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Abstract. For non-negative integers r + s = n − 1, let [bras] denote the number of permutations

π ∈ Sn which have the property that π(i) > i if, and only if, i ∈ [r] = {1, . . . , r}. Answering a question
of Clark and Ehrenborg, we determine asymptotics on [bras] when r = b(n− 1)/2c:[

bb(n−1)/2cad(n−1)/2e
]

=

(
1

2 log 2
√

(1− log 2)
+ o(1)

)(
1

2 log 2

)n

n!.

We also determine asymptotics on [bras] for a suitably related r = Θ(s) → ∞. Our proof depends on

multivariate asymptotic methods of R. Pemantle and M. C. Wilson.

We also consider two applications of our main result. One, we determine asymptotics on the
number of permutations π ∈ Sn which simultaneously avoid the generalized patterns 21-34 and

34-21, i.e., for which π is order-isomorphic to neither (2,1,3,4) nor (3, 4, 2, 1) on any coordinates

1 ≤ i < i+ 1 < j < j+ 1 ≤ n. We also determine asymptotics on the number of n-cycles π ∈ Cn which
avoid stretching pairs, i.e., those for which 1 ≤ π(i) < i < j < π(j) ≤ n.

Keywords: excedance, descent, generalized patterns, combinatorial dynamics

1. Introduction

The main results of this paper (Theorems 1.2 and 1.3 below) consider the asymptotics of the number
of permutations π ∈ Sn with excedance word bras, where r + s = n− 1. To present our results, we use
the following notation and terminology, taken mostly from [4].

1.1. Preliminaries. Let Sn denote the set of permutations on [n] = {1, . . . , n}. For π ∈ Sn and
i ∈ [n − 1], we say that i is an excedance of π if π(i) > i. We write E(π) = {i ∈ [n − 1] : π(i) > i} for
the set of excedances of π. We define the excedance word w(π) = (w1, . . . , wn−1) ∈ {a, b}n−1 of π by, for
each i ∈ [n− 1], wi = b if i ∈ E(π) and wi = a if i 6∈ E(π), i.e., π(i) ≤ i. For a word w ∈ {a, b}n−1, let
[w] denote the number of permutations π ∈ Sn for which w(π) = w.

In this paper, we consider words w ∈ {a, b}n−1 of the following form. For non-negative integers
r + s = n − 1, let bras ∈ {a, b}n−1 denote the word whose first r coordinates equal b and whose last
s coordinates equal a. R. Ehrenborg and E. Steingŕımsson [9] showed that [bras] is maximized when
r = n− 1− s ∈ {b(n− 1)/2c, d(n− 1)/2e}. E. Clark and R. Ehrenborg [4, Concluding Remarks] posed
the following problem.

Question 1.1. What are the asymptotics of [bb(n−1)/2cad(n−1)/2e] as n→∞?

In this paper, we address Question 1.1 (see Theorem 1.2 below), and more generally, in Theorem 1.3
we address the asymptotics of [bras] for a wider range of r + s = n − 1. We also provide some further
applications of our main results.

1.2. Historical remark. An important counterpart of the notion of an excedance is that of a descent.
For π ∈ Sn and i ∈ [n−1], we say that i is an descent of π if π(i) > π(i+1). Two of the classically studied
permutation statistics are the number of descents and the number of excedances (both considered by
MacMahon [14]). The more modern study of permutation statistics has included the dual consideration of
the number of permutations with prescribed descent set (and, respectively, excedance set). In particular,
Niven [15] and, indepedently, de Bruijn [7] showed that the most common descent set is realized by the
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alternating permutations. The alternating permutations are enumerated by the Euler numbers En whose
asymptotics are classical:

En =

(
4

π
+ o(1)

)(
2

π

)n

n! (1.1)

(This result follows from André’s Theorem [2].) The most common excedance set was specified by the
above-mentioned result [9], and the excedance set counterpart of (1.1) is provided by Theorem 1.2 below.

1.3. Main Results. Our first result provides an answer to Question 1.1.

Theorem 1.2. [
bb(n−1)/2cad(n−1)/2e

]
=

(
1

2 log 2
√

(1− log 2)
+ o(1)

)(
1

2 log 2

)n

n!.

We prove Theorem 1.2 in Section 3.
More generally, we establish bivariate asymptotics for [br−1as] when the parameters r and s tend

to infinity in a suitable way. Our result is somewhat technical to present, and we require several
considerations. To begin, define

ε0 = (e− 1)(1− log(e− 1)) ≈ 0.7881... and Sε0 =

{
(r, s) ∈ N× N : ε0 ≤

s

r
≤ 1

ε0

}
, (1.2)

where we call Sε0 an ε0-sector. Our main result will provide asymptotics for [br−1as] for r, s→∞ with
(r, s) ∈ Sε0 . To present our result, we require further considerations.

