorem 1.3 use hypergraph regularity lemmas from [8, 21]
(see also [9, 10]) which allow an analogue of the Packing Lemma when F0 is not necessarily linear.
Unfortunately, algorithmic versions of these regularity lemmas are not known for k ≥ 4 (although, for
k = 3, such an algorithm has been given [15] (see also [14, 19])).

2.2. Crossing and Bounding Lemmas. In what follows, let H and F0 be k-graphs, and suppose H
has vertex partition Π: V (H) = V1 ∪ · · · ∪ V`. We say a copy F ∈

(
H
F0

)
crosses Π if |V (F ) ∩ Vi| ≤ 1 for

every 1 ≤ i ≤ `. Let
(
H
F0

)
Π

denote the subcollection of copies F ∈
(
H
F0

)
which cross Π. The Crossing

Lemma, due to Haxell and Rödl [12] (see Remark 2.11), then states that if H has a fractional F0-packing
ψ, then one may construct a relatively small partition Π whose crossing copies of F0 comprise most of
the value of ψ.

Lemma 2.10 (Crossing Lemma [12]). For every k-graph F0 on f vertices, and for all µ > 0, there exists
L0 = L0(µ, F0) so that the following holds.

Let H be a k-graph on n vertices, and let ψ be a fractional F0-packing of H. There exists an algorithm
which constructs, in time O(nf ), a vertex partition Π : V (H) = V1 ∪ · · · ∪ V`, ` ≤ L0, satisfying that
bn/`c ≤ |Vi| ≤ dn/`e for all 1 ≤ i ≤ `, and satisfying that

|ψΠ|
def
=
∑{

ψ(F ) : F ∈
(
H

F0

)
Π

}
≥ (1− µ)|ψ|.

Remark 2.11. Haxell and Rödl proved Lemma 2.10 in the following more general setting (see Lemma 11

in [12]): with V = V (H), H is replaced by
(
V
f

)
, where f = |V (F0)|, and ψ is replaced by an arbitrary

function g :
(
V
f

)
→ [0,∞). Their lemma then constructs a partition Π so that |gΠ| ≥ (1− µ)|g|, where

|g| =
∑{

g(S) : S ∈
(
V

f

)}
and |gΠ| =

∑{
g(S) : S ∈

(
V

f

)
Π

}
,

where
(
V
f

)
Π

is the set of f -tuples S which cross the partition Π. We could not find an explicit mention

of the time complexity of Lemma 11 in [12], although O(nf ) is clear from the proof. Indeed, in time

O(nf ), they define a weight function w on
(
V
2

)
by w({x, y}) =

∑{
g(S) : x, y ∈ S ∈

(
V
f

)}
. Then, they

apply Lemma 10 in [12] to V and w to construct in time O(n2) (with running time O(n2) explicitly
stated in Lemma 10) an equitable bipartition V = V1 ∪ V2 so that

∑
{w({x, y}) : x ∈ V1, y ∈ V2} ≥

(1/2)
∑{

w({x, y}) : {x, y} ∈
(
V
2

)}
. They then apply Lemma 10 to V1 and V2, and so on, so that after

at most log2(f2/µ) = O(1) iterations, they reach the promised partition.



CONSTRUCTIVE PACKINGS BY LINEAR HYPERGRAPHS 5

We now present the Bounding Lemma, which considers weighted hypergraphs H0 and the following
concepts. Let F0 be a k-graph, and let H0 be an edge-weighted k-graph with weight function ω : H0 →
[0, 1]. A fractional (ω, F0)-packing of H0 is a function ψ̂ :

(
H0

F0

)
→ [0, 1] satisfying that for each e ∈ H0,∑{

ψ̂(F ) : F ∈
(
H0

F0

)
e

}
≤ ω(e)

(recall the notation in (1)). (If ω ≡ 1 is the constant function on H0, then ψ̂ is a fractional F0-packing
of H0.) As before, set

|ψ̂| =
∑{

ψ̂(F ) : F ∈
(
H0

F0

)}
and ν∗F0

(H0) = max
{
|ψ̂| : ψ̂ is a fractional (ω, F0)-packing of H0

}
.

Finally, we say that a fractional (ω, F0)-packing ψ̂ is δ-bounded if for each F ∈
(
H0

F0

)
, ψ̂(F ) ∈ {0} ∪ [δ, 1].

The Bounding Lemma then states that the parameter ν∗F0
(H0) can be approximated by a δ-bounded

fractional (ω, F0)-packing ψ̂.

Lemma 2.12 (Bounding Lemma). For every k-graph F0 and for all ξ > 0, there exists a positive
constant δ = δLem.2.12(F0, ξ) so that the following holds.

Let H0 be a weighted k-graph on r vertices with weight function ω : H0 → [0, 1]. Then, there exists a

δ-bounded fractional (ω, F0)-packing ψ̂ of H0 such that |ψ̂| ≥ ν∗F0
(H0) − ξrk. Moreover, the function ψ̂

can be found, in time depending on r, by an exhaustive search.

We conclude this section by stating specific versions of some familiar tools.

2.3. Some familiar tools.

Fact 2.13 (Cauchy-Schwarz Inequality (see, e.g., [22])). For a1, . . . , at ≥ 0 and τ ≥ 0, suppose
∑t

i=1 ai ≥
(1− τ)at and

∑t
i=1 a

2
i ≤ (1 + τ)a2t. Then, for all but 2τ1/3t terms 1 ≤ i ≤ t, we have ai = a(1± 2τ1/3).

Fact 2.14 (Chernoff Inequality (see, e.g., [2, 16])). Let X have Binomial distribution. Then, for any
0 < δ < 3/2, P[X 6= (1± δ)E[X]] ≤ 2 exp{−δ2E[X]/3}.

3. Proof of Theorem 1.2

Let F0 be a given linear k-graph on f vertices and let ζ > 0 be given. Our first step is to define some
auxiliary constants with respect to which the size of the input hypergraph H needs to be large.

Step 0: Auxiliary constants and input H. Set

µ = ξ =
ζ

6
. (2)

With ξ given above, let
δ = δLem.2.12(F0, ξ) > 0 (3)

be the constant guaranteed by the Bounding Lemma (Lemma 2.12). Set

d0 = δ. (4)

With µ in (2) and d0 in (4), let εLem.2.6 = εLem.2.6(F0, d0, µ) > 0 be the constant guaranteed by the
Packing Lemma (Lemma 2.6). Set

ε′ = (d0µ)εLem.2.6, (5)

and let εLem.2.3 = εLem.2.3(k, d0, ε
′) > 0 be the constant guaranteed by the Slicing Lemma (Lemma 2.3).

Define
ε = min{εLem.2.3, εLem.2.6} (6)

(which is achieved by εLem.2.3).
In all that follows, the integer n0 is assumed to be sufficiently large with respect to all constants

discussed above. In particular, n0 is large with respect to the following additional constants. With
µ > 0 given in (2), let L0 = L0(µ) be the constant guaranteed by the Crossing Lemma (Lemma 2.10).
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With ε > 0 given in (6) and L0 given above, let T0 = T0(ε, k, L0) and N0 = N0(ε, k, L0) be the constants
given by the Regularity Lemma (Theorem 2.1). The integer n0 is larger than N0 and T0.

Now, let H be a given k-graph on n > n0 vertices. We construct, in time polynomial in n, an
F0-packing FH of H of size

|FH | ≥ ν∗F0
(H)− ζnk. (7)

Since ν∗F0
(H) ≥ νF0

(H), this will prove Theorem 1.2. We proceed to the first step of our algorithm.

Step 1: Preprocessing H. First, equip H with a maximum fractional F0-packing ψ∗, i.e., one for
which |ψ∗| = ν∗F0

(H). Constructing ψ∗ is a linear programming problem with running time polynomial
in n.

We now apply the Crossing Lemma (Lemma 2.10) to H and ψ∗. With µ > 0 given in (2), Lemma 2.10
guarantees the constant L0 = L0(µ) (discussed in Step 0) and constructs, in time O(n2), a vertex
partition Π : V (H) = V1 ∪ · · · ∪ V` where ` ≤ L0, where bn/`c ≤ |Vi| ≤ dn/`e, and where

|ψ∗Π|
def
=
∑{

ψ∗(F ) : F ∈
(
H

F0

)
Π

}
≥ (1− µ)|ψ∗|. (8)

We mention that we build ψ∗ so that we may apply the Crossing Lemma, and we need the Crossing
Lemma in order to prove Proposition 3.1 below.

Step 2: Regularizing H and building H0. Our next step is to apply the Regularity Lemma (The-
orem 2.1) to H (and Π) and to constuct, as usual, the resulting ‘cluster’ hypergraph H0. To that end,
with ε > 0 given in (6), ` obtained in Step 1 (with ` ≤ L0), Theorem 2.1 guarantees the constant
T0 = T0(ε, k, `) (discussed in Step 0) and constructs, in time O(n2k−1 log2 n), a refined vertex partition

Π̂ : V (H) = V0 ∪
⋃{

Vij : 1 ≤ i ≤ `, 1 ≤ j ≤ t
}

where

(i) t ≤ T0 and m
def
= |V11| = · · · = |V`t| and |V0| < εn,

(ii) all but ε
(
`
k

)
tk many k-tuples (Vi1j1 , . . . , Vikjk), 1 ≤ i1 < · · · < ik ≤ `, 1 ≤ j1, . . . , jk ≤ t, are

ε-regular and labeled as such.