Define the function f : R+ → R+ by

f(t) =
(1− et) log(1− e−t)

t
, t > 0. (1.3)

We prove in the Appendix (cf. Fact 1) that f is invertible. Now, for (r, s) ∈ Sε0 , write x = x(r, s) :=
f−1(s/r) and y = y(r, s) := f−1(r/s), and define the function Q : R+ × R+ → R by

Q(x, y) = xye−x−y
[
ye−y + xe−x − xy(e−y + e−x)

]
, x, y > 0. (1.4)

Our main result is now stated as follows.

Theorem 1.3. For (r, s) ∈ Sε0 , let x = x(r, s), y = y(r, s), and Q(x, y) be defined as above. Then, the
following holds uniformly for r, s→∞ with (r, s) ∈ Sε0 :

[br−1as] = s!r!
(
e−y +O(s−1/2)

) 1√
2π
x−ry−s

√
ye−y

sQ(x, y)
.

Theorem 1.3 is proved in Section 2 using a result of R. Pemantle and M.C. Wilson [17, 18, 19] concerning
multivariate asymptotics.

1.4. Applications. We discuss two applications of Theorem 1.2. The first falls within the well-studied
area of generalized pattern avoidance. The second concerns objects related to generalized patterns, which
have become known as stretching pairs. Initially, it will not be obvious how Theorem 1.2 provides the
applications (corollaries) we state, but we will make this connection clear at the end of the Introduction.

1.4.1. Generalized patterns. For 1 ≤ k ≤ n, fix π0 ∈ Sk and π ∈ Sn. We say that π contains π0 as
a pattern if there exist 1 ≤ `1 < · · · < `k ≤ n on which π is order-isomorphic to π0. Now, write
π0 = (a1, . . . , ak) = (π0(1), . . . , π0(k)), and let π∗0 = (a1, ε1, a2, ε2, . . . , εk−1, ak) be any sequence where,
for each 1 ≤ i ≤ k, εi is either a dash ‘−’, or the empty string. We say that π ∈ Sn admits π∗0 as a
generalized pattern if it contains a pattern 1 ≤ `1 < · · · < `k ≤ n of π0 where, for all 1 ≤ i ≤ k, εi 6= −
implies `i+1 = `i + 1, i.e., `i, `i+1 are consecutive in π.

For π0 ∈ Sk and π∗0 as above, write αn(π∗0) for the number of permutations π ∈ Sn avoiding π∗0
as a generalized pattern. Elizalde and Noy [11] studied the limiting behavior of (αn(π∗0)/n!)1/n for
several ‘dashless’ (consecutive) generalized patterns π∗0 of length 3. For example, they showed that for
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π∗0 = 123 = (1, 2, 3) (with no dashes), one has (αn(123)/n!)1/n → 3
√

3/(2π) as n → ∞. Elizalde [10]
showed that for π∗0 = 1-23-4 = (1,−, 2, 3,−, 4), one has (αn(1-23-4)/n!)1/n → 0 as n→∞. In [6], it was
shown that for all sufficiently large even integers n, (αn(21-34)/n!)1/n ≥ 1/2 + o(1), which answered a
question of S. Elizalde [10]. Using Theorem 1.2, we are able to improve this last result by a factor of
1/ log 2. To that end, let αn({21-34, 34-21}) denote the number of permutations avoiding both 21-34
and 34-21 as generalized patterns.

Corollary 1.4.

lim
n→∞

(
αn({21-34, 34-21})

n!

)1/n

=
1

2 log 2
≈ 0.7213...

As such,

αn(21-34) ≥ αn({21-34, 34-21}) =

(
1

2 log 2
+ o(1)

)n

n!.

We prove Corollary 1.4 at the end of this section. It is an open problem to determine the exact value of
the following limit (assuming that it exists):

lim
n→∞

(
αn(21-34)

n!

)1/n

.

1.4.2. Stretching pairs. For a permutation π ∈ Sn, we call a pair 1 ≤ i < j ≤ n a stretching pair if
π(i) < i < j < π(j). Stretching pairs naturally arise in cyclic permutations within the context of a
well-known result of Sharkovsky [20] in discrete dynamical systems. More recently, stretching pairs in
n-cycles were studied in [6, 13, 16] from a combinatorial point of view. Let Cn ⊂ Sn denote the set of
n-cycles, and let C∗n denote those n-cycles which contain no stretching pairs. Theorem 1.2 allows us to
determine the limiting behavior of (|C∗n+1|/n!)1/n.

Corollary 1.5.

lim
n→∞

(
|C∗n+1|
n!

)1/n

=
1

2 log 2
.

We now proceed to the proofs of Corollaries 1.4 and 1.5.

1.5. Proofs of Corollaries 1.4 and 1.5. The following lemma allows us to connect Theorem 1.2 to
Corollaries 1.4 and 1.5. As we show in Section 4, Lemma 1.6 is (mostly) a consequence of a result of
Clarke, Steingŕımsson, and Zeng [5].

Lemma 1.6.

(1) |C∗n+1| =
∑n−1

k=0 [bkan−1−k].
(2) |C∗n+1| ≤ αn({21-34, 34-21}) ≤ |C∗n+1|+ |C∗n+2| ≤ 2|C∗n+2|.

We now conclude Corollaries 1.4 and 1.5. Indeed, recall that is was proven in [9] that [bkan−1−k] is
maximized when k ∈ {b(n− 1)/2c, d(n− 1)/2e}. As such, we may use Statement (1) of Lemma 1.6 to
infer [

bb(n−1)/2cad(n−1)/2e
]
≤ |C∗n+1| ≤ n

[
bb(n−1)/2cad(n−1)/2e

]
so that Corollary 1.5 is now immediate. Using Corollary 1.5 and Statement (2) of Lemma 1.6, Corol-
lary 1.4 is now immediate.

Remark 1. Statement (1) of Lemma 1.6 also provides an exact combinatorial evaluation of |C∗n+1| that
may be of independent interest. Indeed, Clark and Ehrenborg [4] showed that for all integers M,N ≥ 0,

[bMaN ] =
∑
i≥0

(
S(M + 1, i+ 1)S(N + 1, i+ 1)i!(i+ 1)!

)
,
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where S(s, t), s, t ∈ N, denotes the Stirling number of the second kind. As such,

|C∗n+1| =
n−1∑
k=0

∑
i≥0

(
S(k + 1, i+ 1)S(n− k, i+ 1)i!(i+ 1)!

)
,

which complements our result in Corollary 1.5.

2. Proof of Theorem 1.3

We begin by outlining the main approach to our proof of Theorem 1.3. To that end, we note a result
of Clark and Ehrenborg (see [4, Thm. 3.1]) that [bras] has bivariate exponential generating function∑

r,s≥0

[bras]

r!s!
xrys =

e−xe−y

(e−x + e−y − 1)2
=

∂

∂x

(
e−y

e−x + e−y − 1

)
. (2.1)

Now, for (x, y) in a neighborhood of (0, 0), write

e−y

e−x + e−y − 1
=
∑
r,s≥0

Ar,sx
rys. (2.2)

We will apply a result of Pemantle and Wilson [17, 18, 19] to the coefficients Ar,s when (r, s) ∈ Sε0

(cf. (1.2)), which will provide asymptotics on these coefficients. From there, Theorem 1.3 will follow,
since by (2.1) we have

[br−1as] = r!s!Ar,s. (2.3)

While the plan above is straightforward, the details take some work. Indeed, the result of Pemantle
and Wilson is a highly technical statement, and much of our work will be in showing that it can be
applied to the setting we need. Let us now proceed to the result of Pemantle and Wilson.

2.1. Preliminaries and the result of Pemantle and Wilson. In all that follows, suppose F :
C2 → C is a meromorphic function, where we write F (x, y) = G(x, y)/H(x, y) for some holomorphic
functions G,H : C2 → C. We write V = VF =

{
(x, y) ∈ C2 : H(x, y) = 0

}
for the variety of singularities

of F . We say that H vanishes to order one on V if ∇H(x, y) 6= ~0 for each (x, y) ∈ V. We write
dir(x, y) = spanC {(xHx, yHy)}.

On the variety V, we have the following important concept of a strictly minimal point.

Definition 1. A point (x, y) ∈ V is called strictly minimal if the closed bidisk

D(0, |x|)×D(0, |y|) = {(z, w) ∈ C2 : |z| ≤ |x|, |w| ≤ |y|}

intersects V only at the point (x, y).

The following result of Pemantle and Wilson appeared as Theorem 3.1 in [17], as Corollary 3.21 in [18],
and as Theorem 9.5.7 in [19].

Theorem 2.1 (Pemantle, Wilson [17, 18, 19]). Let F = G/H : C2 → C be a meromorphic function with
variety of singularities V = VF . Write F (x, y) =

∑
r,s≥0Ar,sx

rys outside of V, and assume H vanishes
to order one on V.

Fix ε > 0, and assume that for each (r, s) ∈ Sε (cf. (1.2)), there exists (x, y) ∈ V so that the following
conditions hold:

(i) (r, s) ∈ dir(x, y), where the point (x, y) ∈ V is strictly minimal;
(ii) As (r, s) ∈ Sε varies, the point (x, y) ∈ V varies smoothly over some compact set;

(iii) The point (x, y) ∈ V satisfies that G(x, y) 6= 0, and also,

Q(x, y) := −y2H2
yxHx − yHyx

2H2
x − x2y2(H2

yHxx +H2
xHyy − 2HxHyHxy) 6= 0.



EXCEDANCE SET ASYMPTOTICS 5

Then as r, s→∞ with (r, s) ∈ Sε, we have

Ar,s =
(
G(x, y) +O(s−1/2)

) 1√
2π
x−ry−s

√
−yHy

sQ(x, y)
, (2.4)

where the error estimate O(s−1/2) is uniform over Sε.