We now construct the cluster hypergraph H0 which will, in fact, be a weighted hypergraph. To begin,
H0 will have vertex set V (H0) = {uij : 1 ≤ i ≤ `, 1 ≤ j ≤ t}. Consider the set of all

(
`
k

)
tk many k-tuples

of the form {ui1j1 , . . . , uikjk}, where 1 ≤ i1 < · · · < ik ≤ ` and 1 ≤ j1, . . . , jk ≤ t. For each such k-tuple
{ui1j1 , . . . , uikjk}, define

ω({ui1j1 , . . . , uikjk}) =

{
dH(Vi1j1 , . . . , Vikjk) (Vi1j1 , . . . , Vikjk) is (labeled to be) ε-regular,

0 otherwise.
(9)

Then H0 will consist of all k-tuples above whose weight is nonzero. (Note that H0 consists only of
k-tuples {ui1j1 , . . . , uikjk} where (Vi1j1 , . . . , Vikjk) ‘crosses’ the partition V1 ∪ · · · ∪ V`.) Together with
the function ω, H0 is a weighted k-graph on `t vertices, and since ` ≤ L0 and t ≤ T0, the construction
of H0 is complete in time O(1).

While we don’t use it yet, we note that ν∗F0
(H0) is essentially a 1/mk portion of |ψ∗| = ν∗F0

(H).

Proposition 3.1.

mkν∗F0
(H0) ≥ |ψ∗Π| − 2εnk

(8)

≥ (1− µ)|ψ∗| − 2εnk = (1− µ)ν∗F0
(H)− 2εnk.

We will prove Proposition 3.1 at the end of this section.
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Step 3: Bounding H0. We now apply the Bounding Lemma (Lemma 2.12) to the weighted hypergraph
H0. To that end, with ξ > 0 given in (2) and δ given in (3), we apply Lemma 2.12 to H0 to guarantee

a δ-bounded fractional (ω, F0)-packing ψ̂ of H0 satisfying

|ψ̂| ≥ ν∗F0
(H0)− ξ(`t)k. (10)

The Bounding Lemma also ensures that ψ̂ can be constructed by an exhaustive search in time O(1)
(since H0 has `t ≤ L0T0 = O(1) many vertices).

We establish some notation related to the fractional (ω, F0)-packing ψ̂ of H0. Set (cf. (4))(
H0

F0

)+

=

{
F ∈

(
H0

F0

)
: ψ̂(F ) 6= 0

}
=

{
F ∈

(
H0

F0

)
: ψ̂(F ) ≥ δ (4)

= d0

}
,

where the last equality follows from the fact that ψ̂ is δ-bounded. For a fixed e ∈ H0, we write(
H0

F0

)+

e

=

(
H0

F0

)
e

∩
(
H0

F0

)+

.

Step 4: Slicing H. We now run the Slicing Lemma (Lemma 2.3), repeatedly, over the hypergraph H.
To that end, fix e = {ui1j1 , . . . , uikjk} ∈ H0, which fixes the corresponding hypergraphH[Vi1j1 , . . . , Vikjk ].

For each F ∈
(
H0

F0

)+
e

, we wish to cut (using Lemma 2.3) a ‘regular’ slice from H[Vi1j1 , . . . , Vikjk ] of density

pF = ψ̂(F ). Let us first check that it is appropriate to do so. First, every pF = ψ̂(F ) ≥ d0 on account of

F ∈
(
H0

F0

)+
e

, as is required by the Slicing Lemma. Second, since ψ̂ is an (ω, F0)-packing of H0, we have

∑{
pF : F ∈

(
H0

F0

)+

e

}
=
∑{

ψ̂(F ) : F ∈
(
H0

F0

)+

e

}
≤ ω(e)

(9)
= dH(Vi1j1 , . . . , Vikjk),

as is also required by the Slicing Lemma. Finally, by (6), ε ≤ εLem.2.3(d0, ε
′) was chosen to be sufficient

for an application of the Slicing Lemma (Lemma 2.3). Consequently, Lemma 2.3 constructs, in time
O(mk), a partition

H[Vi1j1 , . . . , Vikjk ] = H∗[Vi1j1 , . . . , Vikjk ] ∪
⋃{

HF [Vi1j1 , . . . , Vikjk ] : F ∈
(
H0

F0

)+

e

}
, (11)

where each slice HF [Vi1j1 , . . . , Vikjk ], F ∈
(
H0

F0

)+
e

, is (ψ̂(F ), ε′)-regular. (We use H∗ notation to denote

the remainder, which we henceforth ignore.)

Step 5: Packing H (locally). We now run the Packing Lemma (Lemma 2.6), repeatedly, over the

hypergraph H. To that end, fix F ∈
(
H0

F0

)+
, and construct the following f -partite subhypergraph

GF ⊆ H (recall f = |V (F0)|):

V (GF ) =
⋃
{Vij : uij ∈ V (F )} and

GF = E(GF ) =
⋃
{HF [Vi1j1 , . . . , Vikjk ] : {ui1j1 , . . . , uikjk} ∈ F} , (12)

where for each edge e = {ui1j1 , . . . , uikjk} ∈ F , HF [Vi1j1 , . . . , Vikjk ] is the slice (from Step 4) from
H[Vi1j1 , . . . , Vikjk ] corresponding to F . Note that the hypergraph GF is constructed in time O(mk).

We now apply the Packing Lemma (Lemma 2.6) to the hypergraph GF , but first check that it is
appropriate to do so. Observe that GF and F satisfy the hypothesis of Setup 2.5. Indeed, for each

edge e = {ui1j1 , . . . , uikjk} ∈ F , the corresponding hypergraph GF [Vi1j1 , . . . , Vikjk ] is (ψ̂(F ), ε′)-regular,

where ψ̂(F ) ≥ d0 = δ on account that F ∈
(
H0

F0

)+
. Otherwise, for each {ui1j1 , . . . , uikjk} ∈

(
V (F )

k

)
\F ,

the corresponding hypergraph GF [Vi1j1 , . . . , Vikjk ] = ∅. Finally, recall from (5) that ε′ ≤ εLem.2.6(d0, µ)
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was chosen in accordance with the Packing Lemma (Lemma 2.6). Lemma 2.6 therefore constructs, in
time polynomial in m, an F0-packing FGF

of GF satisfying

|FGF
| ≥ (1− µ)

(
ψ̂(F )− ε′

)
mk ≥ (1− µ)

(
1− ε′

d0

)
ψ̂(F )mk. (13)

Step 6: Constructing the promised FH . We define

FH =

{
FGF

: F ∈
(
H0

F0

)+
}
, (14)

which amounts to collecting the ‘local’ packings FGF
over all F ∈

(
H0

F0

)+
. The remainder of this section

checks that FH is an F0-packing of H, that FH was constructed in time polynomial in n, and that FH

has the size promised in (7).

FH is an F0-packing of H. Indeed, let F 6= F ′ ∈ FH be fixed. Note that, by construction of

FH (cf. (14)), there exist F̂ , F̂ ′ ∈
(
H0

F0

)+
so that F ∈ FGF̂

and F ′ ∈ FG
F̂ ′

. Now, let us assume, for

contradiction, that F ∩ F ′ 6= ∅.
If F̂ = F̂ ′, then F ∩ F ′ 6= ∅ contradicts the Packing Lemma (Lemma 2.6) since FGF̂

= FG
F̂ ′

was an

F0-packing of GF̂ = GF̂ ′ . Henceforth, we assume F̂ 6= F̂ ′.
Let e ∈ F ∩ F ′, and write e ∈ H[Vi1j1 , . . . , Vikjk ] for some 1 ≤ i1 < · · · < ik ≤ `, 1 ≤ j1, . . . , jk ≤ t. It

follows from e ∈ F ∈ FGF̂
and similarly e ∈ F ′ ∈ FGF̂ ′

that

e ∈ GF̂ [Vi1j1 , . . . , Vikjk ] ∩GF̂ ′ [Vi1j1 , . . . , Vikjk ],

or equivalently (cf. (12)),

e ∈ HF̂ [Vi1j1 , . . . , Vikjk ] ∩HF̂ ′ [Vi1j1 , . . . , Vikjk ]. (15)

However, (15) contradicts the Slicing Lemma, since HF̂ [Vi1j1 , . . . , Vikjk ] and HF̂ ′ [Vi1j1 , . . . , Vikjk ] were

distinct classes of a partition (distinct on account of F̂ 6= F̂ ′).