2.2. Deriving Theorem 1.3 from Theorem 2.1. From (2.1), set

F (x, y) =
e−y

e−x + e−y − 1
, G(x, y) = e−y, H(x, y) = e−x + e−y − 1,

and V = VF =
{

(x, y) ∈ C2 : H(x, y) = e−x + e−y − 1 = 0
}
. (2.5)

Clearly, G and H are holomorphic functions so that F is meromorphic with variety of singularities given
by V. Clearly, ∇H is never zero, and therefore H vanishes to order one on V.

Fix (r, s) ∈ Sε0 (cf. (1.2)). To apply Theorem 2.1, we must guarantee a point (x, y) ∈ V so that
Conditions (i)–(iii) above hold. To find the desired point (x, y) ∈ V, consider the equation

r
ex

x
= s

ey

y
on the variety V. (2.6)

Using the identity y = − log(1− e−x) on V, we see that (2.6) holds if, and only if,

y =
s

r
· xe

y

ex
=
s

r
· x

ex − 1
.

Again using y = − log(1− e−x) on V, we see that (2.6) holds for x satisfying

− log
(
1− e−x

)
=
s

r
· x

ex − 1
=⇒ s

r
=

(1− ex) log(1− e−x)

x
. (2.7)

As we indicated at (1.3), we have the following fact, proven in the Appendix.

Fact 1. The function f(t) = t−1(1− et) log(1− e−t) is a strictly decreasing bijection from R+ onto R+.

Returning to (2.7), one solution (x, y) ∈ V to (2.6) has x = f−1(s/r) > 0, where f is the function in
Fact 1. Using symmetric calculations and x = − log(1 − e−y) on V, we also find that this solution has
y = f−1(r/s) > 0.

Thus, for fixed (r, s) ∈ Sε0 , we have identified the promised point (x, y) ∈ V by x = f−1(s/r) and
y = f−1(r/s). It remains to show that this fixed point (x, y) ∈ V satisfies Conditions (i)–(iii) of
Theorem 2.1.

Verifying Condition (i). Consider dir(x, y) = spanC {(xHx, yHy)} (2.5)
= spanC {(−xe−x,−ye−y)}. Since

x = f−1(s/r) and y = f−1(r/s) solve (2.6), write

k = r
ex

x
= s

ey

y
=⇒ r = kxe−x and s = kye−y =⇒ (r, s) ∈ dir(x, y),

as promised. To see that (x, y) is strictly minimal, we will apply the following lemma (which we prove
in the next subsection).

Lemma 2.1. If (a, b) ∈ V ∩ (0, 1)2 (cf. (2.5)), then (a, b) is strictly minimal on V.

To apply Lemma 2.1, we have already noted that x, y > 0 (cf. Fact 1), so it remains to show that
x, y < 1. Now, since (r, s) ∈ Sε0 (cf. (1.2)), we have s

r ,
r
s > ε0, where we note from (1.2) that f(1) = ε0.

Thus, since f is monotone decreasing, we must have x = f−1(s/r) < 1 and y = f−1(r/s) < 1 so that,
by Lemma 2.1, (x, y) is strictly minimal.

Verifying Condition (ii). It is easy to verify Condition (ii). Indeed, by the Inverse Function Theorem,
(x, y) ∈ V varies smoothly as (r, s) ∈ Sε0 varies. Moreover, (x, y) ∈ V varies over the trace of the curve
(f−1(t), f−1(1/t)) for t ∈ [ε0, 1/ε0] (see Figure 1), which is the continuous image of a compact set.



6 R. F. DE ANDRADE, E. LUNDBERG, AND B. NAGLE

Figure 1. The Sector Sε0 in the rs-plane (left), and the real section of V (right) in the
xy-plane with the set of minimal points (x, y) corresponding to Sε0 plotted in bold.

Verifying Condition (iii). It is slightly tedious to verify Condition (iii). To begin, note that the function
G(x, y) = e−y from (2.5) is never zero. We show that the function Q(x, y) is always positive on V ∩
(R+ × R+). It is easy to check that

Q(x, y) = −y2H2
yxHx − yHyx

2H2
x − x2y2(H2

yHxx +H2
xHyy − 2HxHyHxy)

= xye−x−y
[
ye−y + xe−x − xy(e−y + e−x)

]
,

which we defined in (1.4). Now, x > 0 and y > 0 imply that xye−x−y > 0, so we will disregard this
factor. Moreover, in the expression above, e−y + e−x = 1 on V, so we consider the simpler function

P (x, y) = ye−y + xe−x − xy,

and prove that P (x, y) is positive on V ∩ (R+ × R+). Using 1 + x < ex on V, we have

1 + x < ex =
1

1− e−y
=⇒ x <

e−y

1− e−y
=⇒

P (x, y) = ye−y − x
(
y − e−x

)
> ye−y −

(
e−y

1− e−y

)(
y − e−x

)
=

e−y

1− e−y
(
e−x − ye−y

)
.