FH was constructed in time polynomial in n. Indeed, in Step 1, we constructed maximum frac-
tional F0-packing ψ∗ of H, which as a linear programming problem is done in time polynomial in n.
We then applied the Crossing Lemma (Lemma 2.10) to H and ψ∗, which was done in time O(nf ).
In Step 2, we applied the Regularity Lemma (Theorem 2.1) to H and Π, which was done in time
O(n2k−1 log2 n), and we constructed the weighted cluster H0 in time O(1). In Step 3, we applied the

Bounding Lemma (Lemma 2.12) to H0, which constructed ψ̂ in time O(1). In Step 4, we applied the

Slicing Lemma (Lemma 2.3) to H at most
(
`t
k

)
≤ (L0T0)k = O(1) times, where each such application

took time O(mk) = O(nk). In Step 5, we applied the Packing Lemma at most (`t)f ≤ (L0T0)f = O(1)
times, where each such application took time polynomial in m (and so polynomial in n).

FH has size promised in (7). From (14), we have

|FH | =
∑{

|FGF
| : F ∈

(
H0

F0

)+
}

(13)

≥ (1− µ)

(
1− ε′

d0

)
mk
∑{

ψ̂(F ) : F ∈
(
H0

F0

)+
}

= (1− µ)

(
1− ε′

d0

)
mk
∣∣∣ψ̂∣∣∣ (5)

≥ (1− µ)2mk|ψ̂|
(10)

≥ (1− µ)2mk
(
ν∗F0

(H0)− ξ(`t)k
)

Prop.3.1

≥ (1− µ)2
(

(1− µ)ν∗F0
(H)− 2εnk − ξ(m`t)k

)
(2)

≥ (1− 2µ)
(
ν∗F0

(H)− 4µnk
) (2)

≥ ν∗F0
(H)− 6µnk

(2)
= ν∗F0

(H)− ζnk,

where the second equality holds since ψ̂ vanishes outside of
(
H0

F0

)+
(and where we used m`t ≤ n and

ν∗F0
(H) ≤ nk). All that remains is to prove Proposition 3.1.
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Proof of Proposition 3.1. It suffices to produce a fractional packing ψ0 :
(
H0

F0

)
→ [0, 1] for which

mk|ψ0| has the lower bound of Proposition 3.1. To produce ψ0, we use the following notation. Define

HΠ̂ =
⋃{

H[Vi1j1 , . . . , Vikjk ] :
{
ui1j1 , . . . , uikjk

}
∈ H0

}
.

In other words, HΠ̂ consist of all edges {vi1j1 , . . . , vikjk} ∈ H for which vi1j1 ∈ Vi1j1 , . . . , vikjk ∈ Vikjk , for
some 1 ≤ i1 < · · · < ik ≤ `, 1 ≤ j1, . . . , jk ≤ t, where (Vi1j1 , . . . , Vikjk) is (labeled to be) ε-regular. Since
each edge of HΠ̂ crosses the partition Π : V (H) = V1 ∪ · · · ∪V` (cf. the Crossing Lemma (Lemma 2.10)),

every element F ∈
(HΠ̂
F0

)
also crosses Π, and so(

HΠ̂

F0

)
⊆
(
H

F0

)
Π

. (16)

Note that the mapping

π : V (HΠ̂)→ V (H0) given by v 7→ uij ⇐⇒ v ∈ Vij

defines a homomorphism from HΠ̂ to H0. As such, since each F ′ ∈
(HΠ̂
F0

)
crosses the partition Π, we

have that F = π(F ′) defines a copy of F0 in H0, i.e., F = π(F ′) ∈
(
H0

F0

)
. We shall call F = π(F ′) the

projection of F ′ in H0, and will say that F ′ ∈
(HΠ̂
F0

)
projects to F = π(F ′) ∈

(
H0

F0

)
.

Now, define the function ψ0 :
(
H0

F0

)
→ [0, 1] by setting, for F ∈

(
H0

F0

)
,

ψ0(F ) =
1

mk

∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)
projects to F

}
. (17)

To show that ψ0 is a fractional (ω, F0)-packing of H0, fix e = {ui1j1 , . . . , uikjk} ∈ H0. From (17),∑{
ψ0(F ) : F ∈

(
H0

F0

)
e

}
=

1

mk

∑{∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)
projects to F

}
: F ∈

(
H0

F0

)
e

}
.

Every F ′ ∈
(HΠ̂
F0

)
projects to some F ∈

(
H0

F0

)
e

if, and only if, F ′ ∩ H[Vi1j1 , . . . , Vikjk ] 6= ∅ (recall e =

{ui1j1 , . . . , uikjk}). Therefore,

∑{
ψ0(F ) : F ∈

(
H0

F0

)
e

}
=

1

mk

∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)
satisfies F ′ ∩H [Vi1j1 , . . . , Vikjk ]

}
=

1

mk

∑{∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)
e′

}
: e′ ∈ H [Vi1j1 , . . . , Vikjk ]

}
≤ 1

mk

∑{∑{
ψ∗(F ′) : F ′ ∈

(
H

F0

)
e′

}
: e′ ∈ H [Vi1j1 , . . . , Vikjk ]

}
≤ 1

mk

∣∣H[Vi1j1 , . . . , Vikjk ]
∣∣ = dH(Vi1j1 , . . . , Vikjk)

(9)
= ω(e),

where in the last inequality, we used that ψ∗ is a fractional F0-packing of H, i.e., the final inner sum is
at most 1.

To finish the proof of Proposition 3.1, consider the quantity |ψ∗Π| −mk|ψ0|. From (17), we have that

mk |ψ0| =
∑{∑{

ψ∗(F ′) : F ′ ∈
(
HΠ̂

F0

)
projects to F

}
: F ∈

(
H0

F0

)}
=
∑{

ψ∗(F ′) : F ′ ∈
(
HΠ̂

F0

)}
,
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where the last equality holds from the fact that every F ′ ∈
(HΠ̂
F0

)
projects to some F ∈

(
H0

F0

)
. Therefore,

we have (cf. (8) and (16))

|ψ∗Π| −mk|ψ0| =
∑{

ψ∗(F ) : F ∈
(
H

F0

)
Π

}
−
∑{

ψ∗(F ′) : F ′ ∈
(
HΠ̂

F0

)}
=
∑{

ψ∗(F ) : F ∈
(
H

F0

)
Π

\
(
HΠ̂

F0

)}
=
∑{

ψ∗(F ) : F ∈
(
H

F0

)
Π

satisfies F ∩
(
H \HΠ̂

)
6= ∅
}

≤
∑{∑{

ψ∗(F ) : e ∈ F ∈
(
H

F0

)
Π

}
: e ∈ H \HΠ̂

}
≤
∑{∑{

ψ∗(F ) : F ∈
(
H

F0

)
e

}
: e ∈ H \HΠ̂

}
≤
∣∣H \HΠ̂

∣∣ ,
where in the last inequality, we used that ψ∗ is a fractional F0-packing of H. Note that H \HΠ̂ consists
of edges e for which e ∩ V0 6= ∅, or else, e ∈ H[Vi1j1 , . . . , Vikjk ] for some 1 ≤ i1 < · · · < ik ≤ `
and 1 ≤ j1, . . . , jk ≤ t where (Vi1j1 , . . . , Vikjk) is not (labeled to be) ε-regular. However, at most

εn · nk−1 + ε
(
`
k

)
tkmk ≤ 2εnk edges e ∈ H can have these properties, which completes the proof.

4. Proof of the Packing Lemma

Our proof of the Packing Lemma (Lemma 2.6) is a hypergraph analogue of the proof of Lemma 5
in Haxell and Rödl [12]. The Packing Lemma will follow nearly immediately from Theorem 4.1 and
Lemma 4.2 below.

The following statement is a well-known result of Grable [11] which concerns hypergraph packings. A
packing P in a hypergraph P is a family of pairwise disjoint edges. In a hypergraph P and x ∈ V (P ), let
NP (x) = {Q : Q ∪ x ∈ P} denote the neighborhood of x in P , and for x, x′ ∈ V (P ), write NP (x, x′) =
NP (x) ∩NP (x′). As well, write degP (x) = |NP (x)| and degP (x, x′) = |NP (x, x′)|.

Theorem 4.1 (Grable [11]). For every integer p ≥ 2 and for all λ > 0, there exists β = βThm.4.1(p, λ) > 0
so that the following holds. Let P be a p-graph with sufficiently large vertex set X = V (P ) satisfying
that, for some ∆ > 0,

(1) for all x ∈ X, degP (x) = (1± β)∆,
(2) for all distinct x, x′ ∈ X, degP (x, x′) < ∆

(log |X|)4 .

Then, there exists a packing P of P covering all but λ|X| vertices of X. Moreover, P can be constructed
in time polynomial in |X|.

We call the following result the Extension Lemma, which we prove later in this section.

Lemma 4.2 (Extension Lemma). For all integers f ≥ k ≥ 2 and all d0, γ > 0, there exists δ =
δLem.4.2(f, k, d0, γ) > 0 so that the following holds.

Let a linear k-graph F0 with vertex set [f ] be given, and let G be given as in Setup 2.5 with some
d ≥ d0, with ε = δ above, and with a sufficiently large integer m. Then, there exists G′ ⊆ G, where
|G′| > (1 − γ)|G|, so that for each {i1, . . . , ik} ∈ F0, every {vi1 , . . . , vik} ∈ G′[Vi1 , . . . , Vik ] belongs to
within (1± γ)d|F0|−1mf−k many partite-isomorphic copies of F0 in G′. Moreover, the subhypergraph G′

can be found in time O(mf ).

4.1. Proof of the Packing Lemma. Let F0 (on f vertices), d0, and µ > 0 be given as in Lemma 2.6. To
define the promised constant ε = εLem.2.6(d0, µ) > 0, we first consider some auxillary constants. Let β =
βThm.4.1(p = f, λ = µ/2) > 0 be the constant guaranteed by Theorem 4.1. Let δ = δLem.4.2(f, k, d0, γ =
β) > 0 by the constant guaranteed by Lemma 4.2. We set ε = δ, and take m to be sufficiently large
whenever needed.

Now, let G be given as in the hypothesis of the Packing Lemma (Lemma 2.6). We apply the Extension
Lemma (Lemma 4.2) to G to construct, in time O(mf ), the subhypergraph G′ ⊆ G guaranteed there.
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As in Theorem 4.1, set X = G′ and define P to be the family of all partite-isomorphic copies of F0 in
G′. Note that a packing P of P corresponds to an F0-packing of G′.

We now apply Theorem 4.1 to P , but first check that it is appropriate to do so. From the application of
the Extension Lemma, every vertex x ∈ X = V (P ) = G′ satisfies degP (x) = (1±γ)d|F0|−1mf−k. Setting
∆ = d|F0|−1mf−k and recalling γ = β was chosen to be sufficient for an application of Theorem 4.1, we
see degP (x) = (1 ± β)∆. Note that, easily, for each x 6= x′ ∈ X, degP (x, x′) ≤ mf−(k+1) = O( 1

m∆).

Moreover, |X| = Θ(mk), so degP (x, x′) < ∆/ log4 |X|. Thus, Theorem 4.1 constructs, in time polynomial
in |X| = Θ(mk), a packing P covering all but λ|X| vertices x ∈ X. This corresponds to an F0-packing
F covering all but λ|G′| edges in G′. Together with the edges G\G′, the F0-packing F covers all but
2λ|G| = µ|G| edges of G, which completes the proof.

4.2. Proof of Lemma 4.2. To prove Lemma 4.2, we will use its following seemingly “weaker” version.

Lemma 4.3 (‘Weak’ Extension Lemma). For all integers f ≥ k ≥ 2 and all d0, ζ > 0, there exists
ε = εLem.4.3(f, k, d0, ζ) > 0 so that the following holds.

Let a linear k-graph F0 with vertex set [f ] be given, and let G be given as in Setup 2.5 with some
d ≥ d0, with ε above, and with a sufficiently large integer m. Then, for each {i1, . . . , ik} ∈ F0, all but ζmk

elements {vi1 , . . . , vik} ∈ G[Vi1 , . . . , Vik ] belong to within (1 ± ζ)d|F0|−1mf−k many partite-isomorphic
copies of F0 in G.

We prove Lemma 4.3 at the end of the section.
It is clear that Lemma 4.2 implies Lemma 4.3, but we need the converse to hold. The equivalance

between Lemmas 4.2 and 4.3 is not clear, as we now indicate.

Remark 4.4. To form G′, it would natural to delete from G all |F0|ζmk edges which are “bad” in the
sense of Lemma 4.3. In this case, all remaining edges in G′ clearly extend to at most (1+ζ)d|F0|−1mf−k

many copies of F0 in G′. The concern is that each such edge may not extend to at least (1−ζ)d|F0|−1mf−k

many copies of F0 in G′ (on account of deletion).

We now prove that Lemma 4.3 implies Lemma 4.2.

Proof of Lemma 4.2. Let integers f ≥ k ≥ 2 and d0, γ > 0 be given. To define the promised constant
δ = δLem 4.2(f, k, d0, γ) > 0, we first define an auxiliary constant ζ > 0 to satisfy

4f3k

√
ζ

df
k

0

< γ. (18)

Now, let ε = εLem 4.3(f, k, d0, ζ) > 0 be the constant guaranteed by Lemma 4.3, and set δ = ε. Let a
linear k-graph F0 and G be given as in Setup 2.5 with some constant d ≥ d0, with δ = ε above, and with
a sufficiently large integer m. To define the promised hypergraph G′ ⊆ G, we make two considerations
(that of a ‘good edge’ and that of a ‘good vertex’).

First, for a fixed {i1, . . . , ik} ∈ F0, we shall call an edge {vi1 , . . . , vik} ∈ G[Vi1 , . . . , Vik ] a good edge
if it belongs to within (1 ± ζ)d|F0|−1mf−k many partite-isomorphic copies of F0 in G. Otherwise, we
call {vi1 , . . . , vik} a bad edge. The first step in defining G′ is to delete all bad edges from G, across all
{i1, . . . , ik} ∈ F0. Upon doing so, we shall call the resulting (intermediate) hypergraph G1 ⊆ G, where
Lemma 4.3 implies |G1| ≥ |G| − |F0|ζmk ≥ |G| − fkζmk. Note that G1 is identified in time O(mf ).

Second, fix 1 ≤ i ≤ f and fix {i1, . . . , ik} = K ∈ F0 for which i ∈ K. We shall call a vertex vi ∈ Vi a
K-bad vertex if vi belongs to at least

√
ζmk−1 bad edges {vi1 , . . . , vik} ∈ G[Vi1 , . . . , Vik ]. Note that, for

K fixed above, at most
√
ζm vertices vi ∈ Vi can be K-bad, since otherwise, we’d have ζmk bad edges

within G[Vi1 , . . . , Vik ], contradicting Lemma 4.3. Now, call a vertex vi ∈ Vi a bad vertex if there exists
any K ∈ F0 for which vi is a K-bad vertex, and call vi a good vertex otherwise. Then there are at most√
ζfk−1m bad vertices vi ∈ Vi and at most

√
ζfkm bad vertices in all of G. Note, moreover, that bad

vertices in G are clearly identified in time O(mk).
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Now, to define G′, we simply induce the hypergraph G1, defined above, on the good vertices of G
(which takes time O(mk)). Since each bad vertex of G can belong to at most fk−1mk−1 edges of G1,
we have that

|G′| > |G1| −
√
ζf2k−1mk > |G| − ζfkmk −

√
ζf2k−1mk > |G| − 2

√
ζf2kmk. (19)

Since |G| ≥ |F0|(d− ε)mk > (d0/2)mk, we thus have

|G′| >
(

1− 4f2k

√
ζ

d0

)
|G|

(18)
> (1− γ)|G|.

Thus, G′ is as large as promised by Lemma 4.2, and was constructed in time O(mf ). It remains to verify
that each of its elements extends to within the promised number of copies of F0 in G′.

To that end, we establish some notation needed for the remainder of the section. Suppose hypergraphs
A0 and B are defined in the context of Setup 2.5. For an edge b ∈ B, define

extA0,B(b) =

∣∣∣∣{A ∈ (BA0

)
b

: A is a partite-isomorphic copy of A0

}∣∣∣∣ (20)

for the number of extensions of the edge b to partite-isomorphic copies of A0 in B.
Now, fix {i1, . . . , ik} = K ∈ F0, and w.l.o.g., assume {i1, . . . , ik} = {1, . . . , k}. Fix an edge

{v1, . . . , vk} ∈ G′[V1, . . . , Vk]. Since {v1, . . . , vk} is a good edge in G,

extF0,G({v1, . . . , vk}) = (1± ζ)d|F0|−1mf−k, (21)

and clearly,

extF0,G′({v1, . . . , vk}) ≤ extF0,G({v1, . . . , vk}) ≤ (1 + ζ)d|F0|−1mf−k. (22)

It remains to verify that extF0,G′({v1, . . . , vk}) isn’t too much smaller than extF0,G({v1, . . . , vk}). To
that end, fix {j1, . . . , jk} = K1 ∈ F0 where K1 6= K. We consider two cases.

Case 1. (K ∩K1 = ∅) It follows from (19) that

|(G \G′)[Vj1 , . . . , Vjk ]| ≤ 2
√
ζf2kmk. (23)

Fix {vj1 , . . . , vjk} ∈ (G \ G′)[Vj1 , . . . , Vjk ]. Clearly, at most mf−2k copies of F0 in G can contain both
{v1, . . . , vk} and {vj1 , . . . , vjk}, and all of these copies are lost in G′. Thus, (23) implies that, summing
over all {vj1 , . . . , vjk} ∈ (G \G′)[Vj1 , . . . , Vjk ], the edge {v1, . . . , vk} lost at most

2
√
ζf2kmk ×mf−2k = 2

√
ζf2kmf−k

many copies of F0 from G.