Clearly, the first factor above is positive on y > 0, so it suffices to consider R(x, y) = e−x − ye−y.
However, on V, we have R(x, y) = 1− e−y(1 + y) > 0, since 1 + y < ey. This confirms Condition (iii).

We now conclude the proof of Theorem 1.3. We apply Theorem 2.1 to e−y/(e−x + e−y − 1) (cf. (2.2),
(2.5)) to conclude that for r, s→∞ with (r, s) ∈ Sε0 ,

Ar,s =
(
e−y +O(s−1/2)

) 1√
2π
x−ry−s

√
yey

sQ(x, y)

and so, by (2.3), we have

[br−1as] = r!s!Ar,s = r!s!
(
e−y +O(s−1/2)

) 1√
2π
x−ry−s

√
yey

sQ(x, y)
,

as promised.
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2.3. Proof of Lemma 2.1. Fix (a, b) ∈ V ∩ (0, 1)2, where we recall from (2.5) that

V =
{

(x, y) ∈ C2 : H(x, y) = e−x + e−y − 1 = 0
}
.

To show that (a, b) is stictly minimal on V, we prove that

min
z∈D(0,a)

<e e−z is achieved at only z = a, (2.8)

and so symmetrically,

min
w∈D(0,b)

<e e−w is achieved at only w = b.

As such, if (z, w) ∈ D(0, a)×D(0, b) satisfies (z, w) 6= (a, b), we have

<eH(z, w) = <e e−z + <e e−w − 1 > e−a + e−b − 1 = 0,

in which case H(z, w) 6= 0 and so (z, w) 6∈ V.
To show (2.8), we solve for all z ∈ D(0, a) which minimize <e e−z (and show that only z = a works).

We begin by making the following initial considerations. For z ∈ D(0, a), we write z = u + iv so that
u2 + v2 ≤ a2 and <e e−z = e−u cos v. Note that <e e−z = e−u cos v is a harmonic function (it is the real
part of an analytic function). As such, the maximum principle [1, Sec. 6.2] ensures that the minimum
value of <e e−z = e−u cos v over D(0, a) is attained at the boundary ∂D(0, a) = {z ∈ D(0, a) : |z|2 =
u2 + v2 = a2}. As such, we will always assume v 6= 0, for otherwise z = u = ±a, and the following hold:

(1) z = −a does not minimize <e e−z = e−u cos v (since ea > e−a with a > 0),
(2) z = a is what we promise in (2.8).

To minimize <e e−z = e−u cos v subject to |z|2 = u2 + v2 = a2, we use the Lagrange multiplier rule:
for a scalar λ ∈ R, set

∇
(
e−u cos v

)
= λ∇

(
u2 + v2

)
=⇒

(
−e−u cos v,−e−u sin v

)
= (2λu, 2λv) . (2.9)

In light of (2.9), we may now also assume u 6= 0, for otherwise, cos v = 0 implies 0 6= v = kπ/2 for some
(necessarily nonzero) k ∈ Z, and so 1 > a = v2 = k2π2/4 ≥ π2/4 > 2. At this stage of our analysis, we
will have proven (2.8) if we can show that

no z = u+ iv ∈ ∂D(0, a) with u 6= 0 6= v will solve (2.9). (2.10)

Indeed, with u 6= 0 6= v, we may rewrite (2.9) to say

sin v

v
= −2λe−u =

cos v

u
=⇒ v = u tan v, (2.11)

which we now rewrite in polar coordinates. For θ ∈ [0, 2π), let u = a cos θ and v = a sin θ, where we may
assume from u 6= 0 6= v that θ 6∈ {0, π/2, π, 3π/2}. Then (2.11) is equivalent to

a sin θ = a cos θ tan(a sin θ) =⇒ tan θ = tan(a sin θ) =⇒ a sin θ = θ+kπ where k ∈ Z. (2.12)

We now investigate the possible values of k ∈ Z in (2.12). Since a ∈ (0, 1) and θ ∈ (0, 2π), we have

|θ + kπ| = a| sin θ| < | sin θ| < min{1, θ} (2.13)

and so only k ∈ {−1,−2} are possible. However, k 6= −1 because the two sides of a sin θ = θ − π will
have opposite signs. Moreover, k 6= −2 because

2π − θ = −a sin θ = a sin(−θ) = a sin(2π − θ) ≤ a| sin(2π − θ)| < | sin(2π − θ)| ≤ 2π − θ.

Thus, we have proven (2.10), and hence (2.8), which concludes the proof of Lemma 2.1.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 involves specializing Theorem 1.3 to the case r − 1 = b(n − 1)/2c and
s = d(n− 1)/2e, and therefore, consists of calculations. We split the proof into two cases, depending on
the parity of n, and begin with the easier (cleaner) case.
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3.1. Proof of Theorem 1.2 (n is even). When n is even, we have r = s = n/2, and so x = y = f−1(1),
where f is the function defined in Fact 1. As we saw in the proof of Theorem 1.3, (x, y) is a strictly
minimal point on V = {(x, y) ∈ C2 : e−x + e−y − 1 = 0}, and so we easily calculate x = y = log 2. It
remains to substitute r = s = n/2 and x = y = log 2 into the asymptotic expression of Theorem 1.2.
We proceed in a piecemeal way.