Case 2. (K ∩ K1 6= ∅) Since F0 is a linear hypergraph, it must be the case that |K ∩ K1| = 1. Set
{i} = K ∩K1, and w.l.o.g., assume i = 1. Fix {vj1 , . . . , vjk} ∈ (G \ G′)[Vj1 , . . . , Vjk ], where for sake of
argument, we assume v1 ∈ {vj1 , . . . , vjk}. Since v1 is a K1-good vertex, {vj1 , . . . , vjk} can be one of only
at most

√
ζmk−1 edges deleted from G which contain v1. Since {v1, . . . , vk} and {vj1 , . . . , vjk} constitute

2k − 1 distinct vertices, there can be at most mf−2k+1 many copies of F0 in G containing both these
edges, and all of these copies are lost in G′. Thus, summing over all {vj1 , . . . , vjk} ∈ (G\G′)[Vj1 , . . . , Vjk ]
containing v1, the edge {v1, . . . , vk} lost at most√

ζmk−1 ×mf−2k+1 =
√
ζmf−k

many copies of F0 from G.

Over all {j1, . . . , jk} = K1 ∈ F0 distinct from {1, . . . , k} = K ∈ F0, Cases 1 and 2 imply that

extF0,G′({v1, . . . , vk}) ≥ extF0,G({v1, . . . , vk})−
(

(|F0| − 1)
(

2
√
ζf2kmf−k +

√
ζmf−k

))
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(21)

≥ (1− ζ)d|F0|−1mf−k − 3
√
ζf3kmf−k ≥

(
1− ζ − 3f3k

√
ζ

df
k

0

)
d|F0|−1mf−k

(18)
> (1− γ)d|F0|−1mf−k.

The above inequality and (22) imply that extF0,G′({v1, . . . , vk}) = (1± γ)d|F0|−1mf−k, which concludes
the proof of Lemma 4.2. �

4.3. Proof of Lemma 4.3. To prove Lemma 4.3, we shall use the following result from [17].

Theorem 4.5 (Counting Lemma for Linear Hypergraphs). For all integers f1 ≥ k ≥ 2 and all d0, τ > 0,
there exists δ = δThm.4.5(f1, k, d0, τ) > 0 so that the following holds.

Let a linear k-graph F1 with vertex set [f1] be given, and let G be given as in Setup 2.5 with some
d ≥ d0, with ε = δ, and with a sufficiently large integer m. Then, the number of partite-isomorphic
copies of F1 in G, which we write as #{F1 ⊂p.i. G}, satisfies

#{F1 ⊂p.i. G} = (1± τ)d|F1|mf1 .

Let integers f ≥ k ≥ 2 be given and let d0, ζ > 0 be given. Define auxiliary constant τ = ζ3/6. Let
δ1 = δThm.4.5(f1 = f, k, d0, τ) > 0 be the constant guaranteed by Theorem 4.5. Let δ2 = δThm.4.5(f1 =
2f − k, k, d0, τ) > 0 be the constant guaranteed by Theorem 4.5. Let ε0 > 0 be small enough so that
each of the following inequalities holds:

(1 + τ)
(
1− ε0d

−1
0

)−1 ≤ 1 + 2τ and (1− τ)
(
1 + ε0d

−1
0

)−1 ≥ 1− 2τ. (24)

Define ε = min{ε0, δ1, δ2}. Let F0 and G be given as in Setup 2.5 with some d ≥ d0, with ε given above,
and with a sufficiently large integer m.

Fix {i1, . . . , ik} ∈ F0, and assume w.l.o.g. that {i1, . . . , ik} = {1, . . . , k} = [k]. Our proof will make
a joint appeal to the Counting Lemma (Theorem 4.5) and the Cauchy-Schwarz inequality (Fact 2.13).
For that purpose, we make the following considerations.

Define hypergraph F 2
0 ⊇ F0 as follows. Let

V (F 2
0 ) = {1, . . . , k, k + 1, . . . , f} ∪ {(k + 1)′, . . . , f ′}

so that F 2
0 has 2f − k vertices. Include every edge of F0 in F 2

0 . More generally, suppose [k] 6= K =
{i1, . . . , ik} ∈ F0. Since F0 is linear, |K ∩ [k]| ∈ {0, 1}, and w.l.o.g., assume K ∩ [k] ⊆ {i1}. Write, for
some ` ∈ {0, 1},

K \ [k] = {i`+1, . . . , ik} and define K ′ = {i1, . . . , i`, i′`+1, . . . , i
′
k}.

Now, put K ′ ∈ F 2
0 . We repeat this procedure over all [k] 6= K ∈ F0, which completes the definition of

F 2
0 . Then, F 2

0 is a linear k-graph on 2f − k vertices and 2|F0| − 1 edges.
Define hypergraph G2 ⊇ G similarly. For k + 1 ≤ t ≤ f , let V ′t be a copy of the class Vt. Let

V (G2) = V1 ∪ · · · ∪ Vk ∪ Vk+1 ∪ · · · ∪ Vf ∪ V ′k+1, . . . , V
′
f

be a (2f − k)-partition. Include every edge of G in G2. More generally, suppose K ∈ F 2
0 has the form

(for some j ≥ 0) K = {i1, . . . , ij , i′j+1, . . . , i
′
k} where K ∩ [f ] = {i1, . . . , ij}. Let

G2
K = G2[Vi1 , . . . , Vij , V

′
ij+1

, . . . , V ′f ] be a copy of G[Vi1 , . . . , Vij , Vij+1 , . . . , Vf ].

Define

G2 =
⋃{

G2
K : K ∈

(
V (F 2

0 )

k

)}
.

We now make the following observations (see upcoming (25) and (27)). To begin (recall we assume
{1, . . . , k} ∈ F0),

#{F0 ⊂p.i. G} =
∑

{v1,...,vk}∈G[V1,...,Vk]

extF0,G({v1, . . . , vk}).
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Then, Theorem 4.5 (with F1 = F0) implies that∑
{v1,...,vk}∈G[V1,...,Vk]

extF0,G({v1, . . . , vk}) ≥ d|F0|mf (1− τ).

Since, by the hypothesis of Setup 2.5, we have |G[V1, . . . , Vk]| = (d± ε)mk, where d ≥ d0, the inequality
above implies∑
{v1,...,vk}∈G[V1,...,Vk]

extF0,G({v1, . . . , vk}) ≥ d|F0|−1mf−k|G[V1, . . . , Vk]|(1− τ)
(
1 + εd−1

0

)−1

(24)

≥ d|F0|−1mf−k|G[V1, . . . , Vk]|(1− 2τ). (25)

Similarly,

#{F 2
0 ⊂p.i. G

2} =
∑

{v1,...,vk}∈G[V1,...,Vk]

extF 2
0 ,G2({v1, . . . , vk}),

and Theorem 4.5 (applied with F1 = F 2
0 ) implies that∑

{v1,...,vk}∈G[V1,...,Vk]

extF 2
0 ,G2({v1, . . . , vk}) ≤ d|F

2
0 |m|V (F 2

0 )|(1 + τ). (26)

However, |F 2
0 | = 2|F0| − 1, |V (F 2

0 )| = 2f − k, and for each fixed {v1, . . . , vk} ∈ G[V1, . . . , Vk], we have

extF 2
0 ,G2({v1, . . . , vk}) = ext2

F0,G({v1, . . . , vk}).

Since |G[V1, . . . , Vk]| = (d± ε)mk, the inequality (26) implies∑
{v1,...,vk}∈G[V1,...,Vk]

ext2
F0,G({v1, . . . , vk}) ≤ d2|F0|−2m2f−2k|G[V1, . . . , Vk]|(1 + τ)

(
1− εd−1

0

)−1

(24)

≤
(
d|F0|−1mf−k

)2

|G[V1, . . . , Vk]|(1 + 2τ). (27)

Comparing (25) and (27) and using the Cauchy-Schwarz Inequality (Fact 2.13), we see that all but
6τ1/3|G[V1, . . . , Vk]| ≤ ζmk elements {v1, . . . , vk} ∈ G[V1, . . . , Vk] satisfy the conclusion of Lemma 4.3,
as promised.

5. Proof of the Slicing Lemma

Our proof of the Slicing Lemma (Lemma 2.3) is a hypergraph analogue of the proof of Lemma 6 in
Haxell and Rödl [12]. In what follows, we shall use the following variation of the slicing lemma, which
takes place in an environment of fixed size.

Lemma 5.1 (‘Miniature’ Slicing Lemma). For all ς > 0 and all integers k ≥ 2 and s ≥ 1, there exists
an integer S0 = S0(ς, k, s) so that the following holds.

Let K[A1, . . . , Ak] be the complete k-partite k-graph with vertex partition A1 ∪ · · · ∪Ak, where |A1| =
· · · = |Ak| = S0. Let q1, . . . , qs > 0 be given where q0 = 1−

∑s
i=1 qi ≥ 0. Then, there exists a partition

K[A1, . . . , Ak] = J0 ∪ J1 ∪ · · · ∪ Js with the following property.