To begin, note first that with x = y = log 2 and r = s = n/2, we have

Q(x, y) =
1

4
(1− log 2) log3 2 =⇒ x−ry−s

√
ye−y

sQ(x, y)
=

2

logn+1 2
· 1√

n(1− log 2)
. (3.1)

With r = s = n/2, we use Stirling’s approximation to conclude

1√
2π
r!s! =

1√
2π

((n
2

)
!
)2

=

(
1 +O

(
1

n

)) √
n

2n+1
n!. (3.2)

With y = log 2 and s = n/2, the error term of Theorem 1.3 is

e−y +O(s−1/2) =
1

2
+O

(
1√
n

)
. (3.3)

Multiplying (3.1)–(3.3) together yields[
bb(n−1)/2cad(n−1)/2e

]
=

(
1

2 log 2
√

(1− log 2)
+O

(
1√
n

))(
1

2 log 2

)n

n!,

which is slightly stronger than promised.

3.2. Proof of Theorem 1.2 (n is odd). The calculations here are similar, and we claim that (3.1)–
(3.3) still hold as long as we dampen them to include some error factor of (1 + o(1)), where o(1)→ 0 as
n→∞. When n is odd, we have r = (n+ 1)/2 = s+ 1, and it is routine to update (3.2) to say

1√
2π
r!s! =

1√
2π

(
n+ 1

2

)
!

(
n− 1

2

)
! = (1 + o(1))

√
n

2n+1
n!. (3.4)

Now,

x = f−1
(s
r

)
= f−1

(
1− 2

n+ 1

)
and y = f−1

(r
s

)
= f−1

(
1 +

2

n− 1

)
, (3.5)

and so by the continuity of f−1, we have x, y → f−1(1) = log 2 as n→∞. By continuity alone, we may
update (3.3) and parts of (3.1) to say

e−y +O(s−1/2) =
1

2
+ o(1) (3.6)

and

Q(x, y) = (1 + o(1))
1

4
(1− log 2) log3 2 =⇒

√
ye−y

sQ(x, y)
= (1 + o(1))

2

log 2
· 1√

n(1− log 2)
. (3.7)

With its large exponents, we need to be slightly more careful with the the factor x−ry−s in (3.1).
The function f in Fact 1 is analytic, and Fact 1 guarantees that it is invertible and that f ′ is nonzero.

As such, f−1 is analytic, and so we use Taylor’s theorem to perform a linear approximation of f−1(z)
near a = 1. Set d = (f−1)′(1). We update (3.5) to say

x = f−1
(

1− 2

n+ 1

)
= f−1(1)− d 2

n+ 1
+ Θ

(
1

n2

)
= log 2− d 2

n+ 1
+ Θ

(
1

n2

)
and y = f−1

(
1 +

2

n− 1

)
= f−1(1) + d

2

n− 1
+ Θ

(
1

n2

)
= log 2 + d

2

n− 1
+ Θ

(
1

n2

)
, (3.8)
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and so xy = log2 2 + Θ(1/n2). Now, with r = (n+ 1)/2 = s+ 1,

xrys = x(xy)s = x

(
log2 2 + Θ

(
1

n2

))s
(3.8)
=
(
log2s+1 2

)(
1 + Θ

(
1

n

))(
1 + Θ

(
1

n2

))n−1
2

= (1 + o(1)) logn 2 =⇒ x−ry−s =
1

logn 2
(1 + o(1)). (3.9)

Now, multiplying (3.4), (3.6), (3.7), and (3.9) yields[
bb(n−1)/2cad(n−1)/2e

]
=

(
1

2 log 2
√

(1− log 2)
+ o(1)

)(
1

2 log 2

)n

n!,

as promised.

4. Proof of Lemma 1.6

We indicated that Lemma 1.6 is (mostly) a consequence of a result of Clarke, Steingŕımsson, and
Zeng [5]. To state that result, define, for a permutation π ∈ Sn, DesBot(π) = {π(i) : π(i) < π(i− 1)} to
be the (so-called) Descent Bottoms Set.

Lemma 4.1 (Clarke, Steingŕımsson, Zeng [5]). There exists a bijection Φ : Sn → Sn so that for any
π ∈ Sn, Exc(π) = DesBot(Φ(π)).

At the end of this section, we include (for completeness) a proof of Lemma 4.1 using a different1 bijection
Φ (which was suggested to us by Emeric Deutsch [8]).

4.1. Proof of Lemma 1.6: Statement (1). To prove Statement (1) of Lemma 1.6 from Lemma 4.1,
we make the following two observations.

Observation 1. Let π ∈ Sn+1 have no fixed points. Then, π admits no stretching pairs iff there exists
` ∈ [n] so that Exc(π) = [`].

Proof. Indeed, clearly no π ∈ Sn+1 whose excedence set takes the form Exc(π) = [`] can have stretching
pairs. Suppose π ∈ Sn+1 has neither stretching pairs nor fixed points, and let ` ∈ [n] be the maximum
integer for which [`] ⊆ Exc(π). Then [`] = Exc(π), since otherwise j ∈ Exc(π) \ [`] would give the
stretching pair `+ 1 < j. �

Observation 2. There is a bijection F : Cn+1 → Sn so that for each π ∈ Cn+1 and for each ` ∈ [n],
Exc(π) = [`] iff DesBot(F (π)) = [`− 1].

Proof. Indeed, fix π ∈ Cn+1 and define F (π) = p ∈ Sn by the rule p(i) = πn+1−i(1)− 1. For j ∈ [n], we
show j+1 ∈ Exc(π) iff j ∈ DesBot(p). Write j = p(i) for some i ∈ [n] so that j+1 = p(i)+1 = πn+1−i(1)
and π(j + 1) = πn+1−(i−1)(1) = p(i− 1) + 1. Now, π(j + 1)− (j + 1) = p(i− 1)− p(i) is positive if, and
only if, j + 1 ∈ Exc(π) and if, and only if, j = p(i) ∈ DesBot(p). �

To prove Statement (1) of Lemma 1.6, we note that every π ∈ Cn+1 is without fixed points, and so
Observation 1 gives the disjoint union

C∗n+1 =

n⋃
`=1

{
π ∈ Cn+1 : Exc(π) = [`]

}
=⇒

∣∣C∗n+1

∣∣ =

n∑
`=1

∣∣ {π ∈ Cn+1 : Exc(π) = [`]}
∣∣.

Applying Observation 2 and Lemma 4.1 (in this order) then gives∣∣C∗n+1

∣∣ =

n−1∑
k=0

∣∣ {π ∈ Sn : DesBot(π) = [k]}
∣∣ =

n−1∑
k=0

∣∣ {π ∈ Sn : Exc(π) = [k]}
∣∣ =

n−1∑
k=0

[bkan−1−k],

as promised.

1According to Ehrenborg and Steingŕımsson [9], there are several variations of the bijection Φ, many of which seem to
originate in early work of Foata and Schützenberger [12].
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4.2. Proof of Lemma 1.6: Statement (2). Let An = An({21−34, 34−21}) denote the set of per-
mutations π ∈ Sn which avoid both 21−34 and 34−21 as generalized patterns, and write αn =
αn({21−34, 34−21}) = |An|. For an (n + 1)-cycle π ∈ Cn+1, we say that a stretching pair π(i) <
i < j < π(j) is typical if π(j) 6= n + 1, and exceptional otherwise. Let En+1 ⊂ Cn+1 denote the set of
(n + 1)-cycles π whose only stretching pairs are exceptional. The following statement2 is an easy fact
from Section 4.1 of [6].

Proposition 4.2 (Cooper et al. [6]). There is a bijection φ : Cn+1 → Sn with the property that π ∈
C∗n+1 ∪ En+1 iff φ(π) ∈ An.

Proposition 4.2 gives the identity αn = |En+1|+ |C∗n+1|, and hence, αn ≥ |C∗n+1|, which is the lower
bound in Statement (2) of Lemma 1.6. It remains to prove the upper bound. We shall establish an
injection ι : En+1 → C∗n+2, in which case |En+1| ≤ |C∗n+2| and the upper bound in Statement (2) of
Lemma 1.6 then follows.

To define ι, it will be convenient to work rather with Cn+2[0, n + 1], which is the set of (n + 2)-
cycles defined on the elements [0, n + 1] = {0, 1, . . . , n + 1}. We take C∗n+2[0, n + 1] to be the set of
π ∈ Cn+2[0, n + 1] with no stretching pairs. Now, fix π ∈ En+1, and write j0 = π−1(n + 1). By
construction, all stretching pairs i < j in π ∈ En+1 have j = j0. Define p = ι(π) ∈ C∗n+2[0, n + 1] by
the following rule: p(0) = n+ 1, p(j0) = 0, and p(i) = π(i) for all remaining i ∈ [n+ 1]. Clearly, ι is an
injection and p = ι(π) is an (n + 2)-cycle on the elements [0, n+ 1]. Note that all stretching pairs of π
have been eliminated in p = ι(π), and no new ones arise.