For every w :
⋃k

j=1Aj → [0, 1] satisfying, for each 1 ≤ j ≤ k, w(Aj)
def
=
∑

a∈Aj
w(a) ≥ ς|Aj |, we

have, for each 0 ≤ i ≤ s,

(qi − ς)
k∏

j=1

w(Aj) ≤
∑

{a1,...,ak}∈Ji

w(a1) · · ·w(ak) ≤ (qi + ς)

k∏
j=1

w(Aj).

Moreover, the partition above can be found, in time depending on S0, by an exhaustive search.

We proceed to show that Lemma 5.1 implies Lemma 2.3, and then return to prove Lemma 5.1.
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5.1. Proof of Lemma 2.3. Let integer k ≥ 2 and d0, ε
′ > 0 be given. Set

ς =
ε′

2
. (28)

Now, for an integer (variable) 1 ≤ s ≤ d1/d0e, let S0(s) = S0(ς, k, s) be the integer (function) guaranteed
by Lemma 5.1. Define

S∗0 = max{S0(s) : 1 ≤ s ≤ d1/d0e}. (29)

Define1

ε = εLem. 2.3(k, d0, ε
′) =

ςk+1

8kS∗0
. (30)

With ε in (30), let G be an ε-regular k-partite k-graph with vertex partition V (G) = V1∪· · ·∪Vk, where
|V1| = · · · = |Vk| = m is sufficiently large. Set, for simplicity, D = dG(V1, . . . , Vk). Let p1, . . . , ps ≥ d0

be given satisfying
∑s

i=1 pi ≤ D. We say a word about constants. Since s is a fixed integer, S0 = S0(s)
(described above) is also a fixed integer, where

sd0 ≤
s∑

i=1

pi ≤ D =⇒ s ≤ D/d0 ≤ d1/d0e
(29)
=⇒ S0 ≤ S∗0 .

Thus, by (30),

ε ≤ ςk+1

8kS0
. (31)

To define the promised partition G = G0 ∪ G1 ∪ · · · ∪ Gs, we make two auxiliary considerations.
First, consider the complete k-partite k-graph K[A1, . . . , Ak], where A1, . . . , Ak are arbitrary sets of size
|A1| = · · · = |Ak| = S0. For each 1 ≤ i ≤ s, set qi = pi/D, and let

K[A1, . . . , Ak] = J0 ∪ J1 ∪ · · · ∪ Js
be the partition guaranteed by Lemma 5.1.

Second, refine the vertex classes V1, . . . , Vk as follows. For each of the sets Aj above, 1 ≤ j ≤ k, write
Aj = {aj1, . . . , ajS0}. Now, for each aj` ∈ Aj , 1 ≤ ` ≤ S0, choose a subset Vj` ⊂ Vj of size

|Vj`| =
⌊
m

S0

⌋
def
= m̂ so that Vj = Vj0 ∪

⋃
aj`∈Aj

Vj` (32)

is a partition. (The class Vj0 is the remainder of size at most S0 − 1.)
Now, fix a choice 0 ≤ `1, . . . , `k ≤ S0 and consider G[V1`1 , . . . , Vk`k ]. If any `j = 0, 1 ≤ j ≤ k, put

G[V1`1 , . . . , Vk`k ] ⊂ G0.

Otherwise, for each 1 ≤ i ≤ s, put

G[V1`1 , . . . , Vk`k ] ⊂ Gi ⇐⇒ {a1`1 , . . . , ak`k} ∈ Ji.
This defines the partition G = G0 ∪G1 ∪ · · · ∪Gs promised by Lemma 2.3, which is easily constructed
in time O(mk).

It remains to check that each Gi, 1 ≤ i ≤ s, is (pi, ε
′)-regular. To that end, fix 1 ≤ i ≤ s, and for

each 1 ≤ j ≤ k, let V ′j ⊆ Vj be given with |V ′j | > ε′|Vj | = ε′m. We will show that

dGi(V
′
1 , . . . , V

′
k) = pi ± ε′. (33)

To that end, we establish a few ‘underlying’ considerations. First, for each 1 ≤ j ≤ k and 1 ≤ ` ≤ S0,
write

V ′j` = V ′j ∩ Vj` and w(aj`) =
|V ′j`|
|Vj`|

=
|V ′j`|
m̂

.

1It is easy to infer, from the proof of Lemma 5.1, that S0(s) is monotone increasing in s, and therefore, S∗
0 is achieved

by s = d1/d0e. However, for completeness, we avoid using this assumption. (Moreover, it would hardly simplify our

presentation.)
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Then,

w(Aj) =

S0∑
`=1

w(aj`) =
1

m̂

S0∑
`=1

|V ′j`| =⇒ w(Aj) =
|V ′j |
m̂

(1− o(1))
(28)

≥ ς|Aj | = ςS0, (34)

since |V ′j | − S0 + 1 ≤
∑S0

`=1 |V ′j`| ≤ |V ′j | where |V ′j | > ε′m and S0 = O(1). (Thus, o(1)→ 0 as m→∞.)
Second, for 1 ≤ j ≤ k and 1 ≤ ` ≤ S0, we say aj` is ε-big if

|V ′j`| > εm ⇐⇒ w(aj`) > ε
m

m̂
= εS0(1− o(1)), (35)

and ε-small otherwise. Let J+
i denote the set of all {a1`1 , . . . , ak`k} ∈ Ji for which every aj`j , 1 ≤ j ≤ k,

1 ≤ `j ≤ S0, is ε-big, and let J−i = Ji \ J+
i denote the set of all {a1`1 , . . . , ak`k} ∈ Ji for which some

aj`j , 1 ≤ j ≤ k, 1 ≤ `j ≤ S0, is ε-small. Observe then that

∑
{a1`1

,...,ak`k
}∈J+

i

w(a1`1) . . . w(ak`k)
(35)
=

 ∑
{a1`1

,...,ak`k
}∈Ji

w(a1`1) . . . w(ak`k)

± 2εkSk+1
0

= (qi ± ς) (w(A1) . . . w(Ak))± 2εkSk+1
0 , (36)

where the last inequalities follow by the application of Lemma 5.1 (cf. (34)).
Returning to our goal in (33), observe that

dGi
(V ′1 , . . . , V

′
k) =

|Gi[V
′
1 , . . . , V

′
k]|

|V ′1 | . . . |V ′k|
=

1

|V ′1 | . . . |V ′k|
∑

{a1`1
,...,ak`k

}∈Ji

∣∣G [V ′1`1 , . . . , V ′k`k]∣∣
=

1

|V ′1 | . . . |V ′k|

 ∑
{a1`1

,...,ak`k
}∈J+

i

∣∣G [V ′1`1 , . . . , V ′k`k]∣∣+
∑

{a1`1
,...,ak`k

}∈J−i

∣∣G [V ′1`1 , . . . , V ′k`k]∣∣
 .

By (35),
∑
{a1`1

,...,ak`k
}∈J−i

|G[V ′1`1 , . . . , V
′
k`k

]| ≤ εkS0m
k, and with |V ′j | ≥ ε′m, 1 ≤ j ≤ k, we have

∑
{a1`1

,...,ak`k
}∈J+

i

|G[V ′1`1 , . . . , V
′
k`k

]|
|V ′1 | . . . |V ′k|

= dGi (V ′1 , . . . , V
′
k)± εk S0

(ε′)k
(37)

Observe that

∑
{a1`1

,...,ak`k
}∈J+

i

|G[V ′1`1 , . . . , V
′
k`k

]|
|V ′1 | . . . |V ′k|

=
∑

{a1`1
,...,ak`k

}∈J+
i

|G[V ′1`1 , . . . , V
′
k`k

]|
|V ′1`1 | . . . |V

′
k`k
|
w(a1`1) . . . w(ak`k)

|V1`1 | . . . |Vk`k |
|V ′1 | . . . |V ′k|

(34)
= (1± o(1))

1

w(A1) . . . w(Ak)

∑
{a1`1

,...,ak`k
}∈J+

i

|G[V ′1`1 , . . . , V
′
k`k

]|
|V ′1`1 | . . . |V

′
k`k
|
w(a1`1) . . . w(ak`k).
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By the (D, ε)-regularity of G, and the definition of J+
i (cf. (35)), we further infer

∑
{a1`1

,...,ak`k
}∈J+

i

|G[V ′1`1 , . . . , V
′
k`k

]|
|V ′1 | . . . |V ′k|

= (1± o(1))(D ± ε) 1

w(A1) . . . w(Ak)

∑
{a1`1

,...,ak`k
}∈J+

i

w(a1`1) . . . w(ak`k)

(36)
= (1± o(1))(D ± ε) 1

w(A1) . . . w(Ak)

(
(qi ± ς) (w(A1) . . . w(Ak))± 2εkSk+1

0

)
(34)
= (1± o(1))(D ± ε)

(
qi ± ς ± 2εk

S0

ςk

)
. (38)

Now, comparing (37) and (38), we infer

(1− o(1))(D − ε)
(
qi − ς − 2εk

S0

ςk

)
− εk S0

(ε′)k
≤ dGi

(V ′1 , . . . , V
′
k)

≤ (1 + o(1))(D + ε)

(
qi + ς + 2εk

S0

ςk

)
+ εk

S0

(ε′)k
.

With pi = Dqi and ς < ε′, we further infer

pi − ε′
(28)
= pi − 2ς

(31)

≤ pi − ς − 5εk
S0

ςk
≤ dGi

(V ′1 , . . . , V
′
k) ≤ pi + ς + 8εk

S0

ςk

(31)

≤ pi + 2ς
(28)
= pi + ε′.

5.2. Proof of Lemma 5.1. Let ς > 0 and integers k ≥ 2 and s ≥ 1 be given. We take S0 = S0(ς, k, s) to
be sufficiently large (and argue, in context, that this parameter needs only to depend on ς, k and s). Let
K[A1, . . . , Ak] be the k-partite k-graph with vertex partition A1 ∪ · · · ∪Ak with |A1| = · · · = |Ak| = S0.
Let q1, . . . , qs > 0 be given with q0 = 1−

∑s
i=1 qi ≥ 0.

We shall define the promised partition J0 ∪ J1 ∪ · · · ∪ Js by a standard random construction. For
0 ≤ i ≤ s, let Ji be defined by, independently for each {a1, . . . , ak} ∈ K[A1, . . . , Ak], P[{a1, . . . , ak} ∈
Ji] = qi. We seek (exhaustively search for) an instance of J1, . . . , Js behaving according to the following
claim.

Claim 5.2. With S0 = S0(ς, k, s) sufficiently large, the following holds. For each 0 ≤ i ≤ s,

(1) if qi ≤ ςk+1

2s , then with probability 1− 1
2s ,

|Ji| ≤ 2sqiS
k
0 ; (39)

(2) if qi >
ςk+1

2s , then with probability 1 − 1
2s , every choice A′j ⊆ Aj, 1 ≤ j ≤ k, with |A′j | ≥ 1

2 ςS0,
satisfies

|Ji ∩K[A′1, . . . , A
′
k]| = qi

(
1± ς

2s

)
|A′1| . . . |A′k|. (40)

As we show at the end of the section, Claim 5.2 follows by straightforward applications of the Markov
and Chernoff inequalities.

Set Ji = Ji, 0 ≤ i ≤ s, to be instances satisfying the properties in (39) and (40). Let a function

w :
⋃k

j=1Aj → [0, 1] be given satisfying w(Aj) =
∑

a∈Aj
w(a) ≥ ςS0 for all 1 ≤ j ≤ k. For the

remainder of the proof, fix 0 ≤ i ≤ s. We show

(qi − ς)
k∏

j=1

w(Aj) ≤
∑

{a1,...,ak}∈Ji

w(a1) . . . w(ak) ≤ (qi + ς)

k∏
j=1

w(Aj). (41)
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We proceed by considering two cases, the first of which is nearly trivial. Indeed, assume qi ≤ ςk+1/(2s).
Then, there is nothing to show for the lower bound of (41). For the upper bound, note that∑

{a1,...,ak}∈Ji

w(a1) . . . w(ak) ≤ |Ji|
(39)

≤ 2sqiS
k
0 .

Since w(Aj) ≥ ς|Aj | = ςS0 for all 1 ≤ j ≤ k, we infer∑
{a1,...,ak}∈Ji

w(a1) · · ·w(ak) ≤ 2sqi
ςk

k∏
j=1

w(Aj) ≤ ς
k∏

j=1

w(Aj) ≤ (qi + ς)

k∏
j=1

w(Aj),

as desired. Thus, for the remainder of the proof, we assume that

qi >
ςk+1

2s
, (42)

and proceed with the following claim.

Claim 5.3. With w given above and 0 ≤ i ≤ s fixed above, there exists a function w0 :
⋃k

j=1Aj → [0, 1]
with the following properties:

(1) For each 1 ≤ j ≤ k, w0(Aj) = w(Aj);

(2) For each 1 ≤ j ≤ k, if MAj
(w0)

def
= {a ∈ Aj : 0 < w0(a) < 1}, then w0(MAj

(w0)) ≤ 1;

(3) For each w̄ ∈ {w,w0}, if Wi(w̄)
def
=
∑
{a1,...,ak}∈Ji

w̄(a1) . . . w̄(ak), then Wi(w) ≤Wi(w0).

We defer the proof of Claim 5.3 to the end of the section.
To prove the upper bound of (41), let the function w0 guaranteed by Claim 5.3 be given and define,

for 1 ≤ j ≤ k, SAj

def
= {a ∈ Aj : w0(a) = 1}. Let us first show that∑
{a1,...,ak}∈Ji

w(a1) . . . w(ak) ≤ |Ji[SA1 , . . . , SAk
]|+ k

ςS0

k∏
j=1

w(Aj). (43)

Indeed, by Claim 5.3 (Statement (3)), we have∑
{a1,...,ak}∈Ji

w(a1) . . . w(ak) = Wi(w) ≤Wi(w0)

≤
∑

{a1,...,ak}∈Ji[SA1
,...,SAk

]

1 +

k∑
h=1

∑
ah∈MAh

(w0)

w0(ah)

k∏
j=1

j 6=h

∏
aj∈Aj

w0(aj)

= |Ji[SA1 , . . . , SAk
]|+

k∑
h=1

 k∏
j=1

j 6=h

∏
aj∈Aj

w0(aj)

w0(MAh
(w0)).

By Claim 5.3 (Statement (2)), we further conclude

∑
{a1,...,ak}∈Ji

w(a1) . . . w(ak) ≤ |Ji[SA1
, . . . , SAk

]|+
k∑

h=1

k∏
j=1

j 6=h

∏
aj∈Aj

w0(aj)

= |Ji[SA1 , . . . , SAk
]|+

(
1

w0(A1)
+ · · ·+ 1

w0(Ak)

) k∏
j=1

w0(Aj)

= |Ji[SA1
, . . . , SAk

]|+
(

1

w(A1)
+ · · ·+ 1

w(Ak)

) k∏
j=1

w0(Aj),
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where we used Claim 5.3 (Statement (1)). Then (43) follows from w(Aj) ≥ ςS0, 1 ≤ j ≤ k.
We may now conclude the upper bound of (41). Indeed, by Claim 5.3 (Statements (1) and (2)),

|SAj
| = w0(Aj)− w0(MAj

(w0)) = w(Aj)− w0(MAj
(w)) ≥ w(Aj)− 1 ≥ 1

2
ςS0.

Thus, from (40) from Claim 5.2, we conclude from (43) that

∑
{a1,...,ak}∈Ji

w(a1) . . . w(ak) ≤ qi
(

1 +
ς

2s

)
|SA1
| . . . |SAk

|+ k

ςS0

k∏
j=1

w(Aj)

≤
(
qi

(
1 +

ς

2s

)
+

k

ςS0

) k∏
j=1

w(Aj) ≤
(
qi +

ς

s

) k∏
j=1

w(Aj), (44)

where the last inequality follows with S0 = S0(ς, k, s) sufficiently large (as a function of k, ς and s alone).
Then (44) implies the upper bound of (41).

The lower bound of (41) is an easy consequence of (44), which we may now assume holds for all
0 ≤ i ≤ s. For 0 ≤ i ≤ s fixed, note that

∑
{a1,...,ak}∈Ji

w(a1) . . . w(ak) =
∑

{a1,...,ak}∈K[A1,...,Ak]

w(a1) · · ·w(ak)−
s∑

h=0

h6=i

∑
{a1,...,ak}∈Jh

w(a1) · · ·w(ak)

≥
k∏

j=1

w(Aj)−
s∑

h=0

h 6=i

qh

(
1 +

ς

s

) k∏
j=1

w(Aj) ≥ (qi − ς)
k∏

j=1

w(Aj),

as promised.

Proof of Claim 5.2. Fix 0 ≤ i ≤ s. The first case follows immediately by the Markov Inequality, so

assume qi ≥ ςk+1

2s . Fix A′j ⊆ Aj , 1 ≤ j ≤ k, with |A′j | ≥ ςS0/2. By the Chernoff Inequality (Fact 2.14),

P
[
|Ji[A′i, . . . , A′k]| 6=

(
1± ς

2s

)
qi|A′1| . . . |A′k|

]
≤ 2 exp

{
− ς2

12s2
qi|A′1| . . . |A′k|

}
≤ 2 exp

{
− ς2k+3

3 · 2k+3s3
Sk

0

}
.

Over all choices A′j ⊆ Aj , 1 ≤ j ≤ k, we see Statement (2) of Claim 5.2 holds with probability

1− 2kS0+1 exp

{
− ς2k+3

3 · 2k+3s3
Sk

0

}
≥ 1− 1

2s
,

where the last inequality holds with S0 = S0(ς, k, s) sufficiently large as a function of ς, k and s. �

Proof of Claim 5.3. Recall w :
⋃k

i=1 → [0, 1] and 0 ≤ i ≤ s are fixed. We determine the promised
function w0 by repeating an iterative procedure. If w (playing the role of w0) satisfies Statement (2) of
Claim 5.3, set w0 = w and we are done. Otherwise, there exists some 1 ≤ j ≤ k so that w(MAj (w)) > 1.
Without loss of generality, assume j = 1, and write MA1(w) = {â0, â1, . . . , â`}. We shall define an

intermediate function w′ :
⋃k

j=1Aj → [0, 1] which will eventually lead us to the promised function w0.