4.3. Proof of Lemma 4.1. Define the bijection Φ as follows. Let π ∈ Sn be given in its standard cycle
decomposition, SCD(π), i.e., each cycle begins with its smallest entry and cycles appear in ascending
order according to their initial entries. Define p = Φ(π) ∈ Sn to be the permutation which, in one-
line notation p = (p1, . . . , pn) where i 7→ pi, is obtained by first reversing the order of entries within
each cycle of π, and then removing all parentheses. For example, if π = (1 5 2 8)(3 6 7)(4 9), then
Φ(π) = (8, 2, 5, 1, 7, 6, 3, 9, 4).

It is easy to show that Φ is a bijection by constructing its inverse function. Fix p = (p1, . . . , pn) ∈ Sn,
and construct SCD(π) for π = Φ−1(p) as follows. Find the index k1 for which pk1

= 1. Take the
consecutively indexed entries from p1 to pk1

and reverse their order to obtain the first cycle for π. Find
the index k2 > k1 for which pk2 is the smallest element of [n] \ {p1, . . . , pk1}. Construct the second
cycle for π by reversing the order of the entries starting with pk1+1 and ending with pk2 . Having
constructed the first j cycles for π, find the index kj+1 > kj so that pkj+1

is the smallest element of
[n] \ {p1, p2, . . . , pkj

}, and obtain the next cycle by reversing the order of the entries starting with pkj+1

and ending with pkj+1
. By construction, π will be in standard cycle decomposition and Φ(π) = p.

We now verify that Φ has the promised property: for all π ∈ Sn, Exc(π) = DesBot(p = Φ(π)). To
that end, fix π = (p1, . . . , pn) ∈ Sn. For j ∈ [n], we show j ∈ Exc(π) ⇐⇒ j = DesBot(p). We consider
two cases, depending on how j appears in SCD(π).

Case 1. In SCD(π), j does not appear last in its cycle. Then, π(j) is the next consecutive entry
appearing in the same cycle as j. Set k = p−1(j) so that pk = j. Then, by the construction of Φ,
pk−1 = π(j). Now,

j ∈ Exc(π) ⇐⇒ pk−1 = π(j) > j = pk ⇐⇒ j = pk ∈ DesBot(p),

as desired.

Case 2. In SCD(π), j appears last in its cycle. Then, π(j) is the first entry in the cycle containing
j. Since π is in standard cycle decomposition, π(j) ≤ j, in which case j 6∈ Exc(π). If j is in the first
cycle of π, then p1 = j 6∈ DesBot(p), as desired. Assume, therefore, that j is not in the first cycle of π.

2The bijection φ in Proposition 4.2 is easy to state. If (n + 1 a1 . . . an) ∈ Cn+1 is given in cyclic notation n + 1 7→
a1 7→ . . . 7→ an 7→ n+ 1, then φ(π) = (a1, . . . , an) ∈ Sn, which we’ve written in customary notation i 7→ ai.
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Let the cycle immediately preceding that of j begin with a, and let the cycle containing j begin with b.
Then, a < b ≤ j. Moreover, pk−1 = a < j = pk, so that pk = j 6∈ DesBot(p), as desired.

Appendix: Proof of Fact 1

Recall that we wish to prove f(t) = t−1(1− et) log(1− e−t) is a strictly decreasing bijection from R+

onto R+. To that end, it is straightforward to check that limt→0+ f(t) = +∞ and limt→+∞ f(t) = 0 (the
numerator of the second limit tends to 1). By continuity, we immediately conclude that f : R+ → R+

is onto.
The remainder of the Appendix is reserved to proving that f : R+ → R+ is strictly decreasing, and

in particular, that f ′ is negative on R+. In what follows, we make the substitution t = log p, where
p ∈ (1,∞), and we consider the function

F (p) = f(log p) =
(1− p) log(1− 1

p )

log p
=

(1− p) (log(p− 1)− log p)

log p
=

(1− p) log(p− 1)

log p
− (1− p).

We will show that F ′ is negative on (1,∞), and since t = log p is increasing in p ∈ (1,∞), we will infer
that f ′ is negative on R+. This will conclude our proof.

Observe that

F ′(p)− 1 =
1

log2 p

[
log p

[
(−1) log(p− 1) + (1− p) 1

p− 1

]
− (1− p) log(1− p) · 1

p

]
,

so that

F ′(p) = −p(log p) log(p− 1) + p log p+ (1− p) log(p− 1)− p log2 p

p log2 p
.

We show that the numerator

N(p) = p(log p) log(p− 1) + p log p+ (1− p) log(p− 1)− p log2 p

is positive on (1,∞), which then implies that F ′ is negative on (1,∞). For that, we first note that
N(p)→ 0+ as p→ 1+. As such, it suffices to show that N ′ is positive on (1,∞).

Observe that

N ′(p) = (log p) log(p− 1) + log(p− 1) +
p

p− 1
log p+ log p+ 1− log(p− 1)− 1− log2 p− 2 log p

= (log p)

[
1

p− 1
− log

(
1 +

1

p− 1

)]
.

Note that log p > 0 on (1,∞). The second factor above is also positive, since log(1 + x) < x holds for
all x = 1/(p− 1) ∈ R.
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