Since w(MA1
(w)) > 1 and every element of MA1

(w) has positive weight, there exist ϑ1, . . . , ϑ` > 0 so

that w(âh) ≥ ϑh for all 1 ≤ h ≤ ` and w(â0) = 1 −
∑`

h=1 ϑh. Define w′ :
⋃k

j=1Aj → [0, 1] by setting

w′(â0) = 1, w′(âh) = w(âh) − ϑh for each 1 ≤ h ≤ `, and w′(a) = w(a) whenever a ∈ A1 \MA1(w) or
a ∈ A2 ∪ · · · ∪Ak. Note that MA1

(w′) = {â1, . . . , â`}.
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We claim that w′ (playing the role of w0) satisfies Statement (1) of Claim 5.3. In particular, we claim
that w′(A1) = w(A1). Indeed,

w′(A1) = w′(MA1
(w′)) + w′(A1\MA1

(w′)) =
∑̀
h=1

w′(âh) + w′(A1\MA1
(w′))

=
∑̀
h=1

w′(âh) + w′(A1\MA1(w)) + w′(â0) =
∑̀
h=1

(w(âh)− ϑh) + w(A1\MA1(w)) + 1

=
∑̀
h=0

w(âh) + w(A1\MA1(w)) = w(MA1(w)) + w(A1\MA1(w)) = w(A1).

We claim that w′ (playing the role of w0) satisfies Statement (3) of Claim 5.3. To see this, define, for
0 ≤ h ≤ `,

Ŵi(âh) =
∑

{âh,a2,...,ak}∈Ji

w(a2) . . . w(ak).

Note that we may assume, w.l.o.g., that Ŵi(â0) = max0≤h≤` Ŵi(âh). Now,

Wi(w
′)−Wi(w) =

∑
{a1,a2,...,ak}∈Ji

((
w′(a1) . . . w′(ak)

)
−
(
w(a1) . . . w(ak)

))

=
∑̀
h=0

(
w′(âh)− w(âh)

)
Ŵi(âh) =

(
w′(â0)− w(â0)

)
Ŵi(â0) +

∑̀
h=1

(
w′(âh)− w(âh)

)
Ŵi(âh)

≥
(
w′(â0)− w(â0)

)
Ŵi(â0) + Ŵi(â0)

∑̀
h=1

(
w′(âh)− w(âh)

)
=

(∑̀
h=1

ϑh

)
Ŵi(â0)− Ŵi(â0)

(∑̀
h=1

ϑh

)
= 0,

as desired.
It may not be the case that w′ satisfies Statement (2) of Claim 5.3, i.e., it may be the case that

w′(MA1(w′)) > 1. However, in this case, recall that MA1(w′) = {â1, . . . , â`} = MA1(w)\{â0}, and so

w′(MA1
(w′)) =

∑̀
h=1

w′(âh) =
∑̀
h=1

(
w(âh)− ϑh

)
= w(MA1

(w))− w(â0)−
∑̀
h=1

ϑh = w(MA1
(w))− 1.

We would therefore repeat this process iteratively to arrive at a function w1 for which w1(MA1(w1)) ≤ 1.
We would then repeat again over all 1 ≤ j ≤ k for which wj(MAj

(wj)) > 1 to finally arrive at the
promised function w0. �

6. Proof of the Bounding Lemma

We use the following result of Haxell and Rödl (appearing as Theorem 18 in [12]). As defined in
Section 4, a packing of a hypergraph H0 is a set of pairwise disjoint edges, and so a fractional packing
of H0 is a function φ : H0 → [0, 1] satisfying, for each vertex v ∈ V (H),

∑
{φ(e) : v ∈ e ∈ H} ≤ 1. If H0

is equipped with vertex weights w : V (H0) → [0, 1], then φ : H → [0, 1] is a weighted fractional packing
of H0 if, for each vertex v ∈ V (H0),

∑
{φ(e) : v ∈ e ∈ H0} ≤ w(v). We say φ is β-bounded if, for every

e ∈ H0, φ(e) ∈ {0} ∪ [β, 1]. Finally, we set |φ| =
∑

e∈H0
φ(e).

Lemma 6.1 (Haxell, Rödl [12]). For every integer p ≥ 2 and for all ξ > 0, there exists B0 = B0(p, ξ) > 0
so that the following holds.

Let H0 be a p-graph on R vertices with vertex weights w : V (H0) → [0, 1]. Suppose φ is a weighted
fractional packing of H0 where, for every e ∈ H0, φ(e) < 1/B0. Then, there exists a (1/B0)-bounded
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weighted fractional packing φ̄ of H0 so that |φ̄| ≥ |φ| − ξR. Moreover, the function φ̄ can be found, in
time depending on R, by an exhaustive search.

We now show that Lemma 6.1 implies the Bounding Lemma (Lemma 2.12). To that end, let F0 be
a given k-graph and let ξ > 0 be given. To define the promised constant δ = δLem. 2.12(F0, ξ) > 0, we
appeal to Lemma 6.1. Set p = |F0| to be the number of edges of F0. With integer p and ξ > 0 fixed
above, let B0 = B0(p, ξ) > 0 be the constant guaranteed by Lemma 6.1. Set δ = 1/B0. Now, let H0 be
a k-graph on r vertices with edge weights ω : H0 → [0, 1]. We construct the δ-bounded (ω, F0)-packing
of H0 promised by Lemma 2.12 by appealing to Lemma 6.1.

To that end, define vertex-weighted p-graph H0 from H0 as follows. Set V (H0) = H0, i.e., each

vertex of H0 corresponds to an edge of H0. Let R = |H0| so that H0 is on R vertices. Set H0 =
(
H0

F0

)
,

i.e., each edge of H0 corresponds to a copy of F0 in H0 (and so H0 is p-uniform). Define vertex
weights w : V (H0) → [0, 1] by setting, for each ve ∈ V (H0) where e ∈ H0, w(ve) = ω(e). Finally, let

ψ∗ :
(
H0

F0

)
→ [0, 1] be a maximum fractional (ω, F0)-packing of H0. Then ψ∗ corresponds to a weighted

fractional packing φ∗ of H0 with

|ψ∗| = |φ∗| = ν∗F0
(H0). (45)

To apply Lemma 6.1, we delete edges e ∈ H0 for which φ∗(e) ≥ δ. To that end, set D0 = {e ∈
H0 : φ∗(e) ≥ δ} and set H′0 = H0 \ D0. Define vertex weights w′ : V (H′0) → [0, 1] by setting, for each
v ∈ V (H′0) = V (H0),

w′(v) = w(v)−
∑

v∈e∈D0

φ∗(e). (46)

(Note that w′(v) ≥ 0 on account that φ∗ is a weighted fractional packing of H0.) Write φ′ = φ∗|H′0 for
the restriction of φ∗ on H′0 so that

|φ′| = |φ∗| −
∑
e∈D0

φ∗(e). (47)

Note that, by our definition of w′ above, φ′ is a weighted fractional packing of H′0. Indeed, for each
v ∈ V (H′) we have∑

v∈e∈H′0

φ′(e) =
∑

v∈e∈H0

φ∗(e)−
∑

v∈e∈D0

φ∗(e) ≤ w(v)−
∑

v∈e∈D0

φ∗(e)
(46)
= w′(v),

where in the inequality above, we used that φ∗ is a weighted fractional packing of H0.
We now apply Lemma 6.1 to H′0, which we may do on account that for every e ∈ H′0, we have

φ′(e) = φ∗(e) < δ = 1/B0, where B0 = B0(p, ξ) > 0 is the constant required by Lemma 6.1. In time
depending on R = |H0| ≤ rk, Lemma 6.1 determines a δ-bounded fractional packing φ̄ of H′0 so that

|φ̄| ≥ |φ′| − ξR ≥ |φ′| − ξrk. (48)

Now, define the function φ̂ : H0 → [0, 1] as follows. For each e ∈ H0, set

φ̂(e) =

{
φ∗(e) if e ∈ D0

φ̄(e) if e ∈ H′0.

Then, φ̂ is δ-bounded, by construction. Note also that φ̂ is a weighted fractional packing of H0 since,
for each v ∈ V (H0),∑

v∈e∈H0

φ̂(e) =
∑

v∈e∈H′0

φ̄(e) +
∑

v∈e∈D0

φ∗(e) ≤ w′(v) +
∑

v∈e∈D0

φ∗(e)
(46)
= w(v).

Finally, note that

|φ̂| =
∑
e∈H0

φ̂(e) =
∑
e∈H′0

φ̄(e) +
∑
e∈D0

φ∗(e)
(47)
= |φ̄|+ |φ∗| − |φ′|

(48)

≥ |φ∗| − ξrk (45)
= ν∗F0

(H0)− ξrk.

Thus, φ̂ corresponds to a fractional (ω, F0)-packing ψ̂ of H0 of promised size.
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